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ABSTRACT
Radial structure of accretion discs around compact objects is usually described using analytic approximations which are
derived from averaging or integrating vertical structure equations. For non-solar chemical composition, partial ionization, or for
supermassive black holes, this approach is not accurate. Additionally, radial extension of ‘analytically-described’ disc zones is
not evident in many cases. We calculate vertical structure of accretion discs around compact objects, with and without external
irradiation, with radiative and convective energy transport taken into account. For this, we introduce a new open Python code,
allowing different equations of state (EoS) and opacity laws, including tabular values. As a result, radial structure and stability
‘S-curves’ are calculated for specific disc parameters and chemical composition.

Consequently, we check the standard division of discs into zones A, B and C, depending on the role of radiation pressure and
the main opacity mechanism. For the farthest regions of the hot disc around stellar-mass object we supply new analytic formulas.
For discs around supermassive black holes, specific zone B∗ appears, a mixture of A and C zones.

On calculating vertical structure of a self-irradiated disc, we are able to obtain a self-consistent value of the irradiation
parameter 𝐶irr. We find that 𝐶irr depends weakly on the accretion rate but changes with radius, and the dependence is driven
by the conditions in the photosphere and disc opening angle. The hot zone extent depends on the ratio between irradiating and
intrinsic flux: corresponding relation for 𝑇irr, crit is obtained.
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1 INTRODUCTION

Disc accretion is a common astrophysical phenomenon widely ob-
served thanks to high efficiency of energy emission. Brightest sources
of the X-ray sky are explained by accretion of matter on compact ob-
jects, and visibility of such sources allows us to investigate physics
operating there. Many X-ray sources are found in binary systems
since the matter can flow from one component to another. Having
large specific angular momentum, the matter forms an accretion disc.

The standard model of viscous accretion discs (Shakura 1972;
Shakura & Sunyaev 1973) is based on the notion of the turbulent vis-
cosity as a mechanism for the angular momentum transfer, allowing
the matter, rotating around a central object, to move inwards and to
emit gravitational energy converted to heat. Heat balance determines
the vertical structure of the disc, that is, in the direction perpen-
dicular to its symmetry plane. It is safe to assume that hydrostatic
equilibrium holds in the vertical direction, meaning that the time to
achieve the hydrostatic balance is much shorter than other character-
istic disc times. The thermal balance in the vertical direction occurs
on a time-scale longer than a hydrostatic one, but faster than the disc
evolves due to accretion rate variations. Thus, generally, the vertical
disc structure could be studied separately from the radial one.

Considering accretion onto compact object of stellar masses, it is
commonly assumed that the standard model describes well the disc
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regions that emit mainly in the optical. In this context, the details
of the disc vertical structure are important since they determine the
brightness and spectra of those regions.

It has been known for some time that the vertical structure of
accretion disc is subject to various instabilities. The most studied
are the instability with respect to fluctuations in the surface density
of the disc (viscous one) and instability with respect to temperature
fluctuations (thermal one), see e.g. Kato et al. (2008) for a review.

Thermal instability could be a cause of outbursts occuring rather
periodically in some sources with accretion discs. A model based
on disc instabilities has been developed in a number of works (e.g.,
Hōshi (1979); Smak (1982a); Meyer & Meyer-Hofmeister (1981,
1982); Faulkner et al. (1983); Papaloizou et al. (1983); Smak (1984)).
Presently, it is referred to as the Disc Instability Model (or DIM,
Hameury et al. 1998; Lasota 2001; Hameury 2020), see also Bagińska
et al. (2021). Details of DIM depend not only on the disc vertical
structure at different radii but on the radial energy transport as well.
To some extent, using the local analysis alone, it is possible to study
the scenario with thermal-viscous instability on a basis of so-called S-
curves (Meyer & Meyer-Hofmeister 1981), or equilibrium curves. An
S-curve is a graphically depicted sequence of solutions of the vertical-
structure equations, obtained at a single disc radius, in the coordinates
of accretion rate or effective temperature versus the surface density
(see Fig. 10 below). The positive slope of an S-curve represents the
thermally and viscously stable state of the disc, whereas the negative
slope represents the unstable state.
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In X-ray transients, burst evolution depends crucially on the self-
irradiation of the disc: heating by central X-rays can change the local
state of the outer disc and, thus, the viscosity there (Tuchman et al.
1990; Dubus et al. 2001). Vertical structure of a self-irradiated 𝛼-disc
has been calculated by Tuchman et al. (1990); Dubus et al. (1999),
who introduced a self-irradiation parameter. Self-consistent calcula-
tions of the vertical structure of irradiated discs have been preformed
by Mescheryakov et al. (2011) for fully ionized disc regions with
opacity from the Opacity Project (Badnell et al. 2005).

In the current paper, we present results for disc vertical structure
obtained with our new open Python code with modern values of
opacity (Iglesias & Rogers 1993, 1996; Ferguson et al. 2005) and
equations of state (Rogers & Nayfonov 2002) 1. We take into account
X-ray irradiation by two methods and vertical transfer of energy by
convection using an approach of the mixing-length theory. The code
uses MESA package (Paxton et al. 2011) for interpolation and sewing
of the opacity and EoS tables. It can calculate the vertical structure,
S-curves, and radial profiles of optically thick accretion discs.

For un-irradiated discs, we analyse physical conditions in the discs
for a wide range of parameters. We examine to what extent analyt-
ical approximations for opacity laws, and, consequently, for radial
dependencies, can be satisfactorily used. We study ionization degree
in the vertical direction and its behavior in unstable states.

We analyse stability conditions for un-irradiated and self-irradiated
discs. For self-irradiated discs, we also calculate the value of the self-
irradiation parameter in the thermally stable disc parts, and analyse
its dependence on the basic parameters of accretion disc.

In section 2, we present a system of equations of the vertical
structure and boundary conditions, in particular, in the presence of
external X-ray irradiation, and give examples of its integration by
the new code in section 3. The radial structure of the disc, resulting
from solutions for vertical structure, is investigated in section 4. The
irradiation parameter is considered there as well. In section 5, we
construct and analyse S-curves. In section 6 we analyse and discuss
the stability criterion of the irradiated disc. Summary is given in
section 7.

Appendices A and B review equations used in presence of convec-
tive energy transport and external X-ray disc irradiation. Examples of
the vertical structure of irradiated disc are described in Appendix C.
Appendices D and E contain a brief description of the code and
details of the calculation scheme we use.

2 MODELLING OF ACCRETION DISC VERTICAL
STRUCTURE

We use a cylindrical coordinate system (𝑟, 𝜑, 𝑧), where 𝑧 changes
from 0 in the symmetry plane to the semi-thickness of disc 𝑧0 on
the disc surface. We consider geometrically thin (𝑧0 ≪ 𝑟) Keplerian
(𝜔 = 𝜔K =

√︁
𝐺𝑀/𝑟3) stationary (𝜕/𝜕𝑡 = 0) optically thick (𝜏 ≫ 1)

accretion disc.
In such discs, the characteristic viscous time (the time it takes

for accretion rate to change) is much greater than the characteristic
dynamic time (the time it takes for pressure to change) and the
characteristic thermal time (the time it takes for the thermal energy

1 Opacities of Iglesias & Rogers (1993, 1996) and Badnell et al. (2005)
differs by up to 10% in area of typical disc parameters.

to change):

𝑡vis ∼
𝑟

|𝑣𝑟 |
∼ 1

𝛼𝜔

( 𝑧0
𝑟

)−2
, 𝑡dyn ∼ 𝑧0

𝑣s
∼ 1

𝜔
,

𝑡th ∼ 𝜖

¤𝜖 ∼ 1
𝛼𝜔

, 𝑡vis ≫ 𝑡dyn, 𝑡vis ≫ 𝑡th,

(1)

where 𝑣𝑟 and 𝑣𝑠 are radial and sound velocity, ¤𝜖 is the amount of
energy dissipating per unit volume per unit time and 𝛼 is the turbulent
parameter (see below). With such characteristic times, the vertical
structure equations can be decoupled from the radial structure ones.

The vertical structure of 𝛼-discs has been solved in a number of
papers, including Smak (1984); Meyer & Meyer-Hofmeister (1982);
Hameury et al. (1998); Lasota et al. (2008) where discs in X-ray
transients were considered in particular. Note that they used previous
values of opacity (Cox & Stewart 1969; Cox & Tabor 1976; Alexander
1975) and EoS (Fontaine et al. 1977). Ketsaris & Shakura (1998);
Suleimanov et al. (2007); Malanchev et al. (2017) have solved the
vertical structure with analytical opacity coefficient and equation of
state, which allows obtaining analytical radial structure (see Sect. 4).

2.1 Basic equations

Vertical structure equations follow from the mass, energy and mo-
mentum conservation laws. In the discs with moderate accretion rates
and small temperature gradients along the radius, the energy balance
is local: there is virtually no energy transfer in the radial direction.
First we consider discs without external heating by irradiation.

