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ABSTRACT
Accretion onto a highly-magnetised neutron star runs through a magnetospheric flow, where the plasma follows the magnetic
field lines in the force-free regime. The flow entering the magnetosphere is accelerated by the gravity of the star and then abruptly
decelerated in a shock located above the surface of the star. For large enoughmass accretion rates,most of the radiation comes from
the radiation-pressure-dominated region below the shock, known as accretion column. Though the one-dimensional, stationary
structure of this flow has been studied for many years, its global dynamics was hardly ever considered before. Considering
the time-dependent structure of an accretion column allows us to test the stability of the existing stationary analytic solution,
as well as its possible variability modes, and check the validity of its boundary conditions. Using a conservative scheme, we
perform one-dimensional time-dependent simulations of an ideal radiative MHD flow inside an aligned dipolar magnetosphere.
Whenever thermal pressure locally exceeds magnetic pressure, the flow is assumed to lose mass. Position of the shock agrees
well with the theoretical predictions below a limit likely associated with advection effects: if more than 2/3 of the released
power is advected with the flow, the analytic solution becomes self-inconsistent, and the column starts leaking at a finite height.
Depending on the geometry, this breakdown may broaden the column, mass-load the field lines, and produce radiation-driven,
mildly relativistic ejecta. Approaching the equilibrium position, the shock front experiences damped oscillations at a frequency
close to the inverse sound propagation time.
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1 INTRODUCTION

Depending on their nature and fundamental parameters, compact
objects may gain matter via different types of accretion flows. In par-
ticular, for a strongly magnetised neutron star (NS), magnetic field
is an important factor shaping the innermost parts of the flow. Close
to the star, magnetic stresses may dominate the momentum balance,
and the matter is forced to follow the field lines and, in particular,
to co-rotate with the NS. Such objects normally manifest themselves
as X-ray pulsars (XRPs), hard X-ray sources showing coherent flux
pulsations with the spin period of the star (e. g. Caballero & Wilms
2012; Wolff et al. 2019; Mushtukov & Tsygankov 2022). For most
XRPs, the size of the magnetosphere replacing the disrupted inner
portions of the accretion disc is normally two-three orders of mag-
nitude larger than the size of the accreting neutron star (NS). Given
the shape of the potential well, this means that practically all the en-
ergy of the accretion flow is released deep inside the magnetosphere.
Hence, modelling the magnetospheric part of the flow is crucial for
the understanding of the observational properties of XRPs and their
long-time evolution.
XRPs are historically known as a subclass of high-mass X-ray bi-

naries. Most of the well-studied XRPs are binaries consisting of a NS
with a massive Be-star companion (Bildsten et al. 1997; Raguzova
& Popov 2005). Rapid rotation of the donor stars, large eccentrici-
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ties and misalignment of many of these systems lead to complicated
mass transfer rate variation patterns with different types of flares
and orbital and super-orbital variability (Reig 2011). Less numerous
but important classes of XRPs include systems with OB-supergiant
donor stars (like Vela X-1, see Kretschmar et al. 2021 for review) and
intermediate-mass subgiant donors (like Her X-1, see for example
Brumback et al. 2021). Recently, new classes of XRPs were discov-
ered: accreting millisecond X-ray pulsars (see Patruno &Watts 2021
for a review) and super-Eddington pulsating ultraluminous X-ray
pulsars (Bachetti et al. 2014).
Ultraluminous X-ray sources (ULXs) are known since 1980-s as

a population of extragalactic X-ray sources exceeding the Eddington
limit for a conventional black hole (about 1039 erg s−1; see Kaaret
et al. 2017 for a review). They were usually identified as either
intermediate-mass black holes in binary systems (Portegies Zwart
et al. 2004) or stellar-mass black holes accreting at super-Eddington
rates (Poutanen et al. 2007). But, intriguingly, during the last few
years, several known ULXs were found to produce strong coherent
pulsations in the X-ray range (Bachetti et al. 2014; Fürst et al. 2016;
Israel et al. 2017a,b; RodríguezCastillo et al. 2020). The simplestway
to explain the pulsations is by an anisotropically-emitting rotatingNS.
Spectral properties of many other ULXs are close to the properties
of pulsating ULXs (PULX), suggesting an even larger population
of supercritically accreting NSs (Pintore et al. 2017). PULX may
be considered as XRPs accreting at super-Eddington rates, though a
debate is going on about the role of geometric or relativistic beaming
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2 Abolmasov & Lipunova

in these objects (see, for instance, Abarca et al. 2021 and Mushtukov
et al. 2021).
Conventional model of an XRP involves an accretion disc around

theNS, amagnetosphere that replaces the inner parts of the disc, and a
compact region near the surface of the starwheremost of the radiation
is produced. Usually, a NS is assumed to have a dipolar magnetic
field. However, a pure dipole cannot coexist with the accretion disc
outside the outer boundary of themagnetosphere, hence themagnetic
field lines are divided into open lines, closed lines (retaining dipole
topology), and mass-loaded lines strongly interacting with the disc.
This picturewas proposed in early analyticalworks (e.g. Scharlemann
1978) and is in general supported by numerical simulations (Kulkarni
& Romanova 2013; Parfrey & Tchekhovskoy 2017). The accretion
flow is confined to two narrow flux tubes connecting the inner rim
of the disc to the ring- or crescent-shaped regions near the magnetic
poles of the NS (Bachetti et al. 2010; Kulkarni & Romanova 2013).
Gravitational energy of the matter falling along the magnetic field
lines is converted to kinetic energy, and then to heat and to radiation
in a shock wave located either very close to the surface of the NS
(the hot spot case), or above the surface of the star, if the radiation
pressure contribution is large (Davidson 1973; Inoue 1975; Basko &
Sunyaev 1976). The latter case, associated with higher luminosities,
is usually described as an accretion column.
A detailed analytic model of a radiation-pressure-supported accre-

tion column was developed by Basko & Sunyaev (1976) (hereafter
BS). Referring to BS, we will always address their ‘sinking regime’
described in section 4.4 of their paper, that is, the case relevant for a
geometrically high, radiation-pressure-supported accretion column.
The minimal luminosity required for the formation of a column is
less than the Eddington luminosity, as the accretion flow, channelled
by the magnetic field lines, is confined to a small fraction of the
NS surface. The heat in an accretion column is mainly produced by
adiabatic heating and is radiated away by the sides of the flow. The
model developed by BS recovers the structure of the accretion flow
downstream of the shock and determines the position of the shock as
an eigenvalue of the problem.
The approximation used by BS involved several assumptions, in-

cluding simplified geometry, stationarity, Newtonian physics, fixed
and isotropic scattering cross-section, absence of radial heat diffu-
sion, domination of radiation pressure, and a certain set of boundary
conditions at the surface of the NS. At the surface of the star, the
mass flux is the same as the mass accretion rate at the outer boundary,
and the pressure is equal to the magnetic field pressure, meaning the
footpoints of the magnetic field lines are at the edge of a breakdown.
The boundary condition for the pressure provides a physical expla-
nation for what might seem to be a violation of mass conservation
in the model: the pressure at the base of the column is large enough
to squeeze the accreting matter sideways by displacing the magnetic
field lines. The actual physics responsible for the ‘leakage’ of the col-
umn is likely some kind of interchange instability that arises when
thermal pressure becomes comparable to magnetic field pressure or
exceeds the latter by some factor (Litwin et al. 2001; Mukherjee et al.
2013; Kulsrud & Sunyaev 2020).
In more recent studies, some of these assumptions were relaxed.

For instance, in the paper by West et al. (2017a), the structure of the
column is treated in an inclined dipolar geometry, including realistic
opacities and detailed energy transfer between electrons, ions, and
radiation. The papers including elaborate microphysics and radia-
tive transfer (Becker 1998; Becker & Wolff 2007; West et al. 2017a)
are complemented by large-scale two- and three-dimensional sim-
ulations of accreting magnetospheres (Wang & Frank 1981; Arons

et al. 1987; Kulkarni & Romanova 2013; Kawashima et al. 2016),
that provide important insights into the global structure of the flow.
Here, we aim to relax some of the assumptions of BS, and, first of

all, the assumption of stationarity. This might be important because
the mass accretion rates in real XRPs are highly variable on multiple
time scales, some of which (such as dynamic and sometimes viscous
time scales of the inner accretion disc) are shorter than the time
needed for the column to approach equilibrium (see section 2.2).
Considering a time-dependent problem would allow us to see the
formation of the shock and its evolution towards the equilibrium
position.
Besides, time-dependent treatment allows us to check the analytic

stationary model of BS for consistency. In particular, we can check
if their boundary condition at the surface of the star is a natural
outcome of the time-dependent evolution. Force-free accretion onto
a solid-surface NS leads to accumulation of mass and heat inside
the column. This, in turn, likely leads to a breakdown of the force-
free assumption when thermal pressure starts exceeding magnetic
stresses. If this happens near the bottom of the column, the stationary
picture proposed by BS would be naturally reproduced. However, as
the magnetic field pressure drops with radius ∝ 𝑅−6, and the thermal
pressure may easily (as we will show later in section 3.4) have a
shallower profile in particular circumstances such as strong advection
in the flow, we expect a different scenario to be realised for certain
combinations of parameters.
In the analytic model by BS, increase of the mass accretion rate

shifts the shock wave upwards, towards the accretion disc. Applied
to PULXs, the model predicts either a shock located very high in
the magnetosphere, or a completely subsonic optically thick flow
similar to the scenario proposed by Mushtukov et al. (2017). Ex-
tending the solution so far into the magnetosphere requires taking
into account additional effects such as irradiation (outer regions of
the flow intercept significant part of the luminosity generated by its
inner parts), centrifugal force, and more complex geometry (dipole
is no more consistent with a power-law approximation). Apart from
this, as we will see in section 3.3, self-consistency of the analytic
model is limited by advection effects that become important for large
mass accretion rates and small radiating surfaces of the column.
An important question that has hardly ever been addressed in the

case of NSs is whether accretion columns have observable global
oscillation modes. This is potentially a very important issue, because
any oscillations formed near the surface of the star are direct probes
of its properties: strong gravity, magnetic fields, and the physical
conditions in the flow.
Apparently, there is no unambiguous observational evidence for

any oscillationmodes coming from accretion columns. Normally, the
power density spectrum (PDS) of an XRP shows a broad-band noise
with a break at some frequency positively correlated with the flux
(Revnivtsev et al. 2009). The break frequency is close to the expected
Keplerian frequency at the boundary between themagnetosphere and
the disc, and the observed correlation reasonably fits into the con-
cept of the magnetosphere size changing with the accretion rate (see,
e.g., Pringle & Rees 1972; Lamb et al. 1973; Bildsten et al. 1997;
Filippova et al. 2017). However, at large, super-Eddington, luminosi-
ties, the PDS acquires an additional broad-band noise component
peaking at about the break frequency (Revnivtsev et al. 2009; Reig
& Nespoli 2013). One of the proposed explanations is the presence
of oscillations in the outer parts of the magnetospheric flow. The
possible sources of the oscillations could be the feedback from the
irradiation by the inner, bright parts of the flow, or a combination
of the centrifugal force, radiation, and gravity. One such solution in-
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Accretion column dynamics 3

volving low-optical-depth matter trapped in the magnetosphere was
proposed by Abolmasov & Biryukov (2020).
At higher frequencies (closer to the dynamic frequencies near the

surface of the star) most XRPs lack detectable variability. There are
however two notable exceptions which will be discussed in this paper
(see section 4.2). One is GRO J1744−28 (Klein et al. 1996), where
a significant power excess at tens of Hz is observed. The frequency
range of the noise is suggestive of the dynamical time scale of the
accretion column in this object. Another example is Cen X-3, for
which Jernigan et al. (2000) detected a broad, low-quality-factor
feature at about 1 kHz (see, however, Revnivtsev et al. 2015). Both
cases are explained by the authors as manifestations of the photon-
bubble instability. In this paper, we show that similar observational
features may be reproduced by global oscillations of the accretion
column.
The structure of the paper is as follows.We formulate the problem,

write down the equations, and describe the numerical code in sec-
tion 2. In section 3, we present the results including velocity profiles,
shock positions, and variability patterns. We discuss the results in
section 4, and conclude in section 5.