(i) The disc is assumed to be in hydrostatic equilibrium along the
vertical coordinate 𝑧:
d𝑃
d𝑧

= −𝜌 𝜔2
K𝑧. (2)

where 𝑃 and 𝜌 are the gas pressure and density.
Note that in general the influence of radiation pressure 𝑃rad should

be taken into account (in that case 𝑃 = 𝑃gas + 𝑃rad). The well-known
type of instability appears when 𝑃rad ≫ 𝑃gas (Lightman & Eardley
1974; Shakura & Sunyaev 1976). This instability manifests itself as a
poor convergence of the structure solution of our numerical scheme.
Thus, we consider those parts of disc, where the radiation pressure
𝑃rad ≪ 𝑃gas and can be neglected.

(ii) The disc is heated by viscosity caused by turbulent motions,
i.e. the energy heating flux 𝑄 = 𝑄vis, where 𝑄vis is the energy flux
due to viscosity. Equation of viscous heating rate:

d𝑄
d𝑧

=
d𝑄vis

d𝑧
= −𝑤𝑟 𝜑𝑟

d𝜔
d𝑟

=
3
2
𝑤𝑟 𝜑𝜔K, (3)

where 𝑤𝑟 𝜑 is the absolute value of the 𝑟𝜑-component of tensor of
viscous tensions. We use the 𝛼-prescription (Shakura & Sunyaev
1973), where 𝑤𝑟 𝜑 = 𝛼𝑃, and 𝛼 is the turbulent parameter (0 < 𝛼 <

1):

d𝑄
d𝑧

=
3
2
𝜔K𝛼𝑃. (4)

External X-ray irradiation can be another source of disc heating.
In this case the heating flux 𝑄 = 𝑄vis +𝑄irr (see Sect. 2.4 below).

(iii) Generally, the heat is transported in vertical direction by
radiation and convection. We define temperature gradient as fol-
lows (Meyer & Meyer-Hofmeister 1982):

d ln𝑇
d ln 𝑃

≡ ∇ =

{
∇rad, ∇rad ≤ ∇ad,

∇conv, ∇rad ≥ ∇ad,
(5)
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where ∇rad is the radiative gradient, ∇ad is adiabatic gradient and
∇conv is the gradient when both convection and radiation occur. If
the radiative gradient is overadiabatic, the convection takes place
(Schwarzschild criteria, Schwarzschild 1958).

If ∇rad ≤ ∇ad, the energy is transported by radiation, and the
temperature gradient follows from the radiation transfer equation in
diffusion approximation and is as follows

∇rad ≡ 3𝜘R
4𝑎𝑐𝜔2

K𝑧

𝑃

𝑇4 𝑄, (6)

where 𝜘R is he Rosseland opacity coefficient, 𝑎 = 4𝜎SB/𝑐 is the
radiation constant, 𝑐 is the speed of light, and the cooling flux is
equal to heating flux 𝑄, because there is no advection in the disc (no
radial energy transport).

If ∇rad ≥ ∇ad, the convective motions start to transfer energy, and
the corresponding temperature gradient∇conv is calculated according
to the mixing length theory (see Paczyński 1969; Kippenhahn et al.
2012), see Appendix A. This approach to include convective transport
of energy was also used by (Hameury et al. 1998), while (Malanchev
& Shakura 2015) took an attempt to take into account exceed viscous
energy generation in convective cells. Notice that in presence of
convection ∇rad > ∇conv > ∇ad.

Finally, the temperature equation we shall solve is

d𝑇
d𝑧

= ∇𝑇

𝑃

d𝑃
d𝑧

. (7)

In some calculation runs, for the sake of comparison, we formally
calculate the disc structure always setting ∇ = ∇rad. We call such
models ‘no convection’.

(iv) Surface density of disc is defined as

Σ0 ≡
∫ +𝑧0

−𝑧0
𝜌(𝑧)d𝑧 = 2

∫ 𝑧0

0
𝜌(𝑧)d𝑧. (8)

We also introduce mass coordinate Σ(𝑧), the column density “ac-
cumulated” from equatorial plane to a certain height 𝑧 in both di-
rections. We count this coordinate from the surface to the symmetry
plane, which leads to the appearance of a “minus” sign in the equation
for Σ:
dΣ
d𝑧

= −2𝜌. (9)

Subsequently, the surface density of the disc is Σ0 = Σ(𝑧 = 0).

2.2 Equation of state and opacity law

System of four ordinary differential equations (2), (4), (7) and (9)
should be supplemented by equation of state (EoS) and opacity law:

𝜌 = 𝜌(𝑃,𝑇), 𝜘R = 𝜘R (𝜌, 𝑇). (10)

They can be set both analytically or as tabular values. For analytical
description, the ideal gas equation is adopted:

𝜌 =
𝜇 𝑃

R 𝑇
(11)

where 𝜇 is molecular weight.
An analytic opacity coefficient is approximated by a power-law

function:

𝜘R = 𝜘0𝜌
𝜁𝑇𝛾 . (12)

Here 𝜘0 is the dimension constant, which we give below is CGS
units.

There are following analytic opacity options:
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Figure 1. Rosseland opacity coefficient as a function of temperature for dif-
ferent opacity models for solar chemical composition and 𝜌 = 10−7 g cm−3.
Blue line shows interpolation of the tabular values (see Sect. 2.2). Orange and
green lines correspond to Kramers (Frank et al. 2002) and Bell & Lin (1994)
power-law approximations, respectively.

• Kramers law, which describes bound-bound and free-free tran-
sitions in the plasma (Frank et al. 2002): 𝜁 = 1, 𝛾 = −7/2. For solar
chemical composition 𝜘0 = 5 · 1024.

• Analytic approximations by Bell & Lin (1994) to opacity: ap-
proximation obtained by the OPAL project (Iglesias & Rogers 1993)
(𝜘0 = 1,5 · 1020, 𝜁 = 1, 𝛾 = −5/2) and opacity from scattering off
hydrogen atoms (𝜘0 = 1 · 10−36, 𝜁 = 1/3, 𝛾 = 10).

At high temperature the analytical opacity is determined by the
Thomson electron scattering, i.e. 𝜘R = 0.2(1+ 𝑋) cm2 g−1, where 𝑋

is the hydrogen abundance.
Tabular values of opacity (Iglesias & Rogers 1993, 1996; Ferguson

et al. 2005) and EoS (Rogers & Nayfonov 2002) are obtained by inter-
polation using the kap and eos modules of the MESA code (Paxton
et al. 2011). Notice that different chemical composition can be set if
tabular opacity is used (see Sect. 5.2 below).

Opacity dependence on the temperature for a typical value of
density 𝜌 in a disc is shown in Fig. 1. Figure 2 shows differences
between the analytical and tabular opacities described above.

2.3 Boundary conditions

We assume that at the surface of the disc the temperature is equal to
the effective temperature

𝑇eff ≡
(
𝑄0
𝜎SB

)1/4
(13)

and we use the grey Eddington approximation:

𝑇 = 𝑇eff

(
1
2
+ 3

4
𝜏

)1/4
, (14)

where 𝜏 is the optical depth measured from outside inward to the
disc symmetry plane. Thus we have boundary conditions on the
temperature and flux:

𝑇 (𝑧0) = 𝑇 (𝜏 = 2/3) = 𝑇eff . (15)

and

𝑄(𝑧0) = 𝑄0 ≡ 𝑄vis (𝑧0) =
3

8𝜋
𝐹𝜔K
𝑟2 , (16)
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Figure 2. Shown are relative uncertainties between analytical approximations of opacity compared to tabular opacity values, obtained from MESA, as functions
of density and temperature. Colour indicates the uncertainty in percents. In white regions the uncertainty is larger than 150%. The left panel shows the uncertainty
relative to the Kramers opacity law, and the right one, to the the approximations by Bell & Lin (1994) (see Sect. 2.2 for details). Black curve shows the range of 𝜌
and 𝑇 , where the electron scattering 𝜘T and absorption 𝜘ff opacity coefficients are equal. The olive curve shows the 𝜌 − 𝑇 relation for disc around 𝑀 = 10 𝑀⊙,
turbulent parameter 𝛼 = 0.1 and accretion rate ¤𝑀 = 1018g s−1, corresponding to Fig. 4 below; the dot on the curve indicates the parameters at the outer hot
zone radius.

where the viscous torque 𝐹 = 2π𝑟2𝑊𝑟 𝜑 , and 𝑊𝑟𝜑 ≡
∫ 𝑧0
−𝑧0

𝑤𝑟 𝜑d𝑧 is
the integrated viscous stress. In a quasi-stationary accretion disc the
viscous torque can be derived from the angular momentum conser-
vation and is as follows:

𝐹 = ¤𝑀ℎ

(
1 −

√︂
𝑟in
𝑟

)
+ 𝐹in, (17)

where ℎ =
√
𝐺𝑀𝑟 is the specific angular momentum and 𝐹in is the

viscous torque at the inner radius 𝑟in (see e.g. Shakura et al. 2018).
Further we will assume that 𝑊𝑟𝜑 is zero at the inner radius 𝑟in,
therefore 𝐹in = 0. Generally, arbitrary torque 𝐹 (𝑟) can be set in the
code.

To obtain the boundary condition for pressure, we write equation
of hydrostatic equilibrium (2) in the photosphere:

d𝑃
d𝜏

=
𝜔2

K𝑧

𝜘R
, (18)

where the optical depth 𝜏:

d𝜏 = −𝜘R𝜌d𝑧, (19)

so that the optical depth increases from the surface to symmetry
plane. Integrating equation (18) gives:

𝑃(𝑧0) = 𝑃′ =
∫ 2/3

0

𝜔2
K𝑧0

𝜘R (𝑃,𝑇 (𝜏))
d𝜏, (20)

where (14) can be substituted. For analytical opacity, the integral can
be taken analytically (Ketsaris & Shakura 1998). Notice that in the
photosphere 𝑧 coordinate practically does not change and equals to
𝑧0.

The column density Σ, like optical depth, grows from 𝑧0 towards
the disc symmetry plane:

Σ(𝑧0) = 0. (21)

Note that this column density does not include the density of layers
with 𝜏 < 2/3.

The half-thickness of the disc 𝑧0 is a free parameter of the system.
Thus, to solve the system one has to set additional boundary condition
at the symmetry plane of the disc (𝑧 = 0):

𝑄(0) = 0, (22)

which follows from the symmetry of the problem.

2.4 Irradiation by central X-ray source

X-ray irradiation by the central accreting object (e.g., a neutron star)
or by central parts of the accretion disc can be another source of
heating in the disc. This heating can even exceed the viscous heating
at large radii.

The effect of the incident radiation depends, naturally, on its spec-
trum. Soft X-rays are absorbed relatively high in the disc atmosphere
and heat up the chromosphere-like layer, while photons > 3 keV can
penetrate deep (Suleimanov et al. 1999). If they are absorbed in the
layers below disc’s photosphere (where the optical depth for its own
emission 𝜏 ∼ 2/3), X-ray photons are thermalized: their energy is
contributed to the flux outgoing from the photosphere.

For irradiated discs the surface temperature rises in presence of
irradiation, and the new boundary condition is

𝑇4 (𝑧0) = 𝑇4
vis + 𝑇4

irr , (23)

where irradiation temperature𝑇irr measures the additional heating by
X-rays. It will be defined differently in the two methods below. Note
that for irradiated discs we rename the effective temperature (13) as
viscous temperature

𝑇vis ≡
(
𝑄0
𝜎SB

)1/4
, (24)

emphasizing its association with the viscous energy flux in contrast
with irradiation temperature 𝑇irr.

As we do not calculate an irradiated atmosphere model, we cannot
calculate integral (20). Instead, following Tuchman et al. (1990) and
Hameury et al. (1998), we assume that both the Rosseland opacity
and 𝑧 are constant in the photosphere and take value of pressure
evaluated at 𝜏 = 2/3:

𝑃(𝑧0) = 𝑃′ =
2
3

𝜔2
K𝑧0

𝜘R (𝑃′, 𝑇 (𝑧0))
. (25)

We use two ways to include irradiation into calculation of the
vertical structure. In the first method, only boundary conditions are
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Figure 3. Disc vertical structure for 𝑀 = 10 𝑀⊙ , 𝛼 = 0.1, 𝑟 = 1010 cm and tabular opacity for different accretion rates ¤𝑀 and effective temperatures 𝑇eff .
Shown are normalized temperature 𝑇/𝑇𝑐 , actual temperature gradient ∇, adiabatic gradient ∇ad, and mean number of free electrons per nucleon. Upper panels
are calculated for cold (𝑇eff = 5000 K) and hot (𝑇eff = 20000 K) disc states with solar composition. Lower panels are calculated for unstable disc states with
solar and hydrogen composition. There is no convection in the hot disc (∇rad < ∇ad), while the disc in cold neutral and unstable states is convective.

changed (Tuchman et al. 1990; Dubus et al. 1999). In the second one,
the equations themselves are altered too (e.g. Mescheryakov et al.
2011).

2.4.1 (i) First method

In the first method, the boundary conditions on the temperature and
pressure become (23) and (25); other boundary conditions as well as
structure equations do not change. This roughly corresponds to all
the heating taking place at the photosphere level.

Irradiation temperature𝑇irr can be expressed in terms of irradiation
constant 𝐶irr:

𝑇4
irr = 𝐶irr

𝐿X
4𝜋𝜎SB𝑟2 , (26)

where 𝐿X = 𝜂 ¤𝑀𝑐2 is the X-ray luminosity of the central source.

2.4.2 (ii) Second method

In the second method the X-ray radiation with arbitrary spectrum
𝐹𝜈
𝑋
(𝜈) penetrates into the disc and affects distributions of the energy

flux 𝑄(𝑧) and temperature 𝑇 (𝑧). In the disc the additional source of

heating appears, so that Eq. (4) changes to the following form:

d𝑄
d𝑧

=
d(𝑄vis +𝑄irr)

d𝑧
=

3
2
𝜔K𝛼𝑃 + 𝜀, (27)

where 𝜀 and 𝑄irr are the local heating rate of the disc through X-ray
photons and the corresponding vertical energy flux. They are cal-
culated from the analytical solution of radiation transfer equation
for X-ray photons and by integrating over the entire spectrum (see
equations (17)–(21) in Mescheryakov et al. (2011) and Appendix B).
Accordingly, the boundary condition on flux is changed:

𝑄(𝑧0) = 𝑄0 +𝑄irr (𝑧0), (28)

see (B5).
The temperature and pressure boundary conditions are still (23)

and (25), respectively. Equations (13) and (16) are applicable as well.
While in the previous method the irradiation temperature or ir-

radiation constant can be an input parameter, now 𝑇irr is calculated
from obtained flux 𝑄irr at the photosphere level:

𝜎SB𝑇
4
irr = 𝑄irr (𝑧0). (29)

The system has two free parameters: 𝑧0 and the surface density of
the disc Σ0. Therefore, the code solves a two-parameter optimization
problem and finds (𝑧0, Σ0). Contrary to the previous method, where
the surface density of the disc is obtained on solving the equations,
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now one has to set the additional boundary condition, complementary
to (22):

Σ(𝑧 = 0) = Σ0. (30)

We assume that X-ray radiation comes from the point-like central
object, whose flux at distance 𝑟 is:

𝐹𝜈
𝑋 (𝜈) =

𝐿X
4𝜋𝑟2 𝑆(𝜈), (31)

where 𝑆(𝜈) is the spectrum of incident X-ray flux, and 𝐿X is the
X-ray luminosity of central source. Both 𝑆(𝜈) and 𝐿X can be set by
user in the code (see Appendix D).

3 VERTICAL STRUCTURE

We have developed the Python 3 code that solves equations pre-
sented above. Code is open-source and available from GitHub2. Ap-
pendix D contains a description of the code, while the numerical
details of the calculation scheme are given in Appendix E.

Fig. 3 presents examples of the vertical structure for different
effective temperatures (which are related with accretion rate) at fixed
radius 𝑟 = 1010 cm for a case without external irradiation. Shown are
temperature distribution, adiabatic and actual temperature gradients,
and the mean number of free electrons per nucleon free 𝑒- ≡ 1/𝜇𝑒.
The latter can change from 0 in neutral matter to (1 + 𝑋)/2 in fully
ionized matter, where 𝑋 is the hydrogen abundance.

Note that the panels of Fig. 3 correspond to different disc states.
The upper panels represent stable disc (in hot and cold state), while
lower panels show unstable disc with different chemical composition
(solar and pure hydrogen). The latter solutions lie on the negative
branch on the S-curve, see Sect. 5 and Fig. 10. The unstable state
is related to ionization of hydrogen: while the cold disc is neutral
(free 𝑒- ≈ 0) and hot disc is fully ionized (free 𝑒- ≈ 0.85), ionization
of unstable disc changes along 𝑧 between these two limits.

The disc in cold and unstable state is convective (∇rad > ∇ad
along the 𝑧 coordinate), while there is no convection in the hot disc
(except for a thin layer near the surface). This happens regardless of
the chemical composition: the pure helium disc behaves similarly.
The main difference is that instability in helium disc is related to the
partial ionization of helium, therefore the temperature of unstable
disc (𝑇eff ∼ 15 000 K) is higher than in that in pure hydrogen or solar
disc (𝑇eff ∼ 7000 K). The corresponding S-curves are presented in
Sect. 5.2, see Fig. 12 and 13.

Examples of vertical structure for irradiated disc can be found in
Appendix C. The influence of external irradiation depends on the
relation between the irradiation and viscous temperatures and on the
total optical depth of the disc 𝜏0. If𝑄irr/𝑄vis < 𝜏0, irradiation hardly
affects the vertical structure, if there is no convection (see Fig. C1).