2 PROBLEM FORMULATION AND NUMERICAL SETUP

We consider the dynamics of a flow restricted by the aligned dipolar
magnetic field of the NS. Motion along the magnetic field lines is
affected by gravity, pressure gradients, centrifugal force, and radi-
ation pressure. We use one-dimensional time-dependent approach,
assuming the accretion flow uniformly fills a flux tube. Within the
tube, all the physical parameters depend only on time and the co-
ordinate along the field line. We use the laws of conservation of
mass (continuity equation), momentum (Euler equation projected
along the field line), and energy. The code is freely available at
https://github.com/pabolmasov/HACol.

2.1 Geometry

Figure 1 shows the adopted geometry of the problem. The simulated
flow is a pair of symmetric flux tubes, restricted by the surfaces
𝜃 = const and 𝜑 = const, starting in the accretion disc and ending
on the surface of the NS. The field lines are the lines of an unper-
turbed magnetic dipole. We use a spherical coordinate grid: radius
𝑅, polar angle 𝜃, and azimuthal angle 𝜑. For a single field line, radial
coordinate 𝑅 = 𝑅e sin2 𝜃, where 𝑅e is the equatorial size of the mag-
netosphere. By the order of magnitude, the size of the magnetosphere
is equal to the Alfvén radius

𝑅A =

(
𝜇2

2 ¤𝑀
√
2𝐺𝑀∗

)2/7
. (1)

Here, ¤𝑀 is the mass accretion rate, 𝜇 is the magnetic moment of
the NS, 𝑀∗ is the mass of the NS. We normalise the size of the
magnetosphere as 𝑅e = 𝜉m𝑅A and set 𝜉m = 0.5 in all our models.
For two field lines having slightly different equatorial radii close

to 𝑅e and separated at the equator by Δ𝑅e � 𝑅e, the distance be-
tween the field lines 𝛿 is expressed through the polar angle as (see
Appendix A):

𝛿 =
𝑅 sin 𝜃

√
1 + 3 cos2 𝜃

Δ𝑅e
𝑅e

. (2)

Here, Δ𝑅e has the physical meaning of the penetration depth of the
magnetic field into the accretion disc (see Fig. 1). Relatively small
value of Δ𝑅e is a consequence of the high conductivity of the plasma

and is reproduced by numerical simulations (Parfrey et al. 2016;
Romanova et al. 2003).
A thin (in the sense of 𝛿 � 𝑅) flow has a cross-section of

𝐴⊥ = 2 𝛿 2π𝑎𝑅 sin 𝜃 = 4π𝑎𝑅eΔ𝑅e
sin6 𝜃

√
1 + 3 cos2 𝜃

. (3)

We assume that in the azimuthal direction, the flow occupies a fixed
fraction 𝑎 of the full circle 2π𝑅 sin 𝜃, with 0 < 𝑎 ≤ 1. In the ab-
sence of strict axisymmetry, the flow is expected to occupy only a
limited range of azimuthal coordinates. We treat the cross-section as
rectangular, with the perimeter equal to

Π = 2
(
𝐴⊥
𝛿

+ 2𝛿
)
, (4)

where the first factor of 2 (aswell as the firstmultiplier 2 in equation 3)
comes from the flow actually consisting of two streams accreting onto
the two poles of the dipole. Taking into account the lateral sides of
the flow (the second term in equation 4) increases the surface of the
column by a factor 1 + 2𝛿2/𝐴⊥.
As an independent variable for calculations, it is convenient to use

a coordinate along the field line, defined as (see equation A3):

𝑙 =

∫ √
3 cos2 𝜃 + 1
2 cos 𝜃

d𝑅 = 𝑅e

∫ √︁
3 cos2 𝜃 + 1 sin 𝜃 d𝜃 . (5)

As both variables, 𝑅 and 𝜃, increase monotonically along the field
line, conversion between 𝑙, 𝑅, and 𝜃 is unique and straightforward.

2.2 Time scales

For each radius 𝑅, there is a characteristic dynamical time

𝑡d (𝑅) = 2π

√︄
𝑅3

𝐺𝑀∗
. (6)

At the surface of the NS, it is of the order 𝑡d (𝑅∗) ∼ 10−4s. At the
outer edge of themagnetosphere, it can reach the values of seconds, or
even larger, for strong enoughmagnetic fields or small mass accretion
rates.
In section 3.6 we will also discuss the sound propagation time

scale 𝑡s along the field line

𝑡s =

∫
d𝑙
𝑐s
, (7)

where 𝑐s is the speed of sound. This time depends on the structure
of the column, and may be longer (because of sub-virial speed of
sound) as well as shorter (when the height of the column is small
compared to 𝑅∗) than local dynamical times.
Another important time scale is the replenishment time of the

matter in the column, 𝑡r = 𝑀col/ ¤𝑀 , where

𝑀col =

∫ 𝑅shock

𝑅∗
𝐴⊥𝜌 d𝑅 (8)

is the mass of the accretion column (of all the matter below the
shock and above the surface of the star). For a crude estimate, let us
assume that 𝑅shock−𝑅∗ � 𝑅∗, and the column itself is in hydrostatic
equilibrium. This allows us to replace 𝜌d𝑅 = −d𝑝/𝑔 (where 𝑔 =

𝐺𝑀∗/𝑅2∗ is the gravity at the NS surface), hence

𝑀col ' (𝐴⊥𝑝/𝑔)𝑅=𝑅∗ . (9)

Applying the lower boundary condition 𝑝 = 𝐵2/8π results in a col-
umn mass estimate independent of the mass accretion rate. Making
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Figure 1. A sketch illustrating the geometry of the problem. Red solid lines are individual magnetic field lines: four on each side restricting the flow and one in
the middle. Three cross-sections are shown with hatched shadings, one on the surface, one above the surface, and one in the equatorial plane (outer boundary).
The blue dashed line shows a tangent to the field line at the distance where the second cross-section is plotted. We also show radial and 𝑧 =const lines passing
through the same point. Colouring of the sides of the flow shows the pressure (normalised by local magnetic pressure) distribution in the flow according to one
of the simulations: yellow corresponds to values about one, red is about 10−3.

all the necessary substitutions, we get an estimate for the replenish-
ment time scale

𝑡r '
𝐵2

8π𝐺𝑀

𝐴⊥ (𝑅∗)𝑅2∗
¤𝑀

' 340
(

𝐵

1012 G

)2
𝐴⊥ (𝑅∗)
1012 cm2

(
𝑅∗
10 km

)2 10−8M� yr−1
¤𝑀

s,

(10)

For pulsar-scale magnetic fields and Eddington mass accretion rate
¤𝑀 ' 10−8M� yr−1, 𝐴⊥ (𝑅∗) ∼ 0.1𝑅2∗ (see equation A8), and 𝑡r
is of the order of seconds or tens of seconds. The magnetospheres
considered in this paper are generally smaller and mostly have 𝑡r ∼
0.1s, depending on the geometric parameters such as 𝑎 and Δ𝑅e.
Replenishment time scale is evidently longer than the dynamical

time at the surface of the star. It is also likely to exceed the dynamical
time scale at the outer edge of themagnetosphere. Using equation (1),

it is possible to write down the ratio of the two times as

𝑡r
𝑡d (𝑅e)

=
𝑎
√
2

π 𝜉
7/2
m

Δ𝑅e
𝑅∗

. (11)

As 𝜉m ∼ 1, Δ𝑅e . 𝑅e, and 𝑅∗ � 𝑅e, the replenishment time is
generally longer than the dynamical time scale at the size of the
magnetosphere.
Another crucial time, the time scale for thermal cooling, may

be defined as the time required to lose the local internal energy by
radiation. In the optically thick parts of the flow, and given 𝛿2 � 𝐴⊥,
it may be calculated as the radiation diffusion time scale 𝛿2/𝐷, where
𝐷 = 𝑐/3𝜘𝜌 is the radiation diffusion coefficient. For a stationary flow,

𝑡thermal ∼
3𝜘 ¤𝑀
𝑐𝑣

𝛿2

𝐴⊥
, (12)

where 𝜘 is the opacity.
Velocity 𝑣 varies along the field line from the free-fall velocity

above the shock wave to seven times slower below the shock and
then essentially to zero near the surface. This makes thermal time
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Accretion column dynamics 5

scales extremely long near the basement of the column. To estimate
the characteristic maximal cooling times, we can use the analytic
solution of BS. The velocity may be obtained by dividing the two
equations (32) of BS one over the other and substituting 𝑅 = 𝑅∗, that
yields for the velocity at the basement of the column

𝑣(𝑅∗) '
2π𝛽BS
𝐵2

𝐺𝑀 ¤𝑀
𝑅∗𝐴⊥ (𝑅∗)

, (13)

where 𝛽BS is the ‘𝛽’ parameter used by BS, that has the physical
meaning of the fraction of accretion power advected through the sur-
face of the star. For realistic parameter sets, 𝛽BS varies approximately
between 0.1 and 1. Substituting this velocity estimate to (12), we get
an expression for the thermal time scale at the bottom of a column

𝑡thermal (𝑅∗) '
3𝐵2

2π𝛽BS
𝜘

𝐺𝑀𝑐
𝑅∗𝛿2 (𝑅∗)

' 300 1
𝛽BS

(
𝐵

1012G

)2 (
𝛿(𝑅∗)
1 km

)2
s .