Notice that, if an un-irradiated disc is convective, external irradia-
tion reduces the role of convection and may completely stop it, which
leads to rise of the central temperature; that is, irradiation may affect
a convective disc very strongly (see also Tuchman et al. 1990).

We have checked the consistency of the code with results of some
previous works. For analytic opacities the obtained vertical structure
of un-irradiated disc agrees with results by Ketsaris & Shakura (1998)
(see Tavleev et al. 2019, 2022). The irradiated disc structure agrees
with results by Mescheryakov et al. (2011) and that by Dubus et al.
(1999); Tuchman et al. (1990), for corresponding methods.

2 https://github.com/AndreyTavleev/DiscVerSt

4 RADIAL STRUCTURE

Standard model of the disc accretion defines three radial
zones (Shakura & Sunyaev 1973). In zone A, the radiation pres-
sure is greater than the gas pressure, and opacity is determined by
scattering. In zone B, the gas pressure is greater than the radiation
pressure, but opacity is still determined by scattering. Finally, in
zone C, opacity is determined by the absorption processes, and gas
pressure is much greater than the radiation pressure.

Suleimanov et al. (2007) demonstrated that analytic radial de-
pendencies of disc parameters could be written more accurately if
solutions of vertical structure are taken into account for analytical
opacity coefficient and EoS. This approach relies on the method of
vertical-structure calculation by Ketsaris & Shakura (1998).

Ketsaris & Shakura (1998) introduce dimensionless Π-parame-
ters:

Π1 ≡
𝜔2

K 𝑧2
0 𝜌𝑐

𝑃𝑐
, Π2 ≡ Σ0

2𝑧0 𝜌𝑐
,

Π3 ≡ 3
4
𝛼𝜔K 𝑃𝑐 Σ0

𝜌𝑐𝑄0
, Π4 ≡ 3

32

(
𝑇eff
𝑇𝑐

)4
Σ0 𝜘𝑐 .

(32)

Here 𝑃𝑐 , 𝑇𝑐 , 𝜌𝑐 are the gas pressure, temperature and bulk density
in the symmetry plane. Values of Π-parameters are found on solving
the vertical structure. Ketsaris & Shakura (1998) use the Kramers
formula in the regions, where absorption prevails the scattering, and
Thomson scattering coefficient for hotter regions. Malanchev et al.
(2017) generalize these solutions for an arbitrary opacity power law.

Knowing Π-values one can obtain from (32) analytical formu-
las for the radial distribution of 𝑧0/𝑟, Σ0, 𝑇𝑐 , 𝜌𝑐 . It was done for
Kramers and Thomson opacity in Suleimanov et al. (2007), see also
Shakura et al. (2018). As can be seen in Fig. 2, near the outer bound-
ary of the hot disc (the cyan dot on the olive curve) the opacity
approximation 𝜘R ∼ 𝜌 𝑇−5/2 fits on average better the actual disc
opacity, than the Kramers law (𝜘R ∼ 𝜌 𝑇−7/2) does, while opacity
in the inner parts of the disc (with higher temperatures) are better
approximated by the Kramers law.

Let us substitute the EoS of ideal gas in (32) along with the opacity
approximation formula obtained by Bell & Lin (1994) for hot disc
regions, where opacity is determined by free-free and bound-free
transitions. We obtain:

𝑧0/𝑟 = 0.0207𝑚−13/36𝛼−1/9 𝑟1/12
10

¤𝑀1/6
17 𝑓 (𝑟)1/6

( 𝜇

0.6

)−13/36
(
𝜘0
𝜘∗0

)1/18

Π𝑧 , (33)

Σ0 = 32𝑚2/9 𝛼−7/9 𝑟−2/3
10

¤𝑀2/3
17 𝑓 (𝑟)2/3

( 𝜇

0.6

)13/18
(
𝜘0
𝜘∗0

)−1/9

ΠΣ [g cm−2], (34)

𝜌𝑐 = 7.8 · 10−8 𝑚7/12 𝛼−2/3 𝑟−7/4
10

¤𝑀1/2
17 𝑓 (𝑟)1/2

( 𝜇

0.6

)13/12
(
𝜘0
𝜘∗0

)−1/6

Π𝜌 [g cm−3], (35)

𝑇𝑐 = 4.1 · 104 𝑚5/18 𝛼−2/9 𝑟−5/6
10

¤𝑀1/3
17 𝑓 (𝑟)1/3

( 𝜇

0.6

)5/18
(
𝜘0
𝜘∗0

)1/9

Π𝑇 [K] . (36)
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Figure 4. Radial structure of disc with 𝑀 = 10 𝑀⊙, 𝛼 = 0.1, ¤𝑀 = 1018g s−1, with and without convection together with theoretical approximations (33–34).
Shown are the semi-thickness of disc 𝑧0/𝑟 and surface density Σ0. It is clearly seen that convection thins the unstable part of the disc. Also shown are the Π

parameters (32).

Here:

𝑚 ≡ 𝑀

𝑀⊙
, ¤𝑀17 ≡

¤𝑀
1017 g s−1 , 𝑟10 ≡ 𝑟

1010 cm
,

𝜘∗0 ≡ 1.5 · 1020 cm5g−2K5/2, 𝑓 (𝑟) ≡ 𝐹

¤𝑀ℎ
= 1 −

√︂
𝑟in
𝑟
.

(37)

Dimensionless parameters Π𝑧 ,ΠΣ ,Π𝜌,Π𝑇 are almost constant in
optically thick discs (𝜏 ≳ 104, see e.g., Suleimanov et al. (2007))
and are as follows:

Π𝑧 = Π
17/36
1 Π

−1/18
2 Π

1/9
3 Π

−1/18
4 ≈ 2.744,

ΠΣ = Π
1/18
1 Π

1/9
2 Π

7/9
3 Π

1/9
4 ≈ 1.049,

Π𝜌 = Π
−5/12
1 Π

−5/6
2 Π

2/3
3 Π

1/6
4 ≈ 0.771,

Π𝑇 = Π
−1/18
1 Π

−1/9
2 Π

2/9
3 Π

−1/9
4 ≈ 1.095.

(38)

Figure 4 presents the radial structure of solar disc with and without
convection together with analytical approximations (33–34), which
are in good agreement with calculations in the stable region. Notice
that actual values of Π are substituted into (33–34) and they are far
from being constant in the zone with partial ionization, explaining
non-monotonic behaviour of the dashed curve.

It should be kept in mind that some intervals of the radial depen-
dencies in Fig. 4 correspond to thermally-unstable solutions of the
vertical structure, these intervals manifest themselves by sharp pos-
itive slope of the surface density radial profile. This means that the
depicted radial structure for constant ¤𝑀 for all depicted radii could
not exist in reality during times longer than the local thermal time. At
the same time, the depicted radial dependencies in the hot ionized sta-
ble zone (solid lines, where the surface density monotonically drops
from the centre), and Eqs. (33)–(36) (in the outermost parts of the
stable hot zone) describe satisfactory the quasi-stationary structure
of corresponding parts of an evolving disc. Quasi-stationary means

on a time-scale less than the viscous time calculated at the outer
radius of the ionized disc.

Notice that account of the convection “shifts” the instability region
to the smaller radii.

4.1 Checking the disc zones

Using expressions (33–36), one can estimate the boundary 𝑅𝐵𝐶

between B zone and C zone from the equality of electron scattering
𝜘T and absorption 𝜘ff = 𝜘0𝜌𝑐𝑇

−5/2
𝑐 opacity coefficients. However,

that gives the implausible value 𝑅𝐵𝐶 ∼ 7 ·104 cm, which is related to
the fact that for high-temperature plasma, when the value of opacity
is around the Thomson scattering, the Bell-Lin approximation of
opacity is very poor, see Fig. 2. One can see that the Kramers law
better approximates the opacity for big densities and temperatures, so
to find the boundary 𝑅𝐵𝐶 one should use it, which gives (Suleimanov
et al. 2007):

𝑅𝐵𝐶,Kramers ≃ 5 · 107 𝑚1/3 ¤𝑀2/3
17

𝑓 (𝑟)2/3
( 𝜇

0.6

)−1/3
(
𝜘0
𝜘∗0

)−2/3 (
𝜘T
𝜘∗T

)4/3

[cm], (39)

where 𝜘∗T = 0.335 cm2/g, corresponding to the fully ionized hydro-
gen, and 𝜘∗0 ≡ 5 · 1024 cm5 g−2 K7/2, as in Kramers opacity law.
Boundary between A zone and B zone, 𝑅𝐴𝐵, can be obtained from
the equality of 𝑃rad = 𝑎𝑇4/3 and 𝑃gas, while opacity is determined
by scattering:

𝑅𝐴𝐵 ≃ 107 𝑚1/3 𝛼2/21 ¤𝑀16/21
17

𝑓 (𝑟)16/21
( 𝜇

0.6

)8/21
(
𝜘T
𝜘∗T

)6/7

[cm] . (40)
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Figure 5. Disc zones for different masses of accretors. Black curve shows the radiation to gas pressure ratio at the symmetry plane (on the left Y-axis), which is
greater than 1 in the grey region. Red solid curve shows the total Rosseland opacity (on the right Y-axis), which is greater than 2𝜘T in the red region. Other red
curves show analytic opacity: via Kramers law (dashed) and Bell & Lin (1994) expression (dotted) for absorption and the Thomson electron scattering. White
region in the right bottom panel corresponds to zone B∗, see description in the text. Description of the vertical lines, which are the analytic estimates of zone
boundaries, is given in the text. Turbulence parameter 𝛼 = 0.1. Note that the outer radius of the disc around 109 𝑀⊙ is determined by self-gravity of the disc,
that is, at the outer boundary of the disc, the self-gravity balances the attraction to the central object (i.e. 2𝜋𝐺Σ/𝜔2

K𝑧0 = 1).

Figure 5 shows radiation pressure to gas pressure ratio 𝑃rad/𝑃gas
and tabular opacity 𝜘𝑐 at the symmetry plane of the disc (solid lines).
Using these values, disc zones are distinguished: they are shown with
colored backgrounds. In the grey region, visible in the upper panels
of Fig. 5, the radiation pressure prevails in the disc and opacity is
mainly due to scattering, namely, the total Rosseland opacity is less
than 2𝜘T – this interval of radii corresponds to zone A. In the red
region, the situation is the opposite, which corresponds to C zone
of the disc. The intermediate B zone, seen for 10 𝑀⊙ , is shown in
peach. Its width decreases with increasing 𝑀 .

The dotted black and red vertical lines, shown for 10 𝑀⊙ in Fig. 5,
are the analytic estimates of zone boundaries (40) and (39), respec-
tively. One can see that for central objects of stellar masses and for
accretion rates about 0.1 − 1 ¤𝑀edd, the analytical estimate 𝑅𝐴𝐵 (40)
and the ‘actual’ boundary of zone A are in good agreement. Con-
cerning (39), one can see that the opacity for disc around stellar-mass
objects near the B/C transition is indeed better approximated with
the Kramers law (dashed red curve) than with the Bell & Lin (1994)
opacity expression (dotted red curve).

For supermassive black holes, inwards from zone C there could
be a zone, shown with white background for 106 𝑀⊙ and 109 𝑀⊙ ,
where the radiation pressure prevails while the main contribution to

opacity is from free-free and bound-free transitions. We coin this
zone B∗, following Burderi et al. (1998). They estimate analytically
the B∗ zone boundaries, namely 𝑅𝐴𝐵∗ and 𝑅𝐵∗𝐶 , which are shown,
respectively, by black and red vertical dashed lines in the bottom
panels of Fig. 5. Unfortunately, the analytical estimates poorly locate
zone B∗, possibly, due to averaging of vertical structure or analytic
opacities. For disc around 106𝑀⊙ the analytical estimates even do not
indicate the presence of zone B∗. Thus, one is advised to describe the
disc structure around a supermassive black hole using the numerical
results, such as provided by our code.

4.2 Irradiated disc

Figure 6 presents radial profiles of the vertical height 𝑧0/𝑟 , surface
density Σ0, mid-plane temperature 𝑇𝑐 , temperature at the photo-
sphere 𝑇ph, irradiation temperature 𝑇irr and irradiation constant 𝐶irr
for un-irradiated and irradiated disc. Unless indicated otherwise, for
the central X-ray luminosity 𝐿X = 𝜂 ¤𝑀𝑐2 we assume accretion ef-
ficiency 𝜂 = 0.1. Irradiation is taken into account by two methods
(see Sect. 2.4: with scheme (i) for two values of 𝐶irr (the dark and
light green lines) and with advanced scheme (ii) for different X-ray
luminosities (the blue, orange, and magenta lines).
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Figure 6. Radial profiles of the vertical height 𝑧0/𝑟 , surface density Σ0, mid-plane temperature 𝑇𝑐 , temperature at the photosphere 𝑇ph, irradiation temperature
𝑇irr and irradiation constant 𝐶irr for un-irradiated disc and irradiated disc with irradiation scheme (i) (see Sect. 2.4) for two 𝐶irr, and with advanced scheme (ii)
for different X-ray luminosities. Mass of central object 𝑀 = 1.4 𝑀⊙ , 𝛼 = 0.1, ¤𝑀 = 1018 g s−1 ≈ 0.5 ¤𝑀edd. The black line in lower figures shows the viscous
temperature 𝑇vis.

In scheme (ii), for spectrum of incident X-rays in expression (31)
we take:

𝑆(𝜈) ∝
(

𝐸

𝑘𝑇sp

)−0.4
exp

(
− 𝐸

𝑘𝑇sp

)
(41)

in the range 1 − 10 keV, with 𝑇sp = 8 keV (Mescheryakov et al.
2011). Note that spectrum 𝑆(𝜈) is the parameter of the code and can
be set manually (see Appendix D). The incident angle of external
irradiation is assumed to be

cos 𝜃0 ≈ d𝑧0
d𝑟

− 𝑧0
𝑟

=
𝑧0
𝑟

(
d ln 𝑧0
d ln 𝑟

− 1
)
=

1
12

𝑧0
𝑟
, (42)

following the analytical approximation (33) for 𝑧0/𝑟 , which is quite
satisfactory at the outer disc (see panel 𝑧0/𝑟 in Fig. 4).

The last formula could introduce a limitation to scheme (ii) since
it does not take into account the disc profile self-consistently. For
¤𝑀 = const the profile of 𝑧0/𝑟 is formally negative beyond the hot

zone (see Fig. 4 or 6) and the outer radii are shadowed. This means
that the profile of un-irradiated disc (the black solid line) should apply
for shadowed zones. If one looks closer, it is evident that scheme (ii)
provides virtually the same solution as the un-irradiated disc model
in the shadowed regions. This happens because the calculated in (ii)
value of 𝐶irr drops dramatically.

On the other hand, the height where the X-rays are effectively
intercepted may differ from 𝑧0 remarkably. This can be due to scat-
tering above the disc (Suleimanov et al. 2007; Mescheryakov et al.
2011). This can be taken into account by changing relation (42), see
Appendix D.

4.2.1 Comparing results of methods for irradiated disc

In confirmation with results of previous works (e.g., Dubus et al.
1999), strong irradiation keeps the disc in the hot state at farther
distances, comparing to the case without irradiation. We find that
irradiation method affects the hot disc size only very slightly. For
comparable values of 𝑄irr, cf. the dark green and magenta lines in
Fig. 6, the hot disc has very similar radial extension, which is seen in
the panel for Σ as a location where the surface density starts to rise
going outwards.

Furthermore, stabilization of the disc’s vertical structure by irradi-
ation with 𝑇irr ≳ 104 K, previously found by Tuchman et al. (1990);
Dubus et al. (1999), occurs in our calculations by either irradia-
tion method. The temperature of the stability loss, which is actually
≲ 9000 K, is investigated by us in detail in section 6.

At the same time, it should be noted that the method (i) implies a
disc structure that is not self-consistent. For example, in Fig. 6 the
self-shadowing of the disc at distances farther than ∼ 4 · 1010 cm
contradicts the notion of a constant irradiation parameter. Moreover,
the method of irradiation (ii) allows one to calculate 𝐶irr, whereas
the method (i) uses it as an input parameter.

4.2.2 Value of 𝐶irr

The irradiation parameter𝐶irr and irradiation temperature𝑇irr for ad-
vanced scheme (ii), also shown in Fig. 6, can be calculated from flux
𝑄irr supplied by thermalized external emission (see (29) and (B8)).
One can see that they drop dramatically in the region where
𝑇irr < 9000 K. On comparing the curves for 𝐶irr with the behaviour
of disc semi-thickness, we infer that the drop of 𝐶irr is not due to
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Ṁ = 0.5 Ṁedd
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disc where the vertical structure is unstable.

a purely geometrical effect, since the cosine between incident rays
and normal to the disc surface, which is set proportional to 𝑧0/𝑟
according to (42), decreases by only a few times. We deduce that the
drop happens due to strong absorption of X-ray photons above the
disc photosphere, so that the external irradiation hardly affects the
disc vertical structure. This increased absorption is driven by a very
high column density in the photosphere of the outer part of a disc3

(see the dashed line in Fig. 8 below).
According to expression (B2) and (B9), 𝐶irr value depends on the

X-ray spectrum, angle of incident rays and optical depth to X-rays
above the level where the optical flux 𝜎SB𝑇

4
vis is formed (it is 𝜏 = 2/3

3 The high photosphere density, in its turn, is an artefact of the formal request
that ¤𝑀 = const at all radii. If, alternatively, Σ0 is smooth, ¤𝑀 drops beyond
the hot disc.
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Figure 9. Maximum 𝐶irr for accretion rates (10−2 − 1) ¤𝑀edd, as function of
the radius (in Schwarzschild radius) for two central source masses (different
colors) and three 𝛼-parameters (different styles). Irradiation is taken into
account by method (ii) and 𝐿X = 𝜂 ¤𝑀𝑐2.

in our scheme). For a simplified case of single-frequency X-ray pho-
tons, Σph = 0 (Σph is the column density of the photosphere layer
above the disc surface) and total optical thickness of the disc 𝜏0 ≫ 1
it can be shown analytically that 𝐶irr = (1 − 𝐴) cos 𝜃0, where 𝐴 is
the frequency-dependent albedo (see Eq. (B10) and equation A39 in
Mescheryakov et al. (2011)). This is in agreement with the previ-
ously proposed definition of𝐶irr, according to which, for a point-like
source, the irradiation parameter can be written as (e.g., Suleimanov
et al. 2007)

𝐶irr = (1 − 𝐴) 𝑧0
𝑟

(
d ln 𝑧0
d ln 𝑟

− 1
)
, (43)

where 1 − 𝐴 is the fraction of incoming X-ray flux that is subject to
thermalization.