(14)

2.3 Conservation equations

For a one-dimensional formulation, the basic density quantities (mass
density,momentumdensity, and energy density) need to be integrated
in the direction perpendicular to the magnetic field lines. Assuming
the physical conditions do not significantly vary across the flux tube,
we replace this integration with multiplication by the cross-section
𝐴⊥ given by equation (3). Computation involves a finite-volume
conservative scheme for the three quantities we treat as conserved:
mass, momentum along the field line, and energy, expressed per unit
length 𝑙 along the flux tube (from the computational point of view, it
is a single field line)

𝑚 =

∫
𝜌 d𝐴 = 𝜌𝐴⊥, (15)

𝑠 =

∫
𝜌𝑣 d𝐴 = 𝜌𝑣𝐴⊥, (16)

𝑒 =

∫ (
𝑢 + 𝜌

𝑣2

2

)
d𝐴 =

(
𝑢 + 𝜌 𝑣2

2

)
𝐴⊥. (17)

Here, 𝜌 is the volume rest-mass density, 𝑣 is the velocity along the
field line, 𝑢 is the thermal energy density, consisting of gas 𝑢gas and
radiation 𝑢rad energy densities. We use a kinematic constraint that
the matter does not move across the magnetic field lines, and the field
lines themselves are not distorted. This justifies the use of a rotating
frame and the absence of the kinetic energy of rotation in (17). For
each of the three quantities, conservation laws have the general form

𝜕𝑞

𝜕𝑡
+

𝜕𝐹𝑞

𝜕𝑙
= 𝑆𝑞 , (18)

where 𝑞 refers to a particular quantity (𝑚, 𝑠, or 𝑒), and 𝐹𝑞 and 𝑆𝑞 are,
respectively, the corresponding flux and the source term. We take the
fluxes in the form

𝐹𝑚 =

∫
𝜌𝑣 d𝐴 = 𝑠, (19)

𝐹𝑠 =

∫ (
𝜌𝑣2 + 𝑝

)
d𝐴 = 𝑠𝑣 + 𝐴⊥𝑝, (20)

and

𝐹𝑒 =

∫ (
𝑣𝜌

(
𝑢 + 𝑝

𝜌
+ 𝑣2

2

)
− 𝐷

𝜕𝑢rad
𝜕𝑙

)
d𝐴

= 𝑠

(
𝑢 + 𝑝

𝜌
+ 𝑣2

2

)
− 𝐷𝐴⊥

(
𝜕𝑢rad
𝜕𝑙

)
,

(21)

where 𝐷 = 𝑐/3𝜘𝜌 is the radiation diffusion coefficient introduced
also introduced in Section 2.2. The second term of equation (21)
accounts for photon diffusion along the field lines. Thermal pressure
𝑝 used in equation (21) includes gas and radiation pressure, and is
related to the internal energy density as

𝑝 =
𝑢

3 (1 − 𝛽/2) , (22)

and 𝛽 is defined as the ratio of gas pressure to the total. Pressure ratio
may be found by solving numerically (for derivation see Appendix B)
the equation for 𝛽

𝛽

(1 − 𝛽/2)3/4 (1 − 𝛽)1/4
=
3
√
2
𝑘

�̃�

(
𝑐

𝜎SB

)1/4
𝜌

𝑢3/4
. (23)

Here, 𝑘 and 𝜎SB are, respectively, the Boltzmann and Stefan-
Boltzmann constants, and �̃� is the mean particle mass that we set to
�̃� = 0.6𝑚p.
As the accretedmatter tends to accumulate at the surface of the star,

to reach a stationary state, we need a physically motivated mass sink.
At the same time, any mass flows in the direction perpendicular to
the direction of the magnetic field are impossible without deforming
the field. Hence we add a mass sink that turns on when the local
thermal pressure exceeds the pressure of the field 𝑝mag = 𝐵2/8π,

𝑆𝑚 = − 𝑚

𝐴⊥
Π

√︄
Γ1max

(
𝑝 − 𝑝mag, 0

)
𝜌

. (24)

Here, Π is the perimeter of the flow given by equation (4), and Γ1
is the effective adiabatic exponent for ideal monatomic gas with a
contribution of radiation pressure, see Chandrasekhar (1967, Chapter
II, equation 131)

Γ1 = 𝛽 + (4 − 3𝛽)2 (Γ − 1)
𝛽 + 12 (Γ − 1) (1 − 𝛽) , (25)

and 𝛽 = 𝑝gas/𝑝 is calculated using equation (23), and Γ = 5/3 as for
ideal monatomic gas.
Physically, the loss term given by equation (24) corresponds to

all the excess matter escaping the flux tube at about sonic velocity.
For the innermost cell of the simulation, it also works as a bound-
ary condition ensuring that, at a mass accretion rate high enough,
the energy density at the bottom of the column conforms with the
boundary condition used by BS.
The source term for the momentum 𝑠 is

𝑆𝑠 = 𝑔 ‖𝑚 + 𝑆𝑚𝑣, (26)

where 𝑔 ‖ is the force (gravitational, centrifugal, and radiation pres-
sure) per unit mass acting onto the matter in the flow,

𝑔 ‖ = −𝐺𝑀∗
𝑅2

sin(𝛼 + 𝜃) (1 − ΓEdd) +Ω2𝑅 sin 𝜃 cos𝛼, (27)

𝛼 is the angle between the tangent to the field line and the direction
of the centrifugal force (see Fig. 1), Ω is the rotation frequency of
the NS, and

ΓEdd = 𝜂irr
𝐿

𝐿Edd

1 − 𝑒−𝜏

𝜏
(28)

is the correction for radiation pressure (Eddington factor), 𝜂irr . 1 is
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6 Abolmasov & Lipunova

assumed constant, 𝐿 is the total power lost by the flow as radiation,
Eddington luminosity

𝐿Edd =
4𝜋𝐺𝑀∗𝑐

𝜘
' 2 × 1038 𝑀∗

1.4M�
erg s−1, (29)

and 𝜏 is the optical depth across the flow in the poloidal direction,
estimated as

𝜏 ' 𝜏𝜃 = 𝜘𝜌𝛿 = 𝜘
𝛿

𝐴⊥
𝑚 . (30)

The last term in (26) accounts for the momentum lost with the ex-
pelled mass.
In this work, we use the opacity of 𝜘 = 0.35 cm2 g−1, approxi-

mately equal to the Thomson scattering opacity for Solar metallicity
in the assumption of complete ionisation.We neglect the influence of
the magnetic field upon the scattering cross-section, that could be an
important factor for large magnetic fields (Basko & Sunyaev 1975;
Arons et al. 1987; Becker & Wolff 2007).
Here, we consider three different contributions to energy sources

and sinks: work done by the external forces, energy loss due to
radiation, and the energy lost with the mass loss

𝑆𝑒 = 𝑔 ‖ 𝑠 −
1 − 𝑒−𝜏eff

𝜉rad𝜏eff + 1
𝑐Π𝑢rad + 𝑆𝑚

𝑒 + 𝑝𝐴⊥
𝑚

, (31)

where 𝜉rad ∼ 1 is a dimensionless factor taking into account the
transverse structure of the flow.When energy is released in themiddle
of the accretion column, 𝜉rad = 3/2. Assuming the energy sources
uniformly distributed over the cross-section would instead lead to
𝜉rad = 3/4. Both possibilities are mentioned in BS, and the first one
used for the calculations. We also use 𝜉rad = 3/2 everywhere in this
paper. The 1−𝑒−𝜏eff factor in the second term of equation (31) allows
us to extend the results to the case of low optical depths, where the
radiation losses are volumetric rather than areal. We use the effective
optical depth defined as

𝜏eff = 𝜘𝑚 𝛿eff/𝐴⊥, (32)

where

𝛿−1eff = 𝛿−1 + 2𝛿/𝐴⊥. (33)

For themodelswhere emission from the lateral sides is ignored, 𝛿eff =

𝛿, 𝜏eff = 𝜏𝜃 , and perimeterΠ = 2𝐴⊥/𝛿. equation (32) reproduces the
optical depth in the two extreme cases, when 𝐴⊥/2𝛿 is either much
smaller or much larger than 𝛿. The last term in (31) corresponds to
the matter lost from the column when the mass sink is on. As work
should be done to expel matter, there is a contribution from pressure
in the term. In one of the models, we turn the pressure contribution
off in this term to facilitate the comparison with the results of BS.
The resulting system of three differential equations takes the form

𝜕𝑚

𝜕𝑡
+ 𝜕𝑠

𝜕𝑙
= 𝑆𝑚, (34)

𝜕𝑠

𝜕𝑡
+ 𝜕𝐹𝑠

𝜕𝑙
= 𝑆𝑠 , (35)

and

𝜕𝑒

𝜕𝑡
+ 𝜕𝐹𝑒

𝜕𝑙
= 𝑆𝑒, (36)

where the densities, fluxes, and sources are given by equations (15-
17), (19-21), (24), (26), and (31). The independent variable 𝑙 is
related to the radial coordinate by equation (5). The cross-section of

the flow used by the expressions for fluxes and sources is calculated
according to equation (3).
Solving the above system of equations yields physical parameters

as functions of time 𝑡 and spherical radius 𝑅. The bolometric lumi-
nosity is calculated by integration of the second term of (31) along
the flux tube as

𝐿 =

∫
𝑄−Π d𝑙 =

∫
1 − 𝑒−𝜏eff

𝜉rad𝜏eff + 1
𝑐Π 𝑢rad d𝑙, (37)

where perimeter Π is given by equation (4), 𝜏eff by equation (32),
and

𝑄− =
1 − 𝑒−𝜏eff

𝜉rad𝜏eff + 1
𝑐 𝑢rad (38)

is the radiation flux leaving the surface of the column. The integral
in equation (37) taken over the whole simulation domain will be
denoted 𝐿tot, and below the shock 𝐿X, for consistency with BS.

2.4 Numerical method

System of equations (34–36) is solved using HLLE (Harten – Lax
– van Leer – Einfeldt) Riemann solver (Harten et al. 1983; Einfeldt
1988). Signal velocities used in this solver are calculated accord-
ing to the ‘hybrid’ method of Toro et al. (1994), with the effective
adiabate exponent set to Γeff = 5/3. Hence, the adopted maximal
signal velocity is slightly larger than the accurate value predicted by
equation (25). This adds diffusivity to the solution but increases its
stability in the case of rapid variations of Γ1.
The problem is challenging for numerical consideration, as density

and velocity vary by many orders of magnitude. For the configura-
tions considered in this paper, Mach numberM changes from tens
above the shock front to about 10−5 near the surface of the NS.While
existence of a shock front is not a problem for an HLLE solver, low
Mach values cause the so-called stiffness problem (Keshtiban et al.
2003). In eliminating the problem, we find the pre-conditioning tech-
nique introduced by Turkel (1999) sufficient for our needs. For Mach
numbers smaller than 1, signal velocities used by the Riemann solver
are multiplied byM, that efficiently removes the spurious flux biases
in the low-velocity regions.
The purpose of a Riemann solver is conversion between the fluxes

calculated at the midpoints of the cells and the fluxes at the cell
boundaries. The energy flux given by equation (21) contains a photon
diffusion term that is immediately calculable at the cell boundaries
as

−𝐷𝐴⊥
𝜕𝑢rad
𝜕𝑙

' 𝑐𝐴⊥
3

𝑢rad, 𝑖+1 − 𝑢rad, 𝑖
𝜏𝑖

(39)

where 𝜏𝑖 = 𝜘
∫ 𝑙𝑖+1
𝑙𝑖

𝜌 d𝑙 ' (𝜌𝑖 + 𝜌𝑖+1) (𝑙𝑖+1 − 𝑙𝑖)/2 is the optical depth
between the centers of the 𝑖-th and the 𝑖 + 1-th cells. The standard
HLLE solver is used for the rest of the flux terms.

2.5 Boundary and initial conditions

As the inner boundary conditions, we use zero velocity (hence
𝐹𝑚 (𝑅∗) = 𝑠(𝑅∗) = 0) and zero thermal energy flux (that implies
𝐹𝑒 (𝑅 = 𝑅∗) = 0). In the lower parts of the column, mass and energy
accumulate until the pressure of the flow exceeds the local magnetic
field pressure, and the mass-loss term (24) turns on. If the mass loss
starts at the bottom, the boundary condition used byBS is reproduced.
At the outer boundary, we fix the mass flux 𝐹𝑚 (and thus mo-

mentum density 𝑠 = 𝐹𝑚) to − ¤𝑀 . The material entering at the outer
boundary is assumed to have the velocity of 𝑣(𝑅e) = −

√︁
𝐺𝑀∗/𝑅e.
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Accretion column dynamics 7

Knowing the mass flux and the velocity at the outer boundary allows
one to calculate the value of density 𝜌. Thermal energy density 𝑢 at
the outer boundary was chosen equal to the magnetic energy density
at this distance. As the transverse optical depth of the flow above
the shock is usually small, most of this internal energy is radiated
away above the shock wave. Hence, the flow is always gravitationally
bound.
The total energy radiated by a steady-state flow is

𝐿tot =
𝐺𝑀∗ ¤𝑀

𝑅∗
− 𝐺𝑀∗ ¤𝑀
2𝑅e

+ 𝐿out − 𝐿vent , (40)

where

𝐿out = ¤𝑀 𝑢 + 𝑝

𝜌

����
𝑅e

(41)

is the heat entering through the outer boundary per unit time, and
𝐿vent is the energy loss associated with the mass loss from the col-
umn (third term of equation 31 integrated along the field line). The
quantities ¤𝑀 , 𝜌, and 𝑢 in equation (41) are set by the boundary con-
ditions, and 𝑝 may be derived from 𝜌 and 𝑢 using the formulae of
Appendix B. Usually the first term of equation (40),

𝐿acc =
𝐺𝑀 ¤𝑀
𝑅∗

, (42)

dominates, and the thermal contribution of the outer boundary con-
dition is small. However, for low accretion rates, the latter can sig-
nificantly alter the total luminosity of the flow. On the other hand,
the measured steady-state luminosity may be (and usually is) smaller
than 𝐿acc because of the adopted mass and the energy sink repre-
sented by 𝐿vent.
Initial conditions are approximately constant mass density and

sub-virial negative velocity approaching zero at the inner boundary.
We choose the total initial mass equal to 10 per cent of the equilib-
rium column mass defined as (equation 9), that allows the flow to
approach a quasi-stationary regime in several replenishment times
(equation 10). The relatively slow approach to equilibrium (see sec-
tion 3) is probably related to very long thermal time scale at the
bottom of the column (equation 14).