Fig. 7 shows radial dependences of the irradiation parameter for
different masses and accretion rates for the fixed spectrum (41).
We stress that 𝐶irr depends on the the upper boundary condition
that defines Σph and determines the pressure condition (25). The
dependence Σph (𝑟) is what drives the radial ‘wiggles’ of 𝐶irr in
Fig. 7: fixing photosphere column density to a constant value provides
much more smooth 𝐶irr behaviour, see Fig. 8. As we have checked,
the dependence on radius of the solid lines in Fig. 8 comes solely
from the disc opening angle 𝑧0 (𝑟)/𝑟 .

One could expect that 𝐶irr ∝ 𝑧0/𝑟. If albedo 𝐴 in (43) is constant
then a new parameter 𝐶irr can be suggested via

𝐶irr = 𝐶irr
𝑧0
𝑟
, (44)

see, e.g., Lipunova et al. (2022). Fig. B1 in the Appendix shows the
radial profile of 𝐶irr. Indeed the variability of 𝐶irr with radius is less
that that of 𝐶irr. However, 𝐶irr appears to depend on the accretion
rate, which, possibly, is due to a nontrivial dependence of Σph and 𝐴

on ¤𝑀 . Auxiliary calculations have shown that, for varying value of
the turbulent parameter 𝛼, from 0.01 to 0.5, the value of𝐶irr changes
by only about ±5%. However, since the method of calculation of
irradiated disc (ii) engages approximate boundary conditions, one
should be cautious in the respect of relationship between the specific
calculated values and reality.

Summarizing, values of 𝐶irr, calculated by our code, are compa-
rable or smaller than those suggested in previous works. For specific
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X-ray spectrum, calculated irradiation parameter 𝐶irr is in the range
(1−5) ×10−4 (Fig. 9). Esin et al. (2000) obtain 𝐶irr ∼ 0.004 by ana-
lyzing the light curves of soft X-ray transient A0620-00 (1975), and
𝐶irr ≃ 0.0014 for GRS 1124-68 (1991). Those values are consistent
with estimate 𝐶irr ∼ (2 − 4) × 10−3 found by (de Jong et al. 1996)
for some Low-Mass X-ray Binaries. On the other hand, Suleimanov
et al. (2008) for the same two transients obtain 𝐶irr ∼ 7 × 10−4 and
𝐶irr ∼ 3×10−4, respectively. Lipunova & Malanchev (2017) estimate
that𝐶irr ∼ (3−6)×10−4 using optical data of 4U 1543−47 (outburst
of 2002).

There is a physical reason of why our irradiation scheme provides
the lower limit on 𝐶irr. The present scheme involves neither addi-
tional heating of the disc by soft-X-rays-heated upper layers of the
photosphere (above 𝜏 = 2/3) nor the increased X-ray flux due to
scattering in even higher and hotter corona (see Mescheryakov et al.
2011).

5 S-CURVES

Meyer & Meyer-Hofmeister (1981) have established that dependen-
cies 𝐹 − Σ0 (S-curves) show the disc instability: the branch of the
S-curve with a negative slope represents solutions to the vertical
structure equations which are viscously unstable, i.e. oscillations
have to develop during characteristic time of order of the viscous
time. Smak (1982b, 1984) has showed that if the parameters of the
disc at some radius lie on the viscous-unstable branch of the S-
curve, then thermal instability also develops at this radius. Note that
since the quasi-stationary discs has an unambiguous relation between
𝐹, ¤𝑀 and 𝑇eff (see Eqs. (13, 15–17)), the S-curve can be drawn also
in coordinates ¤𝑀 − Σ0 and 𝑇eff − Σ0.

An example of an S-curve calculated by our code is shown in
Fig. 10, the top left panel. Arrows shows schematically the direction
of ring evolution when an outburst happens.

According to DIM, an outburst can be described in the following
scenario (Frank et al. 2002; Done et al. 2007; Kato et al. 2008).
Suppose, a cold neutral disc is fueled by gas flowing from a com-
panion star. Presumably, the gas accumulates at some radii because
the viscosity is not high enough to transfer the angular momentum
efficiently when the gas is not hot enough and neutral. Starting from
a state at a lower positive branch, between marks ‘a’ and ‘b’ on the
Fig. 10, if the surface density increases at the particular radius, the
critical value (right turn ‘b’) is eventually approached. During this
relatively slow evolution the hydrogen is gradually more and more
ionized (see the right bottom panel). When the temperature gets a bit
higher and the hydrogen is substantially ionized (at mark ‘b’: more
than∼ 50% of full ionization at the symmetry plane of a disc), further
temperature increase leads to a runaway heating until the free-free
emission can balance the heating (mark ‘e’): the thermal instability
develops.

Heating on the scale of the thermal time puts the disc somewhere
on the upper stable branch (not exactly at the same surface density,
as schematically shown). According to DIM (Hameury et al. 1998;
Hameury 2020), this transition is accompanied by increasing tur-
bulent parameter 𝛼, due to a change in the ionization state (Smak
1984). Actually, the change of the turbulent parameter, assumed in
DIM models, is dictated by the need to produce outbursts of observed
amplitude (see e.g., Hameury et al. 2009). Examples of S-curves cal-
culated with different values of 𝛼 are presented in Figs. 12 and 13.
Since the S-curve in Fig. 10 is plotted for a fixed value of 𝛼, the
arrows just indicate the direction of DIM evolution.

On the higher positive branch the viscous evolution of the disc

goes rapidly due to higher temperature (and likely higher 𝛼) and
the mass evacuates the ring on its way towards the centre. Some
matter comes from the outer radius but, on the whole, the evolution
diminishes mass and density in the disc. Accordingly, the surface
density decreases and, eventually, the ring reaches the left turn ‘e’ –
the critical point beyond which no stable ‘hot’ solution is possible:
the ring transits to neutral ‘cold state’ (again not exactly at the same
surface density as the scheme shows).

Other panels in Fig. 10 show the dependence of the symmetry plane
temperature on surface density, and the opacity and the mean number
of free electrons per nucleon (free 𝑒- ≡ 1/𝜇𝑒) on the temperature at
different depths 𝑧. Ionization of hydrogen in the disc symmetry plane
starts at a temperature of 𝑇𝑐 ≈ 104 K. When free 𝑒- reaches the value
of∼ 0.4, the thermal instability begins. It ends when the disc is almost
completely ionized (free 𝑒- at the central plane is ∼ 0.77).

We have computed several thousand S-curves for 𝛼 from 3 · 10−4

to 0.7, 𝑀 from 1 𝑀⊙ to 20 𝑀⊙ and 𝑟 from 7 · 107 cm to 5 · 1011

cm and obtained the turning points Σ+ and Σ− , 𝑇+
eff and 𝑇−

eff , ¤𝑀+

and ¤𝑀− , denoted below as ‘TP’, which define the upper and lower
stable branches. The chemical composition is assumed to be solar,
and convective energy transport is taken into account. We fit the
resulting TPs as:

𝑓 (𝑀, 𝛼, 𝑟) = 𝐴

(
𝑀

𝑀⊙

)𝛽
𝛼𝛾

(
𝑟

1010 cm

) 𝛿
, (45)

where the parameters 𝐴, 𝛽, 𝛾, 𝛿 and average relative uncertainty of
TPs can be found in Table 1. The average relative uncertainty Δ is
defined as

Δ =

〈
| 𝑓 (𝑀, 𝛼, 𝑟) − TP|

TP

〉
𝑀,𝛼,𝑟

. (46)

We find that these approximations of S-curves are close to the
previous ones (see e. g., Hameury et al. 1998; Lasota et al. 2008;
Hameury 2020). Comparing with results of Lasota et al. (2008), the
average relative difference is 8.3% for𝑇+

eff and 14.5% for𝑇−
eff . There is

a larger average relative difference for the surface density Σ0: 24.5%
and 25.4% for Σ+ and Σ− , respectively. Taking into account that Liu
& Meyer-Hofmeister (1997) have shown that the improved tabular
opacities do not affect much the S-curves, we tend to conclude that
uncertainties inΣ0 are partly related to the slightly different boundary
condition for pressure at the disc surface. Lasota et al. (2008) used the
boundary condition (25), while we use (20) instead. Other possible
source of uncertainty is the EoS tables. Lasota et al. (2008) used tables
from (Fontaine et al. 1977), while we use OPAL EoS tables (Rogers
& Nayfonov 2002).