2.6 Time steps

Ignoring the effects of radiation losses, we can estimate the time step
required for stability as

Δ𝑡CFL ' 𝐶CFL

(
Δ𝑙

|𝑣 | + 𝑐s

)
min

, (43)

where 𝐶CFL . 1 is the Courant-Friedrichs-Levy multiplier (Courant
et al. 1967). However, local thermal radiation loss and diffusion
time scales sometimes become smaller than (43), and this requires
refinement of the time step. Thermal cooling time scale may be
estimated using the radiation loss term in equation (31), as

Δ𝑡thermal '
𝑢rad𝐴⊥
Π𝑄− =

𝛿eff
2𝑐
1 + 𝜉rad𝜏eff
1 − 𝑒−𝜏eff

. (44)

For a stationary flow with a large optical depth, this may be further
simplified to

Δ𝑡thermal '
𝜉rad
2𝑐

𝜘 ¤𝑀 𝛿2eff
𝐴⊥𝑣

. (45)

If the radiation from the lateral sides is ignored, this expression
reduces (up to a factor of 4) to equation (12).
The upper limit for the diffusion equation time step is estimated

as (see, for example, the first appendix of Tikhonov & Samarskii
2013):

Δ𝑡diff ' 𝐶diff

(
Δ𝑙2

𝐷

)
min

, (46)

where 𝐶diff ≤ 0.5 is a dimensionless factor. Overall stability of the
numerical solution requires a time step smaller than the smallest of
all the three, hence we used the smallest of the three lower limits

Δ𝑡 = min (minΔ𝑡CFL, minΔ𝑡thermal, minΔ𝑡diff) , (47)

where the three time steps are given by equations (43), (44), and (46).

3 RESULTS

3.1 General picture and shock formation

In Table 1, we summarize the parameters of the models. The mod-
els have different mass accretion rates, magnetic moments, and az-
imuthal extents of the flow. The mass of the NS is everywhere set
to 1.4M� , and its radius to 4.86𝐺𝑀∗/𝑐2 ' 10 km. For most of the
models, we adopt the relative width of the flow at the outer bound-
ary Δ𝑅e/𝑅e = 0.25. The effective size of the magnetosphere was
calculated as 𝑅e = 𝜉m𝑅A, where 𝜉m is set to 0.5, and 𝑅A according
is Alfven radius given by equation (1). For most of the simulations,
the size of the magnetosphere is about 14𝑅∗. Coordinate mesh is
approximately logarithmic in 𝑙, with the total number of 9600 ra-
dial points for the fiducial model. This gives a resolution of about
Δ𝑙 ∼ 3 × 10−4𝑅∗ near the surface of the NS, and Δ𝑙 ∼ 4 × 10−3𝑅∗
close to the outer edge. Most simulations are run for tens of replen-
ishment times, ensuring that mass loss starts well before the end of
the simulation. Output is made each 0.01𝑡r. For model H, the output
is intentionally made ten times more often to track the dynamical-
time-scale variability.
Table 1 also contains the quantity 𝛽BS, that is the combination

of global parameters (geometry, magnetic moment, and mass accre-
tion rate) that determines the fraction of the accretion luminosity
advected towards the NS surface in the solution of BS. To calcu-
late this parameter, we used the expressions of section 4.4 of BS.
Detailed comparison with the analytic solution will be done later in
section 3.3.
From the beginning, the flow, initially practically static (velocities

much smaller than Keplerian by absolute values), starts falling along
the field lines. The infall leads to adiabatic heating and subsequently
to the formation of a shock near the bottom of the simulation domain.
The shock moves upward, approaching the equilibrium position even
before the beginning of the mass loss. In the steady state, the flow
in the column is heated by adiabatic compression, while the excess
thermal energy is radiated away. Energy release and radiation loss
evolve towards the equilibrium on the time scale close to replenish-
ment time (equation 10) or the thermal time at the bottom of the
column (equation 14).
In all the simulations, the shock oscillates before reaching the

steady state. The oscillations are damped, though it is difficult to
decide if the damping is physical or numerical. We discuss these
oscillations in more detail in section 3.6. In Fig. 2, we show the
development of the shock wave on the time-radius plots for velocity
and thermal energy density formodel N. In the velocity plot, the shock
wave is clearly seen as the boundary between the almost static region
closer to the surface of the star (column) and the nearly free-falling
region above.
In Table 2, we give the position of the shock and different char-

acteristic luminosities emitted by the flow after it reaches a steady
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8 Abolmasov & Lipunova

Table 1. Parameters of the simulations. First column gives the identifier of the model used throughout the paper. Subsequent columns are: mass accretion rate
normalised by the Eddington value, magnetic moment, azimuthal fraction 𝑎 occupied by the flow, radius of the magnetosphere, normalised cross-section and
latitudinal thickness of the flow near the surface of the star, replenishment time (equation 10), duration of the simulation, Basko-Sunyaev’s advection parameter
𝛽BS, and essential comments about the particular simulation. All the models with 𝑎 = 1 have no cooling from the lateral sides.

ID
¤𝑀out𝑐2
𝐿Edd

𝜇30, 𝑎 𝑅e/𝑅∗ 𝐴⊥ (𝑅∗)/𝑅2∗ 𝛿 (𝑅∗)/𝑅∗ 𝑡r, s 𝑡max, s 𝛽BS comment

1030 g cm3

F 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 1 0.43 fiducial
L 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 1.4 0.43 2X coarser resolution
F2 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 1 0.43 2X finer resolution
ND 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 2 0.43 no radial photon diffusion
B 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 2 0.43 no radial photon diffusion;

no radiation losses from
lateral sides

M1 1 0.03 0.25 13.53 2.985 × 10−2 0.0350 0.10 1.1 0.10
M3 3 0.05 0.25 13.24 3.05 × 10−2 0.0353 0.10 0.6 0.22
M30 30 0.2 0.25 14.19 2.66 × 10−2 0.0330 0.14 2 0.64
M100 100 0.3 0.25 13.53 2.99 × 10−2 0.0345 0.10 2 0.81
W 10 0.1 1 13.95 0.116 0.0344 0.0269 2 0.45 no cooling from the lateral

sides
N 10 0.1 0.05 13.95 5.79 × 10−3 0.0344 0.022 0.38 0.73
N2 10 0.1 0.05 13.95 5.79 × 10−3 0.0344 0.022 0.38 0.73 no cooling from the lateral

sides
R 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 1.9 0.43 Ω = 0.9ΩK (𝑅e)
I 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 0.9 0.43 irradiation 𝜂irr = 0.5
WI 10 0.1 1 13.95 0.116 0.0344 0.0269 1.8 0.45 same as W but 𝜂irr = 0.5
WI1 10 0.1 1 13.95 0.116 0.0344 0.0269 1.9 0.45 same as W but 𝜂irr = 1
RI 10 0.1 0.25 13.95 2.89 × 10−2 0.0344 0.11 0.8 0.43 Ω = 0.9ΩK (𝑅e) , 𝜂 = 0.5
H 10 1 0.25 52.0 7.61 × 10−3 0.0175 2.9 1.4 0.417
M100W2x 100 0.3 1.0 23.7 0.118 0.0488 0.4 3.5 0.72 Δ𝑅e/𝑅e = 0.5, 𝜉m = 1,

2X coarser resolution
M100W3 100 0.3 1.0 13.53 0.143 0.0419 0.50 2 0.63 Δ𝑅e/𝑅e = 0.3
M100W4 100 0.3 1.0 13.53 0.119 0.0350 0.42 2 0.60
M100W5 100 0.3 1.0 13.53 0.0955 0.0280 0.33 2 0.56 Δ𝑅e/𝑅e = 0.2
M100W10 100 0.3 1.0 13.53 0.0478 0.0140 0.17 3 0.43 Δ𝑅e/𝑅e = 0.1
M100W20 100 0.3 1.0 13.53 0.0239 0.00700 0.08 1.4 0.308 Δ𝑅e/𝑅e = 0.05
M100W50 100 0.3 1.0 13.53 0.00955 0.00280 0.033 0.6 0.178 Δ𝑅e/𝑅e = 0.02

state. The luminosity of the flow is integrated using equation (37)
over the whole simulation domain (𝐿tot) and below the shock wave
(𝐿X). 𝐿out is the thermal power entering from the outer border (see
equation 41). The last column in Table 2 gives the fraction of the
luminosity that is not radiated by the accretion column but rather lost
with the mass. In our setup, its role is the same as of the advected
power fraction in BS. For most of the models, 1 − 𝐿X/𝐿acc ' 𝛽BS,
and the deviations are mostly related to the emission from the lateral
sides or to the heat flux at the outer boundary (as in M3 where the
total luminosity is larger than 𝐿acc).

3.2 Mass leakage from the column

After the position of the shock stabilises, mass starts being lost from
the column. The higher the position of the shock front, the higher the
place where thermal pressure starts exceeding magnetic pressure. In
general, the region where the mass leaks from the column (that we
will hereafter refer to as the vent) is formed above the surface of the
star, sometimes at a height comparable to the radius of the NS.
In Table 3, we give the radial coordinates at which the vents first

appear in the models where the vent first appears at a considerable
altitude. The initial vent position depends not only on the accretion
rate but also on the geometry of the flow. In particular, for model N2
(Fig. 2), the critical energy density is reached at about 2𝑅∗, though the

mass accretion rate is the same as in model F, where the vent appears
very close to the surface. In most of the cases (with the exception
of models N2, M100 and M100W2x, considered in more detail later
in section 3.4) when the vent is formed well above the surface, it
gradually drifts downwards and eventually reaches the surface of the
star.
There are several parameters that define the geometry of an accre-

tion column. Small radiating perimeter Π (as in models N and N2)
decreases the radiating surface, thereby trapping more heat inside the
column. This leads to a higher shock and a higher initial vent, espe-
cially in N2 where the radiation losses from the lateral sides of the
column are ignored. Decreasing the latitudinal size of the column (by
decreasing Δ𝑅e), on the other hand, facilitates cooling of the column
by decreasing the average optical depth, and the mass leakage starts
closer to the surface.
Very tall columns like that in N2may have several vents at different

heights in the steady-state regime. For M100, where no stationary
shock wave develops, mass loss occurs over a broad range of heights,
approximately from 1 to 2.5−3 𝑅∗. We will discuss the behaviour of
these models in more detail in section 3.4. To sum up, same factors
(accretion rate and flow geometry) affect the height of the column
(the shock position) and the initial vent position.
In Fig. 4, we show the evolution of the mass flux during the

initial 0.05 s (about half of the replenishment time) for three different
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Accretion column dynamics 9

Table 2. Parameters of the column measured for the last 10 per cent of the simulation time for different models. Luminosities 𝐿tot and 𝐿X are calculated
by integrating the radiation flux over the whole simulation and below the shock, respectively. ‘Predicted’ shock position and luminosity are estimated in the
framework of the analytic model by BS. Luminosities 𝐿acc, 𝐿tot, 𝐿X, and 𝐿out are defined in sections 2.3 and 2.5.