5.1 Irradiation and S-curves

Figure 11 illustrates the influence of external irradiation on the disc
stability. Considering the S-curves, calculated through scheme (i)
for different irradiation temperatures 𝑇irr, we infer that the unstable
branch shrinks with the increase of 𝑇irr. For 𝑇irr ≳ 12 000 K the
unstable branch disappears, so the strong irradiation stabilizes the
disc. This result is an agreement with previous ones (e.g. Tuchman
et al. 1990; Dubus et al. 1999), but the critical 𝑇irr value (12 000 K)
is larger (the critical 𝑇irr in previous studies ∼ 10 000 K).

The disc calculated with advanced irradiation scheme (ii) and self-
consistent X-ray luminosity (magenta line) loses its stability, when
𝑇irr = 𝑇irr, crit ≈ 7500 K, 𝑇eff ≈ 6600 K and ¤𝑀 ≈ 0.06 ¤𝑀edd. This
critical value 𝑇irr, crit is lower than the one obtained in method (i) and
by (Tuchman et al. 1990; Dubus et al. 1999). Furthermore, it depends
on disc parameters, as we show in section 6, see also Fig. 15.
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Figure 10. Top left: S-curve for 𝑀 = 10 𝑀⊙ , 𝛼 = 0.1, 𝑟 = 1010 cm and tabular opacities with solar chemical composition. The limit cycle is schematically
shown by arrows. Top right: the corresponding dependence of the symmetry plane temperature𝑇𝑐 . Bottom left: the opacity coefficient as a function of temperature
at the symmetry plane of the disc (𝑧 = 0), at the disc surface (𝑧 = 𝑧0) and in between (𝑧 = 3/4 𝑧0). Bottom right: the corresponding dependence of the mean
number of free electrons per nucleon (free 𝑒- ≡ 1/𝜇𝑒) on temperature. The cold disc region, the region in which the instability takes place, and the region of the
hot disc are marked with different style. In the unstable region, the free 𝑒- at the centre changes from 0.4 to 0.77 (the full ionization in the hot disc corresponds
to free 𝑒-∼ 0.85).

𝐴 𝛽 𝛾 𝛿 Δ

Σ+ 8.44 ± 0.01 g cm−2 −0.3674 ± 0.0006 −0.7821 ± 0.0002 1.1105 ± 0.0002 3.3%
Σ− 11.87 ± 0.03 g cm−2 −0.3723 ± 0.0009 −0.8405 ± 0.0003 1.1223 ± 0.0003 5.4%

¤𝑀+ (1.027 ± 0.003) · 1016 g s−1 −0.843 ± 0.001 −0.0193 ± 0.0004 2.6258 ± 0.0003 5.4%
¤𝑀− (5.065 ± 0.016) · 1015 g s−1 −0.833 ± 0.001 0.0066 ± 0.0004 2.6038 ± 0.0004 6.5%

𝑇+
eff 7341 ± 2 K 0.0290 ± 0.0001 −0.00484 ± 0.00004 −0.08426 ± 0.00004 0.7%

𝑇−
eff 6152 ± 4 K 0.0315 ± 0.0002 0.00165 ± 0.00008 −0.08977 ± 0.00007 1.3%

Table 1. Values of the parameters (with standard deviations), which fit the S-curve turning points, where the ’+’ and ’−’ superscripts denote the upper and lower
turning points, respectively. The right column contains the average relative uncertainty Δ of the turning points.

5.2 Influence of chemical composition, 𝜶 parameter and
convection on the shape of S-curves in X-ray transients

Figures 12 and 13 show S-curves for different chemical composition
and 𝛼 parameter. Curves with and without convection are also shown.
The dots mark the regions where convection in the disc dominates
(i.e. the condition for the existence of convection ∇rad > ∇ad is
fulfilled in more than 50% over 𝑧). It is seen that the disc is convective
in the unstable region.

According to Faulkner et al. (1983), convection does not affect the
very existence of instability. Indeed, we also obtain that, when the

convection is ignored in the calculation, there is one unstable branch,
regardless of the chemical composition or 𝛼.

When convection is taken into account, the instability starts at
higher accretion rates. For large 𝛼, regions with convection are
“pulled” towards large Σ, and an almost vertical interval at lower
unstable branch is formed. For small 𝛼, the convective branch splits
into two unstable branches. In this case, the upper unstable branch is
due to a peak in opacity related to the partial ionization of hydrogen.
The lower branch is associated with convection (Cannizzo 1992) and
with the formation of molecular hydrogen (Smak 1982b), see small
peak in opacity (Fig. 1) at 𝑇 ≈ 4000 − 5000 K. This ‘wiggle’ is not
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usually associated with the outburst mechanism since the 𝛼-value is
though to change only when the ionization degree is changing. At
large 𝛼, the lower unstable branch does not appear, since the tem-
perature does not reach such low values, at which the formation of
molecules begins.

On the S-curve for helium disc, the instability is related with
partial ionization of helium, so the corresponding temperatures are
larger than for solar and hydrogen disc. At both large and small 𝛼,
the second unstable branch does not appear, only the main unstable
branch is deformed.

These results for solar discs are consistent with the results in
Cannizzo et al. (1982), where S-curves were investigated taking into
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Figure 13. 𝑇𝑐 − Σ0 dependencies for different chemical composition, 𝛼,
with and without convection. System parameters and notations are the same
as in Fig. 12.
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therefore does not affect the 𝑅hot, are shown in grey.

account convection, which led to the appearance of additional kinks
on the curve.
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6 DISCUSSION

Predictions on the size of the hot stable part of an accretion disc
are important in the context of understanding transient or persistent
nature of X-ray sources, if one confronts the DIM model with obser-
vations. Such comparison relies on an unknown value of irradiation
parameter, which, consequently, can be estimated as a result. For
example, assuming the DIM model, Coriat et al. (2012) have anal-
ysed transient and persistent X-ray sources with neutron stars and
black holes and concluded that irradiation parameter lies in the in-
terval 10−3 − 10−2. This is an order of magnitude higher than the
values obtained by us, see Fig. 9, and indicates that additional means
of X-rays interception exist above the disc photosphere, for exam-
ple, due to additional scattering of X-rays (Suleimanov et al. 2007;
Mescheryakov et al. 2011). For supersoft X-ray sources, Suleimanov
et al. (2003) suggest that relatively dense blobs immersed in a corona
enable multiple X-ray or far-UV scattering which leads to observed
large optical and UV fluxes. The same mechanism might increase
the irradiation parameter 𝐶irr.

Having a robust lower limit on 𝐶irr (Fig. 9), one can deduce a
universal lower limit on the hot disc size in the framework of an
irradiation-controlled disc model, see Fig. 14, where the minimum
radius of the hot disc is shown versus the central accretion rate and
𝐿𝑥 = 𝜂 ¤𝑀𝑐2. Two sets of curves are shown, for a neutron star, and
a black hole of 10 𝑀⊙ . Grey parts of the curves denote the regime
when irradiation with 𝐶irr from Fig. 9 does not control the hot disc
radius: the stability of the disc is ensured by internal viscous heat.
Smaller hot discs are not possible.

The size of the hot disc is also important for an outburst dynamics,
since it affects directly the characteristic time of an outburst. The
decay time of an outburst, known from observations, corresponds to
the viscous time-scale which grows with size of a disc and decreases
with increasing 𝛼-parameter (it also depends on the accretor’s mass).
Thus, a lower-bound estimate on 𝛼-parameter follows from the theo-
retical minimum of the hot disc radius. If a burst decay is fast, a large
𝛼-value could result, which may indicate other mechanisms of disc
evolution at work, for example, winds from discs (Tetarenko et al.
2018; Avakyan et al. 2022, in press).

It was shown before that there is a minimum irradiation tempera-
ture that ensures the disc stability (Tuchman et al. 1990; Dubus et al.
1999), estimated as (9 − 10) × 103 K. While, as mentioned above,
the actual 𝐶irr can be higher comparing to the values we find, the
critical disc irradiation temperature, which switches on/off ionization
instability, can be reliably obtained, since it depends not on 𝐶irr but
on how much the irradiation flux exceeds the internal viscous one.