ID 𝑅shock/𝑅∗ 𝐿tot/𝐿Edd 𝐿acc/𝐿Edd 𝐿X/𝐿Edd 𝐿out/𝐿Edd 1 − 𝐿X
𝐿acc

measured predicted measured predicted

F 3.238±0.005 3.58 1.44 2.06 1.16 1.17 0.38 0.44
L 3.238±0.009 3.58 1.44 2.06 1.16 1.17 0.38 0.44
F2 3.237±0.002 3.58 1.42 2.06 1.17 1.17 0.38 0.43
ND 3.260±0.005 3.58 1.33 2.06 1.18 1.17 0.38 0.43
B 3.567±0.005 3.58 1.27 2.06 1.12 1.17 0.38 0.46
M1 1.3724±0.0019 1.42 0.201 0.205 0.180 0.184 0.21 0.12
M3 1.837±0.004 1.99 0.70 0.53 0.66 0.48 0.21 -0.24
M30 6.506±0.010 7.39 2.70 6.15 2.16 1.16 0.72 0.65
M100 – 17.87 3.67 20.5 – 3.89 2.3 –
W 1.980±0.003 1.97 2.87 2.06 1.63 1.65 1.30 0.21
N 4.982±0.007 8.47 0.81 2.06 0.72 0.55 0.13 0.65
N2 8.447±0.04 8.47 0.57 2.06 0.51 0.55 0.13 0.75
R 3.137±0.004 3.58 1.25 2.06 1.09 1.17 0.38 0.47
I 3.256±0.005 3.58 1.34 2.06 1.19 1.17 0.38 0.42
WI 1.962±0.003 1.97 2.8 2.06 1.55 1.65 1.29 0.25
WI1 1.98±0.04 1.97 2.05 2.06 1.64 1.65 1.33 0.20
RI 3.215±0.005 3.58 1.31 2.06 1.16 1.17 0.38 0.44
H 3.786±0.004 4.40 1.31 2.05 1.26 1.20 0.47 0.39
M100W2x 10.73±0.04 12.1 6.35 20.5 5.59 5.74 2.19 0.73
M100W3 12.450±0.010 8.44 10.8 20.5 9.9 7.6 6.5 0.52
M100W4 8.869±0.016 7.27 12.8 20.5 9.2 8.3 6.1 0.55
M100W5 6.485±0.009 6.09 12.8 20.5 9.1 9.2 5.3 0.56
M100W10 3.733±0.005 3.71 13.7 20.5 11.5 11.7 3.15 0.44
M100W20 2.458±0.003 2.47 15.2 20.5 13.8 14.2 1.97 0.33
M100W50 1.656±0.002 1.66 17.3 20.5 16.1 16.7 1.23 0.21

Table 3. The initial position of the vent and the time of its opening for
different models.

ID 𝑅vent/𝑅∗ 𝑡0, ms

F 1.00 ± 0.0003 207.52 ± 0.04
F2 1.00 ± 0.0003 207.86 ± 0.04
B 1.0 ± 0.0003 233.80 ± 0.04
N 1.0538 ± 0.0003 79.10 ± 0.08
N2 1.9096 ± 0.0005 96.18 ± 0.08
M30 1.0381 ± 0.0003 466.0 ± 0.5
M100 11.263 ± 0.002 6.20 ± 0.04
M100W2x 1.5430 ± 0.0010 813.3 ± 0.4
M100W3 1.0808 ± 0.0002 1909 ± 2
M100W4 1.0229 ± 0.0003 1380.0 ± 1.4
M100W5 1.0122 ± 0.0003 946 ± 11
M100W10 1.0003 ± 0.0003 344.1 ± 0.6
M100W20 1.0 ± 0.0003 141.1 ± 0.3
M100W50 1.0 ± 0.0003 81.78 ± 0.11

models. While above the shock, the mass accretion rate 𝑠 = 𝜌𝑣𝐴⊥ is
very stable and close to ¤𝑀 , matter inside the column is, for most of
the models, involved in a cyclic motion with the velocity amplitude
exceeding the mean velocity value. Initial shock oscillations leave
entropy traces in the flow, that are best visible in the diagram for M100.
In N2 and in M100, the oscillations do not show any damping, and
the position of the vent neither stabilises nor approaches the surface
of the star. In M100W2x, the oscillations are damped significantly,
and the flow structure stabilises, with the position of the vent at a
height of about 0.2𝑅∗ above the NS surface. The damping may be a
consequence of the lower resolution of this model.

3.3 Structure of the flow and comparison with the analytical
model

The shock front position is easy to find as the position of the velocity
derivative maximum. In Fig. 5, we show the position of the shock
front as a function of time and below-the-shock luminosity 𝐿X for the
fiducial model F. In simulation F, mass starts to leak out at 𝑡 ∼ 0.2 s,
which is visible in the left panel of Fig. 5 as a break in the shock
front motion law.
We compare the position of the shock with the prediction of equa-

tion 34 of BS

𝜂𝛾1/4𝜉𝑛/4+1/8s = 1 + e𝛾𝜉s [𝜉sE2 (𝛾) − E2 (𝛾𝜉s)] , (48)

that implicitly defines the radial coordinate of the shock 𝜉s =

𝑅shock/𝑅∗. Here, 𝑛 is a dimensionless parameter describing the cur-
vature of the field lines (for dipolar geometry, 𝑛 = 3), and

E𝑘 (𝑥) =
∫ +∞

1
𝑡−𝑘e−𝑡 𝑥d𝑡 (49)

is the exponential integral of order 𝑘 . Dimensionless coefficients 𝛾
and 𝜂 in equation (48) are

𝛾 =
𝑐 𝑅∗

𝜘𝛿2 (𝑅∗)
𝐴⊥ (𝑅∗)

¤𝑀
3
2𝜉rad

' 0.387 𝐴⊥ (𝑅∗)
𝛿2 (𝑅∗)

𝐿Edd
¤𝑀out𝑐2

𝑅∗𝑐2

4.86𝐺𝑀∗

3
2𝜉rad

(50)

and

𝜂 =

(
8𝜘
21𝑐
3𝑝mag (𝑅∗) 𝛿2 (𝑅∗)√

2𝐺𝑀∗𝑅∗

2𝜉rad
3

)1/4
' 12.57

(
𝐵

1012G

)1/2 (
𝛿(𝑅∗)
0.03𝑅∗

)1/2 (
𝑅∗𝑐2

4.86𝐺𝑀∗

)3/8 (
𝑀

1.4M�

)1/4
.
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10 Abolmasov & Lipunova

Figure 2. Time-radius diagrams for velocity (upper panel), thermal pressure (middle panel; the logarithm of the quantity in 𝑝mag units is shown), and mass flux
𝑠 (lower panel; the quantity is normalised by the mass accretion rate at the outer boundary) for the first 0.12 s of simulation N. Black contours in the middle panel
correspond to pressure equal to 80, 90, and 99 per cent of the magnetic field pressure.

(51)

In comparisonwith the original expressions ofBS, equations (50) and
(51) contain an extra factor of 2𝜉rad/3, resulting from the radiation
diffusion across the flow, parameterised by the coefficient 𝜉rad. Here,
we set 𝜉rad = 3/2, that corresponds to all the energy released in the
middle of the column.
Position of the shock 𝜉s and the two parameters 𝛾 and 𝜂 may be

used to find the advection parameter as

𝛽BS = 1 − 𝛾e𝛾 [E1 (𝛾) − E1 (𝛾𝜉s)] . (52)

The luminosity of the column itself is then equal to (1 − 𝛽BS) 𝐿acc.
With few exceptions, we find this estimate to work well for our
simulations after they enter the steady-state regime (see section 3.1
and Tables 1 and 2).

In Table 2, we give the shock positions predicted by BS as well as
the simulation results. For B and several other models, the prediction
is pretty accurate (about 0.4 per cent for B). Most of the difference
between predicted and calculated quantities inTable 2 comes from the
radiation losses from the lateral sides of the column. Also, the higher
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Figure 3. Total mass (in the estimated column mass units, see equation 9)
as a function of time (replenishment time units, equation 10) for models
M100W3-50, from the thickest to the thinnest curve.

the shock position, the less accurate is the analytic approximation,
as the latter does not account for the real dipole geometry. The
shock position is not very sensitive to the effects of photon diffusion
(compare F and ND). Other physical effects also affect only slightly
the shock position, as we demonstrate later in section 3.5.
Our fiducial model uses physical assumptions different from that

of the analytic model by BS. Apart from time dependence, we use
dipole geometry, different set of boundary conditions, and allow
for photon diffusion along magnetic field lines. In model B, photon
diffusion is turned off, and the contribution of the lateral sides of
the column to radiation losses is ignored. This conforms well to the
assumptions of BS, and allows straightforward comparison to the
analytic solution. Quite expectedly, the shock position in B is very
close to the predicted value.
The effect of changing geometry, as well as consistencywith BS, is

illustrated by Fig. 6, wherewe show sixmodels M100W3-50, differing
only in the width of the penetration zone, and an additional model
M100W2x, having similar geometry but a larger magnetosphere. For a
fixed mass accretion rate, smaller 𝛿 means higher surface-to-volume
ratio, more efficient cooling and thus lower shock and vent positions.
For small advection parameters 𝛽BS . 0.6, there is good agreement
between our simulations the analytic results, while the last three
points deviate from the analytic model considerably.
While the position of the shock is generally well predicted by the

analytical solution, the differences in the detailed column structure
are more pronounced (see Figs 7 and 8). In Fig. 7, we compare time-
averaged properties of the simulated flow with the analytic solution.
Certain differences arise from the boundary conditions near the sur-
face of the NS.While the analytic model requires a non-zero velocity
at 𝑅 = 𝑅∗, our model allows the matter to seep out at a zero radial
velocity. Existence of such a sink creates a velocity discontinuity
near the surface, above which the flow moves at a speed even higher
than predicted by the analytic model.
Another difference between our results and analytic predictions

is in the contribution of the gas pressure. While 𝑝gas is still much
smaller than 𝑝rad everywhere below the shock, the value of 𝛽 =

𝑝gas/𝑝 differs from the analytic model by up to a factor of 2 near the
surface.

3.4 Breakdown at large accretion rates

For some combinations of parameters, the steady-state solution is
physically inconsistent. This is generally the case for the parameter
values predicting a very tall column, like those of our models N2 (see
Fig. 8), M100, and M1002x. For M100, the predicted height of the
column is larger than the size of the magnetosphere, hence we do not
expect any agreement in the structure of the column.
The analytic solution for the parameters corresponding to N2 is

self-inconsistent, as it predicts radiation pressure higher than mag-
netic pressure at a finite height above the NS surface. Because of
our assumptions about the mass loss from the column, pressure in
the simulation practically never exceeds the pressure of the magnetic
field (see Fig. 8). Instead, the column leaks over a broad range of
heights, up to about 3 𝑅∗. However, the predicted height of the col-
umn agrees well with the results of our simulation, and the structure
of the solution is similar. A similar picture is seen for M100, where no
stationary shock is developed, and the matter is lost from a large span
of radial coordinates. In M100W2x, the positions of both the shock
and the vent stabilise with time, but the vent is located well above
the surface.
A sufficient condition for the analytic solution to become self-

inconsistent is a shallow enough radial dependence of 𝑢(𝑅) near
𝑅 = 𝑅∗. If for radiation-pressure-dominated gas

d ln 𝑝
d ln 𝑅

����
𝑅=𝑅∗

> −6, (53)

the boundary condition 𝑝 = 𝑝mag at the surface of the star implies
𝑝 > 𝑝mag somewhere above the surface. One can check that for the
solution given by equation (32) of BS, this is equivalent to 𝛽BS > 2/3.
As 𝛽BS has the physical meaning of the power fraction trapped

within the accretion column, large values of 𝛽BS mean inefficient
radiation losses from its surface. Inefficient cooling of the column
not only increases its supply of thermal energy, but also leads to a
shallow energy density profile, and, as a consequence, overheating
of the column at a finite height. Indeed, in an advection-dominated
column (in the limit 𝛽BS → 1), the power advected vertically at some
radius 𝑅 is

𝑢𝑣𝐴⊥ ' 𝐺𝑀∗ ¤𝑀
𝑅

=
𝐺𝑀∗
𝑅

𝐴⊥𝜌𝑣, (54)

that implies virial scaling 𝑢 ∝ 𝐺𝑀
𝑅

𝜌. At the same time, for radiation-
pressure-dominated matter, 𝑢 ∝ 𝜌4/3. Radiation energy density
should thus depend on radius as 𝑢 ∝ 𝑅−4, while 𝑝mag ∝ 𝑅−6.
One can see from Tables 1 and 2 that this condition for 𝛽BS may

be used as an applicability criterion for the analytic model: all the
models with 𝛽BS < 2/3 are in good agreement with the analytic
model, while large values of 𝛽BS lead to column overheating and
mass loss from the column at a finite height above the NS surface.
Even then, as long as the position of the shock is much lower than
the size of the magnetosphere, the analytic solution by BS gives a
good approximation for the position of the shock and the structure of
the column.

3.5 Contribution of different physical and numerical effects

3.5.1 Numerical resolution and photon diffusion

In Fig. 9, we show how the distribution of effective temperature
(calculated using the local radiation flux as 𝑄− = 𝜎SB𝑇

4
eff) depends

on spatial resolution: models F (9600 cells), F2 (double resolution,
19200 cells), and L (two times coarser resolution, 4800 cells) are
shown together with the model ND where photon diffusion along the
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F2

M1

M100

Figure 4. Local mass accretion rate plotted as a function of radius and time for three models (M1, F, and M100). Only the first 0.05s of evolution are shown.

field lines is turned off. As we can see in the plot, the overall structure
remains practically independent of resolution, which argues for the
stability and reliability of the algorithm.

Taking into account photon diffusion affects the shock position
only slightly, by an amount comparable to the mean free path of
a photon. The profiles of all the physical quantities close to the
shock front clearly change. The flow structure away from the shock,
however, remains practically unaffected. In general, photon diffusion
is most important on the spacial scales of the photon mean free path
(∼ 1/𝜘𝜌). In Fig. 9, we show the optical depth along the field line
𝜏 =

∫
𝜘𝜌d𝑙 as a secondary axis. As we can see, the main effect

of photon diffusion is the penetration of some of the energy into the
upstream region, up to the depths of several. This agrees qualitatively
with the picture drawn by the theory of radiation-mediated shock
waves in the diffusion approximation (Zel’dovich & Raizer 1967;
Levinson & Nakar 2020).

The effective temperature distribution in the optically thick part of
the flow (see Fig. 9) suggests a thermal spectrum with a character-
istic temperature of 𝑇 ∼ 1 − 3 keV. However, a rigorous calculation
of the observed spectrum should involve a complex combination of
visibility conditions (different viewing angles and self-occultations
for different parts of the flow). Besides, radiation coming from a NS
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Figure 5. Shock position as a function of time (left panel) and luminosity 𝐿X emitted below the shock (right panel) for model B. Shock position predicted by
BS is shown with a horizontal red line, and the predicted luminosity is shown with a vertical red line in the right panel.
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Figure 6. Shock front position as a function of 𝛽BS, shown for models
M100W2x and M100W3-50, differing in Δ𝑅e/𝑅e (black dots). Predictions of
the analytic model (equations 48 and 52) are shown with a red line. Vertical
and horizontal blue dotted lines show the critical value 𝛽BS = 2/3 and the
size of the magnetosphere.

accretion column should be strongly Comptonised. This Compton-
isation may be saturated and non-saturated in different parts of the
flow (see for example, West et al. 2017b). Modelling the observa-
tional properties of accretion columns is left to a separate paper.
For the fiducial model F, the transverse optical depth in the im-

mediate upstream region is about several. The optical depth of a
single resolution element along the field line is in most of the models
smaller than unity. At such spatial scales, the diffusion approximation
is no longer valid, as photons can cross multiple resolution elements
freely between scatterings. More elaborate description of the radi-
ation fields near the shock front would reveal an additional narrow
‘Zeldovich spike’ in energy density and temperature (see Tolstov

et al. 2015; Fukue 2019 and references therein, and also Zel’dovich
& Raizer 1967, Chapter VII).

3.5.2 Irradiation and rotation

In models I, WI, and WI1, irradiation is included in momentum and
energy equations as a force opposing gravity (see equations 26, 27,
and 31). We neglect the heating effect of irradiation. Physically,
this corresponds to the case when all the irradiating energy flux
is immediately isotropically scattered. Self-irradiation in the form
adopted in our paper is not fully self-consistent: the irradiating source
is assumed to be located in the origin and radiate isotropically, though
its luminosity is calculated by integrating the radiative losses from
the simulated flow. Also, the radiation scattered from the flow is not
included in the irradiating luminosity. As long asmost of the radiation
losses occur near the NS surface, this is an accurate approximation
in the outer magnetosphere.
Irradiationmostly influences the outer parts of the flow, decreasing

the infall velocity. This decreases the energy release in the column
and thus, somewhat counter-intuitively, the height of the column
(Fig. 10). For 𝜂irr = 0.5, the shock shifts by less than one per cent.
Increasing 𝜂irr to the value of unity in WI1, in addition to the overall
shift of the shock front, makes the position of the shock unstable and
excites oscillations on short time scales. Probably, the nature of the
oscillations is the same as the damped oscillations seen in all the
models during their approach to equilibrium. However, irradiation
adds an additional positive feedback that compensates the dissipation
of the oscillations. The shock position given in Table 2 for WI1 is
a time-averaged value, and the uncertainty here is dominated by
the motion of the shock front rather than by the size of the spatial
resolution element, as in the fiducial model.
In models R and RI, we took into account centrifugal potential,

tuned to match 0.9 Keplerian rotation rate at 𝑅e. The main effect is
the decrease in power released below the shock. Adding irradiation
to rotation, surprisingly, leads to a larger luminosity and higher shock
front position, which is probably related to the amount of energy lost
in the sink.
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14 Abolmasov & Lipunova

Figure 7. Stationary analytic solution (black solid lines) compared with our
model B, averaged over the period of time 1.1 − 1.9 s. Upper panel: pressure
normalised by the local magnetic field pressure. Blue dotted line shows the
𝑝 = 𝑝mag condition. Middle panel: gas-to-total pressure ratio. Lower panel:
radial velocity. Blue dotted lines in the lower panel are Keplerian velocity 𝑣K
and 𝑣K/7.

3.6 Variability

An interesting feature of practically all the simulations is their os-
cillatory behaviour during the shock settling stage. In all the simu-
lations with radiation diffusion included, the position of the shock
shows damped oscillations with a frequency close to the expected dy-
namical frequency at the relevant height. For example, for the fiducial
model, oscillations are present while the shock front position changes
in the range 𝑅shock ∼ 2 − 5 𝑅∗, where the expected dynamical fre-
quency is 𝑓dyn ' 1

2π

√︂
𝐺𝑀∗
𝑅3shock

∼ 200− 800 Hz. If this interpretation is

correct, moving shock position will result in a frequency shift. This
is difficult to check if the dynamical and replenishment time scales
differ only by a factor of several, as in model F.

Figure 8. The same as previous figure, but for the model N2. Averaging was
done over the time range 0.3 − 0.38 s. Red dotted lines show the variation
limits of the time-dependent solution (mean value plus/minus one standard
deviation).

Simulation H has a larger magnetosphere size and hence a larger
difference between the dynamical and replenishment time scales,
allowing us to track the evolution of the oscillations during the settling
of the shock front. In Fig. 11, we show a temporally resolved power-
density spectrum (PDS) for the total luminosity (calculated according
to equation 37) during the first 0.5 s of evolution. For each time bin,
the PDS is calculated as the square of the absolute value of the Fourier
image of 𝐿tot, normalised usingMiyamoto normalisation (Miyamoto
et al. 1991; Nowak et al. 1999)

𝑃𝐷𝑆 = 2

�����
∫
𝐿 (𝑡) e−2πi 𝑓 𝑡d𝑡∫

𝐿 (𝑡) d𝑡

�����2 , (55)

where 𝑓 is linear frequency. For the larger portion of this time span,
the radiation is highly variable at hectohertz frequencies. Most of
the variability power is associated with the general settling trend,
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Figure 9. Effective temperature as a function of radius in models F (black
solid curve), L (red dashed), F2 (green dotted), and ND (blue dot-dashed).
Upper panel shows a zoom-in into the shock region. The secondary 𝑥 axis of
the upper panel shows the optical depth along the field line (calculated for the
model F2), with the zero point at the shock front position.

having a red spectrum with 𝑃𝐷𝑆 ∝ 𝑓 −2. Hence, in Fig. 11, we show
𝑓 2𝑃𝐷𝑆, and the position of the peak in the spectrum is found as the
maximumof this combination. Thismaximum evidently corresponds
to a damped oscillation mode with an amplitude of about several
per cent and a frequency changing with time from about 200 to
500−600Hz, as the shock moves downwards.
The observed peak frequencies may be reproduced by calculating

the time needed for a sound wave to propagate from the top of the
column to its base and back. Let us consider an accretion column
in dynamic equilibrium, with a structure identical to the solution of
BS in everything save the lower boundary condition (as the energy
density has not necessarily reached the breakdown limit). The time
needed to travel between 𝑅∗ and 𝑅shock is, according to equations (5)
and (7),

Δ𝑡s =

∫ 𝑅shock

R∗

√
3 cos2 𝜃 + 1
2 cos 𝜃

d𝑅
𝑐s

, (56)

where

𝑐s '

√︄
4
9
𝑢

𝜌
'

√︄
1
3
𝐺𝑀∗
𝑅∗

𝑒𝛾𝜉

(
1
𝜉
E2 (𝛾𝜉) + 𝛽BS𝑒−𝛾 − E2 (𝛾)

)
, (57)

and 𝜉 = 𝑅/𝑅∗. While 𝛾 depends only on geometry, 𝑅shock and 𝛽BS
vary with time as they depend on the value of 𝑢 at the NS surface. In
the right panel of Fig. 11, the corresponding frequency 𝑓s = 1/Δ𝑡s
is shown for comparison. As Δ𝑡s is the time needed for the sound to
propagate only in one direction, from the shock front to the surface

Figure 10. Time-averaged velocity dependence on radius for the models W
(red dashed curve) , WI (black solid), and WI1 (green dotted). Averaging was
done over the last 10 per cent of the simulation time. As in Fig. 9, the lower
panel shows the entire range of radii, and the upper panel zooms into the
shock front region.

(or back), the oscillation mode we see in the simulations is likely the
first overtone.
Apart from the main oscillation frequency, gradually changing

with time, it is possible to detect its first two harmonics, with the
frequencies two and three times larger (see the left panel of Fig. 11).
Their amplitudes are at least one order of magnitude smaller, and
they are less likely to be detectable in real astrophysical sources.
Damping of the oscillations is likely physical rather than numerical,
as its rate is about the same for different resolutions.
The flow does not approach a steady state after multiple replen-

ishment times only for the models N2 and M100, where the analytic
solution is self-inconsistent, and in the model WI1, where irradiation
apparently supports the oscillation process. For N2 and M100, mass
loss also varies with the oscillation phase, by about 20 per cent and
by more than an order of magnitude, respectively.

4 DISCUSSION

4.1 Matter lost from the column

Introducing the mass-loss law (equation 24), we assumed that, when-
ever thermal pressure significantly exceeds the pressure of the mag-
netic field, mass is lost from the column at about the speed of sound.
This leakage carries away also internal energy and momentum. This
is a simplified picture, but it helps justify the inner boundary con-
dition and extend the approach of BS to the parameter range where
their solutions become internally inconsistent (see section 3.4).
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16 Abolmasov & Lipunova

Figure 11. Left panel: dynamic power-density spectrum ( 𝑓 2𝑃𝐷𝑆) for 15 uniform-length time intervals between 𝑡 = 0 and 0.5 s, model H. Right panel: peak
frequency for the same time bins as a function of shock position. Dynamical sound-travel frequency 𝑓s is shown in the right plot with the red dotted line.

For moderate mass accretion rates (more precisely, for moder-
ate advection parameters 𝛽BS < 2/3), accretion column tends to
leak at the bottom. The physics behind this process involves three-
dimensional interchange instabilities (Arons & Lea 1976) that start
working when thermal pressure starts exceeding that of the mag-
netic field or a critical value scaling with the magnetic field pressure
(Litwin et al. 2001;Mukherjee et al. 2013; Kulsrud&Sunyaev 2020).
The matter leaving the column ultimately cools down and spreads
over the surface of the NS (Melatos & Phinney 2001).
Large advection parameters cause the column to leak at a finite

height. If a small amount of plasma leaves the column at a con-
siderable height, it becomes immersed in a strong, super-Eddington,
anisotropic external radiation field. Depending on the structure of the
radiation field, the matter leaving the column may be either accreted
or expelled along the field lines. We expect the realistic picture to be
a combination of the three possible outcomes: (i) the cross-section
of the column increases closer to the surface of the star, as the mat-
ter is spread over adjacent field lines; (ii) plasma is lost from the
column onto closed magnetic field lines, and remains trapped inside
the magnetosphere; (iii) plasma is ejected along the open field lines,
acquiring mildly relativistic velocities.
If all the matter remains gravitationally bound but spreads onto

adjacent field lines, the column may be considered as having larger
cross-section and perimeter. Depending on the initial shape of the
magnetospheric flow and the instability increments in different parts
of the perimeter, effective 𝛽BS may change differently. Increasing 𝛿
leads to larger 𝛽BS, while increasing azimuthal size decreases the
effective value of 𝛽BS. If both the latitudinal and the longitudinal
dimensions of the column increase by the same small amount of ℎ,
both thickness 𝛿 and cross-section 𝐴⊥ increase linearly with ℎ. This
implies decreasing ratio 𝐴⊥/𝛿2, smaller 𝛾 (equation 50), and larger

𝛽BS (equation 52). Isotropic expansion of the column in general
leads to smaller perimeter to cross-section ratio and, consequently,
complicates cooling.
If the column has full azimuthal coverage (𝑎 = 1), the cross-

section grows without any changes in the perimeter length. This
is well illustrated by the sequence of models M100W3-50, that differ
only in the latitudinal extent of the flow, set by the penetration depth at
the outer boundary Δ𝑅e. Here, larger 𝛿(𝑅∗) leads to larger advection
parameters. As longitudinal spreading of the column decreases the
perimeter to cross-section ratio, it hinders the cooling of the column,
leading to even larger effective values of 𝛽BS and more spreading.
One might check that increasing Δ𝑅e in this case always leads to a
decrease in 𝛾 and an increase in 𝜉s. According to equation (52), this
leads to larger values of 𝛽BS.
The mass lost to the closed lines is likely to be trapped in certain

regions of the magnetosphere and accumulate until its optical depth
becomes larger than unity. Large optical depth decreases the contri-
bution of the radiation pressure force and allows the matter to fall
onto the star. The mass trapped on closed field lines is potentially
a source of stochastic or quasi-periodic variability on the dynami-
cal time scales of the outer magnetosphere (Abolmasov & Biryukov
2020).
The mass lost along the open field lines will likely acquire mildly

relativistic velocities weakly dependent on the Eddington factor. If
the Eddington limit is strongly violated, acceleration of the optically
thin material is

d𝑣
d𝑡

' 𝜘𝐿

4π𝑐𝑅2
. (58)

After integration along the approximately radial trajectory starting
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from 𝑅 ' 𝑅∗, this results in

𝑣out '
√︂

𝜘𝐿

4𝜋𝑐𝑅∗
=

√︄
𝐿

𝐿Edd

𝐺𝑀∗
𝑅∗

' 0.4

√︄
𝐿

𝐿Edd

𝑀∗
1.4M�

11 km
𝑅∗

𝑐.

(59)

This provides XRPs with a mechanism to launch mildly relativistic
outflows. If the outflowvelocity becomes relativistic, the efficiency of
the radiation pressure acceleration rapidly decreases, and Compton
drag becomes important, making it essentially impossible to acceler-
ate a flow by radiation pressure to velocities & 0.5𝑐 (Phinney 1982).
Besides, non-negligible optical depth of the flow itself will decrease
the effective luminosity value.
The electron-scattering optical depth of such an outflow (if not

strongly collimated) is

𝜏out ∼
∫ +∞

𝑅∗

𝜘 ¤𝑀out
4𝜋𝑅2𝑣(𝑅)

d𝑅 ' 𝑐

𝑣out

¤𝑀out𝑐2
𝐿Edd

& 1, (60)

where ¤𝑀out is the mass-loss rate. Favourable (face-on) orientation
of the source will allow to see the X-ray radiation of the central
source through the outflowing matter. In this case, the observer will
see blueshifted absorption features similar to those observed in some
ultraluminous X-ray sources (Pinto et al. 2016; Kosec et al. 2018;
Pinto et al. 2021).
Both black hole and NS accretors are likely to launch outflows

with the velocities of the order of tenths of the speed of light, as this
is the characteristic virial velocity in both cases. In particular, such
outflows may be formed in the magnetospheres of highly magnetised
NSs. Existence of a mildly relativistic outflow does not necessarily
imply an accretion disc close to the compact object.

4.2 High-frequency oscillations of accretion columns

Our simulations clearly show an oscillation mode at the sound prop-
agation time scale of the accretion column (see section 3.6). At the
same time, in the observational data for real X-ray pulsars, there
is little evidence for high-frequency (∼ 100 − 1000Hz) variability.
The timing behaviour of the classic X-ray pulsars (long-spin-period
accreting NSs in HMXB) is usually consistent with the assumption
of all the variability coming from the accretion disc and maybe the
outermost parts of the magnetosphere (Revnivtsev et al. 2009; Reig
& Nespoli 2013). The frequency range above several tens of hertz
is usually not covered due to poor statistics and interference from
dead-time effects. In particular, for RXTE/PCA, dead time becomes
an important factor at frequencies about 1kHz (Jahoda et al. 2006;
Revnivtsev et al. 2015).
The ‘bursting pulsar’ GRO J1744−28 (D’A`i et al. 2015) shows

a broad-band peaked noise component at hectohertz frequencies. In
Klein et al. (1996), this variability component is interpreted as a
manifestation of the photon bubble instability (Arons 1992) in the
accretion column of the pulsar. Given the uniqueness of this object,
it is hardly representative of the population of XRPs in general.
Probably, the only example of a conventional XRP with a reported

detection of high-frequency variability is Cen X-3. It is a high-mass
X-ray binary consisting of an OB donor star (Rappaport & Joss 1983)
and a NS with the magnetic field of (2−3) ×1012 G (measured using
a cyclotron line, see Santangelo et al. 1998). The deep timing study
performed by Jernigan et al. (2000) revealed a broad spectral fea-
ture at about 1kHz. While in the original paper this high-frequency
variability was interpreted as amanifestation of the photon bubble in-
stability, its properties are also consistent with the global oscillations
of an accretion column. The luminosity (𝐿 ∼ 1038 erg s−1) and the

magnetic field of the object (magnetic moment 𝜇 ∼ 3× 1030 Gcm3)
suggest the shock is located at 𝑅shock ∼ 2𝑅∗, and the sound propaga-
tion time is 10−4 − 10−2 s, depending on the details of the geometry.
However, the results reported by Jernigan et al. (2000) are question-
able because of the interfering instrumental effects, that are likely
to produce excess power around ∼ 1 kHz. The possible timing arte-
facts were considered by Revnivtsev et al. (2015), who show that the
spectral shapes of XRPs are unfavourable for timing studies at high
frequencies, at least using RXTE data.
In accreting millisecond X-ray pulsars (AMXP, see Patruno &

Watts 2021 for review), there is significant variability at the time
scales comparable to the dynamical time scales near the surface of
the accreting NS (van Straaten et al. 2005). For instance, they are
known to have quasi-periodic oscillations (QPOs) in the hecto- and
kilohertz range, similar to those observed in atoll sources (Wĳnands
& van der Klis 1999; van Straaten et al. 2005). However, luminosities
of AMXPs rarely exceed 1037 erg s−1, which practically excludes the
formation of a radiation-dominated accretion column. AMXPs are
known to have compact magnetospheres (𝑅e/𝑅∗ . 5). The critical
luminosity required for column formation 𝐿∗, according to the equa-
tion (1) of BS and formulae from our Appendix A, may be estimated
for such objects as

𝐿∗ ∼ 𝑎

√︂
𝑅∗
𝑅e

𝐿Edd ∼ 1038 erg s−1. (61)

Rapid variability of AMXPs, in many aspects similar to the variabil-
ity of non-magnetised NSs, is probably related to the inner disc or
boundary layer rather than to a magnetic column (van der Klis 2000).
The QPO seen in our simulation H has a large quality factor (proba-

bly larger than 10, see Fig. 11), and its frequency is a strong function
of the luminosity of the column. This is a direct consequence of
the one-dimensional nature of our simulations: all the parameters
depend only on a single spatial coordinate, implying a single sound
propagation time between the shock wave and the surface of the star.
A realistic, multi-dimensional accretion column is unlikely to have a
single shock front position for all the field lines, and the sound prop-
agation times along different field lines should differ accordingly.
Hence we suggest that, instead of a narrow QPO peak, a realistic
accretion column should have a broad-band peaked noise excess in
its PDS.
Qualitatively similar oscillations of the shock front were found in

numerical simulations of accretion columns in T Tau stars (Koldoba
et al. 2008) and cataclysmic variables (Bera & Bhattacharya 2018).
The physical conditions in both cases are, however, different from the
accretion columns in NS systems. In particular, accretion columns
formed during accretion onto young stars and white dwarfs are usu-
ally optically thin. Thus, radiation pressure is usually a minor factor.
The oscillations found by Bera & Bhattacharya (2018), involving
weak secondary shocks propagating between the surface of the ac-
cretor and the primary shock front, also have a period well approx-
imated by the sound crossing time scale. Interestingly, certain mag-
netic cataclysmic variables indeed have oscillation modes at about
1Hz, suggestive for the column oscillation times. A comprehensive
list of magnetic CVs showing QPOs with frequencies∼ 1Hz is given
by Bonnet-Bidaud et al. (2015).

4.3 Observability of the replenishment time scale

As we have seen in section 2.2, column replenishment time scales in
most XRPs should be longer than the dynamical times at the magne-
tosphere boundary. At the same time, most of the energy emitted by
a rapidly accreting XRP normally comes from the accretion column.
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Does this mean that all the variability of the disc at the time scales
shorter than the replenishment time will be damped? This is an issue
we are planning to address in a separate paper.
It is well known that the power density spectra of X-ray pulsars

have a break at a frequency close to the spin frequency of the NS.
The position of the break changes with time and apparently corre-
lates with the flux (Revnivtsev et al. 2009). If the break frequency
corresponds to the dynamical time scale at the radius of the mag-
netosphere, we expect 𝑓break ∝ ¤𝑀3/7. However, if the spectrum
is cut off at the replenishment time, we expect a different scaling
𝑓break ∝ ¤𝑀5/7 (Δ𝑅e/𝑅e)−1, involving the variations of the penetra-
tion depth in addition to the magnetosphere radius. For typical X-ray
pulsar parameters, we also expect the values of the break frequency
to be smaller if related to the replenishment time.
An important observational test for replenishment timewould be to

track the transition from the accretor to the propeller stage. However,
this transition should occur at a luminosity large enough to sup-
port an accretion column, presumably above ∼ 1036 − 1037 erg s−1
(equation 61). On the other hand, transition between accretor and pro-
peller states occurs in a wide range of luminosities 𝐿 ∼ 1035 − 1037
(Cui 1997; Campana et al. 2001; Tsygankov et al. 2016). Most rel-
evant candidate events are the two turn-off transitions observed for
4U 0115+63 and V0332+53 (Tsygankov et al. 2016). Observational
data allow one to estimate the flux decrease time scales during these
events as about 14.3 and 5.6 hours, respectively.
For an XRP with the spin period 𝑃s = 2𝜋/Ω, replenishment time

scale may be estimated by substituting 𝜉m𝑅A =

(
𝐺𝑀/Ω2

)1/3
to

(10), in the assumption that the size of the magnetosphere coincides
with the co-rotation radius (𝐺𝑀/Ω2)1/3. Finally, we get

𝑡r = (2𝜋)−2/3 𝑎

21/6
Δ𝑅e
𝑅e

𝜉
−8/3
m

(𝐺𝑀∗)1/3
𝑅∗

𝑃
5/3
spin

' 180
𝑎

𝜉
8/3
m

Δ𝑅e
𝑅e

(
𝑀∗
1.5M�

)1/3 10 km
𝑅∗

(
𝑃spin
1s

)5/3
s.

(62)

Note the strong dependence on 𝜉m allows the actual replenishment
time to vary in broad limits, from seconds to hours. For the parameters
of 4U 0115+63 (spin period 𝑃spin ' 3.62s, magnetic moment 𝜇 '
1030Gcm3), the above expression may be used to explain a process
taking several hours. However, fast-decaying light curves are also
expected to appear as a result of the evolution of a viscous accretion
disc with a cooling front (see, for example, Lipunova et al. 2022).

5 CONCLUSIONS

Modelling the dynamics of a NS accretion column allows us to
reproduce the main results of the analytic model of BS. In a broad
range of parameter values, the analytic model accurately predicts the
position of the shock. The structure of the sinking region below the
shock is also well reproduced.
Analysing the consistency of the models at high mass accretion

rates, we find a new and simple criterion that restricts the applicability
of the analytic model: the advection parameter 𝛽BS, incorporating
mass accretion rate and column geometry, should not exceed 2/3. At
large mass accretion rates and optical depths, when radiative cooling
becomes inefficient, the vertical pressure profile becomes shallower
than the vertical profile for magnetic pressure. As a result, thermal
pressure becomes dominant over magnetic pressure not at the base
of the column, as it was assumed by BS, but at a finite height above
the surface of the NS.
This conjecture, following from analytic considerations, is also

supported by our numerical results. For the models with a large
advected fraction of the accretion power (more than 2/3), mass loss
tends to occur at a finite height, and agreement with the analytic
solution is significantly worse.
Mass loss from afinite height should lead to deformation or spread-

ing of the column (its transverse size becomes larger than expected
from the dipole geometry of the problem), mass-loading of the closed
field lines inside the magnetosphere or of the open field lines. Mass
loading of the open field lines is a possible way to create mildly
relativistic outflows from a magnetised accreting NS.
The characteristic time scale at which an accretion column evolves

to the stationary solution may be described as the mass replenish-
ment time. This is the time needed to accumulate enough mass to
put the bottom of the column to the edge of a breakdown (thermal
and magnetic pressures become equal). For a large magnetosphere,
this time scale generally exceeds the dynamical time scale of the
inner accretion disc, making it a potentially important feature in the
variability spectra of XRPs.
In particular, finite lifetime of an accretion column may affect

the behaviour during accretor-propeller transitions, if the transition
occurs from the state with a radiation-supported accretion column.
We find that the approach to the equilibrium state is non-

monotonic, showing damped oscillations of the shock front position
around the average trend. The frequency of this oscillation mode
corresponds to the sound propagation time between the shock wave
and the NS surface. For actual XRPs, the frequency is in the hecto-
to kilohertz range, which is difficult to study with the available tele-
scopes, but a prospective target for the future generations of X-ray
timing instruments.
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APPENDIX A: GEOMETRY: TECHNICAL DETAILS

The field of a magnetic dipole is given by the general formula

𝐵𝐵𝐵 =
3(𝜇𝜇𝜇 · 𝑅𝑅𝑅)𝑅𝑅𝑅

𝑅5
− 𝜇𝜇𝜇

𝑅3
, (A1)

where 𝜇𝜇𝜇 is the magnetic dipole moment vector.We assume the dipole
to be aligned with the angular momentum in the accretion disc (con-
sidered only as a source of mass) and with the rotation of the NS.
We also assume that the field lines retain their shapes (there is no
significant back-reaction from the flow), and the matter follows the
field lines. The geometry of the flow in these assumptions implies a
simple relation valid for an aligned dipole in spherical coordinates
𝑅 = 𝑅e sin2 𝜃, where 𝜃 is the polar angle, and 𝑅 is the spherical radial
coordinate.
A unit vector along the field line

𝑒𝑒𝑒𝑙 =
2 cos 𝜃 𝑒𝑒𝑒𝑅 + sin 𝜃 𝑒𝑒𝑒𝜃√

3 cos2 𝜃 + 1
, (A2)

where 𝑒𝑒𝑒𝑅 and 𝑒𝑒𝑒𝜃 are the corresponding unit coordinate vectors. The
cosine of the angle between the magnetic field and the radial unit
vector is the scalar product of 𝑒𝑒𝑒𝑟 and 𝑒𝑒𝑒𝑙 . Taking the scalar product
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allows us to relate 𝑅 and the coordinate along the field line 𝑙 as
d𝑅
d𝑙

=
2 cos 𝜃

√
3 cos2 𝜃 + 1

. (A3)

The size of the flow perpendicular to the field line 𝛿 � 𝑅 (width
of the accretion curtain) may be calculated using flux conservation.
Magnetic flux |𝐵𝐵𝐵 | 𝐴⊥ = 𝑐𝑜𝑛𝑠𝑡, where |𝐵𝐵𝐵| = 𝜇

√
3 cos2 𝜃 + 1/𝑅3

follows from equation (A1). The cross-section of the flux tube equals

𝐴⊥ = 4𝜋𝑎𝑅 sin 𝜃𝛿, (A4)

which implies
𝛿

𝑅
=

sin 𝜃
√
1 + 3 cos2 𝜃

Δ𝑅e
𝑅e

. (A5)

The polar angle of the footpoint of a field line is given by the
relation

sin 𝜃min =
√︁
𝑅∗/𝑅e. (A6)

Substituting this expression to (A5), we find thewidth of the accretion
curtain at the surface

𝛿∗ = 𝑅∗

√︄
𝑅∗

𝑅e (4 − 3𝑅∗/𝑅e)
Δ𝑅e
𝑅e

≈ Δ𝑅e
2

(
𝑅∗
𝑅e

)3/2
. (A7)

The part of the NS surface occupied by the accretion flows is
𝐴⊥,∗
4π𝑅2∗

=
𝑎 𝛿∗√
𝑅∗𝑅e

≈ 𝑎

2
𝑅∗
𝑅e

Δ𝑅e
𝑅e

. (A8)

The approximations above hold if 𝑅∗ � 𝑅e and Δ𝑅e � 𝑅e. If the
size of the magnetosphere is two orders of magnitude larger than the
radius of the NS, 𝐴⊥,∗ is expected to be smaller than one per cent of
the surface of the star.
The angle 𝛼 between the magnetic line and horizontal direction

may be found by considering the unit vector

𝑒𝑒𝑒𝜛 = 𝑒𝑒𝑒𝑅 sin 𝜃 + 𝑒𝑒𝑒𝜃 cos 𝜃, (A9)

directed along the radial direction of a cylindrical coordinate system.
Scalar product 𝑒𝑒𝑒𝜛 · 𝑒𝑒𝑒𝑙 allows one to calculate the angle 𝛼 between
the cylindric radial direction set by vector 𝑒𝑒𝑒𝜛 and the field line (see
Fig. 1),

cos𝛼 =
3 cos 𝜃 sin 𝜃
√
1 + 3 cos2 𝜃

. (A10)

The sign of 𝛼 is assumed positive if the tangent to the field line
makes an acute angle with the symmetry axis (as in Fig. 1). Note
that 𝛼 changes sign when cos 𝜃 = 1/

√
3. Centrifugal force, projected

onto the field line, enters the momentum conservation equation with
a multiplier of cos𝛼. Gravity is directed along 𝑒𝑒𝑒𝑅 , hence its contri-
bution to equation (26) should be multiplied by

𝑒𝑒𝑒𝑅 · 𝑒𝑒𝑒𝑙 = sin(𝛼 + 𝜃) = 2 cos 𝜃
√
1 + 3 cos2 𝜃

. (A11)

APPENDIX B: GAS-TO-TOTAL PRESSURE RATIO

Pressure ratio 𝛽 is defined as

𝛽 = 𝑝gas/𝑝 =
𝑝gas

𝑝gas + 𝑝rad
, (B1)

where 𝑝gas is gas pressure

𝑝gas =
𝜌𝑘𝑇

�̃�
, (B2)

�̃� is the mean mass of a particle, and

𝑝rad =
𝑢rad
3

=
4
3
𝜎SB
𝑐

𝑇4. (B3)

For the gas constituent of pressure,

𝑢gas =
3
2
𝑝gas =

3
2
𝜌

�̃�
𝑘𝑇 . (B4)

From equation (B3) we express the temperature as

𝑇 =

(
𝑐 𝑢rad
4𝜎SB

)1/4
=

(
𝑐 𝑢

4𝜎SB
1 − 𝛽

1 − 𝛽/2

)1/4
, (B5)

and substitute it to (B4) obtaining an equation for 𝛽, which may be
solved given mass and energy density

𝛽

(1 − 𝛽/2)3/4 (1 − 𝛽)1/4
=
3
√
2
𝑘

�̃�

(
𝑐

𝜎SB

)1/4
𝜌

𝑢3/4
. (B6)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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