In Fig. 15 we show dependence of the critical irradiation temper-
ature on the ratio of the irradiation to viscous heat. For this we have
calculated numerous models of irradiated disc with scheme (ii), with
arbitrary values of the central flux (to cover the scenarios of enhanced
values of 𝐶irr).

For strongly illuminated discs, when 𝑄irr > 𝑄vis, irradiation con-
trols the disc size, and thus, its evolution (e.g. King & Ritter 1998).
This occurs for big discs and sufficiently high𝐶irr, suitably illustrated
by a formula from Suleimanov et al. (2007):

𝑄irr
𝑄vis

=
4
3
𝜂 𝐶irr

𝑟

𝑟g
. (47)

Thus, at radii 𝑟 > 3/4 𝑟g/(𝜂 𝐶irr) the stability condition is 𝑇irr >

𝑇irr,crit, see Fig. 15.
In the opposite case, if 𝑄irr < 𝑄vis, irradiation does not affect the

disc structure and the disc stability: unstable state is triggered at the
radius where the effective temperature lowers to 𝑇+

eff . Grey intervals
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Figure 15. Critical value of irradiation temperature 𝑇irr, crit, above which
the disc is stable, as function of the ratio between irradiation and viscous
heat 𝑄irr/𝑄vis for two central source masses (different colors) and three 𝛼-
parameters (different styles). Irradiation is taken into account by method (ii).
Note that weak irradiation does not affect the disc around 10 𝑀⊙ , so there is
no 𝑇irr, crit in this case.

in Fig. 14 show the hot disc size just for this case. This can happen
in the case of relatively small discs or small 𝐶irr.

7 SUMMARY

Calculation of the vertical structure of accretion discs is necessary to
understand stability properties of accretion discs and to reconstruct
the light curves of X-ray transients. Large range of physical condi-
tions over a disc or various chemical composition in different objects
require a numerical approach of calculating disc parameters, which
is fast and flexible at the same time. Our first open numerical code
for the model of the vertical structure with different types of equa-
tion of state and opacity laws, including tabular values, takes into
account both radiative and convective energy transport and external
X-ray irradiation. It is now possible to investigate the behavior of the
ionization degree in the disc, in the zones of thermal instability, in
particular

Using the results of numerical models, we obtain analytical for-
mulas for radial dependencies of disc parameters applicable for the
OPAL power-law approximation of opacity coefficient. They can be
applied in the outermost parts of an ionized hot accretion disc around
a stellar-mass compact object. At the same time, we suggest to cal-
culate numerically the radial disc structure, since there is no simple
criteria for the ‘OPAL’ zone.

A classical division of the disc into zones A, B and C is examined
using results of the code. While analytic estimates of the boundaries
between the zones A, B and C agree reasonably well with our results,
the estimates for zone B∗ is of less accuracy.

We analyse stability criteria for our disc model. For this, ana-
lytical approximations for the S-curve turning points are obtained.
Comparing to previous results, variations in Σ0 turning points are
explained by slightly different boundary condition for pressure at the
disc surface and different EoS tables.

For a case with external X-ray irradiation, stabilization of the disc’s
vertical structure at 𝑇irr > 104 K, previously found by Tuchman
et al. (1990); Dubus et al. (1999), occurs in our models as well.
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Using the advanced scheme of calculation of irradiation disc vertical
structure, we refine the critical value of 𝑇irr and find that it changes
in range 6900 − 9000 K. We propose its unique dependence on the
ratio between irradiation and viscous heat (Fig.15). In addition, we
calculate values of self-irradiation parameter𝐶irr in our model. They
represent lower estimates of the actual 𝐶irr in X-ray transients, since
additional heating and/or scattering from the hot layers above the
disc photosphere should enhance the heating effect.
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DATA AVAILABILITY

The pre-calculated S-curve turning points (Σ+ and Σ− , 𝑇+
eff and 𝑇−

eff ,
¤𝑀+ and ¤𝑀−) are available 4 for 20 linearly scaled values of 𝑀 from

1 𝑀⊙ to 20 𝑀⊙ , 20 logarithmically scaled values of 𝛼 from 3 · 10−4

to 0.7, 20 logarithmically scaled values of 𝑟 from 7 ·107 cm to 5 ·1011

cm.
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APPENDIX A: CONVECTION

If convection is present, we use mixing-length theory to obtain the
temperature gradient ∇conv (see Paczyński 1969; Kippenhahn et al.
2012). It is assumed that convective elements travel characteristic
path length called ’mixing length’, after which they dissolve.

According to this theory the convective gradient ∇conv:

∇conv = ∇ad + (∇rad − ∇ad)𝑌 (𝑌 +𝑉), (A1)

where 𝑌 is the solution of cubic equation

9
4

𝜏2
ml

3 + 𝜏2
ml
𝑌3 +𝑉𝑌2 +𝑉2𝑌 −𝑉 = 0. (A2)

Here 𝜏ml = 𝜘R𝜌𝐻ml is the optical depth of convective vortex,
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𝐻ml = 𝛼ml𝐻𝑝 is the mixing length, 𝐻𝑝 = 𝑃/(𝜌𝜔2
K𝑧 + 𝜔K

√
𝑃𝜌) is

the pressure scale height, coefficient 𝛼ml is a free parameter, which
usually lies in the interval [1, 2] for the solar chemical abundance.
We use 𝛼ml = 1.5, following Hameury et al. (1998). Coefficient 𝑉 is
defined as

𝑉−2 ≡ −
(

3 + 𝜏2
ml

3𝜏ml

)2
𝐶2
𝑃
𝐻2

ml𝜌
2𝜔2

K𝑧

512𝜎2
SB𝑇

6𝐻𝑃

(∇rad − ∇ad)
(
𝜕 ln 𝜌

𝜕 ln𝑇

)
𝑃

, (A3)

where 𝐶𝑝 is the specific heat at constant pressure.
Values of ∇ad, 𝐶𝑝 ,

(
𝜕 ln 𝜌
𝜕 ln𝑇

)
𝑃

are obtained from the eos module
of the MESA code (Paxton et al. 2011). Notice that in presence of
convection ∇rad > ∇conv > ∇ad.

APPENDIX B: IRRADIATION FORMULAS

In this section we write the formulas that describe the irradiation
terms in the advanced irradiation scheme (ii). Derivation of these
formulas can be found in Mescheryakov et al. (2011).

Assume that the disc is irradiated by external X-rays with spectral
flux 𝐹𝜈

𝑋
(𝜈). The angle between the direction of incidence of the X-ray

photons and the inward normal to the disc layer surface is 𝜃0, while
the cosine of this angle we denote as 𝜁0 = cos 𝜃0.

The X-ray photons are scattered, absorbed and thermalized in the
disc and can serve as additional heating source. The scattering in the
medium is assumed to be coherent (Thomson scattering, 𝜎 = 𝜎T),
and the opacity coefficient 𝜘𝜈 for X-rays is determined by photoab-
sorption for a cold gas (Morrison & McCammon 1983).

The mean intensity 𝐽𝜈tot and flux 𝐻𝜈
tot of both primary and scattered

X-ray photons in the disc at some depth with corresponding 𝜏𝜈 at
frequency 𝜈 can be found by solving the transfer equation in plane-
parallel approximation:

𝐽𝜈tot (𝜏𝜈 , 𝜈) =
𝐹𝜈
𝑋

4𝜋

{
𝐶𝜈

[
𝑒−𝑘𝜏

𝜈

+ 𝑒−𝑘 (𝜏
𝜈
0 −𝜏

𝜈 )
]
+

+ (1 − 𝐷𝜈)
[
𝑒−𝜏

𝜈/𝜁0 + 𝑒−(𝜏𝜈
0 −𝜏

𝜈 )/𝜁0
] }

, (B1)

𝐻𝜈
tot (𝜏𝜈 , 𝜈) = 𝐹𝜈

𝑋

{
𝑘 𝐶𝜈

3

[
𝑒−𝑘𝜏

𝜈

− 𝑒−𝑘 (𝜏
𝜈
0 −𝜏

𝜈 )
]
+

+
(
𝜁0 − 𝐷𝜈

3 𝜁0

) [
𝑒−𝜏

𝜈/𝜁0 − 𝑒−(𝜏𝜈
0 −𝜏

𝜈 )/𝜁0
] }

, (B2)

where 𝜏𝜈0 is the total optical depth of the disc in the vertical direction
for X-ray radiation at frequency 𝜈, 𝜏𝜈 = Σ(𝜎 + 𝜘𝜈)/2, 𝜘𝜈 is the ab-
sorption coefficient for X-ray photons, 𝜎 is the scattering coefficient,
𝑘 =

√︁
3(1 − 𝜆) and 𝜆 = 𝜎/(𝜎 + 𝜘𝜈) is the single-scattering albedo.

Formulas for𝐶𝜈 and 𝐷𝜈 can be found in Mescheryakov et al. (2011).
The additional heating of the disc by X-ray photons of a given

frequency 𝜀𝜈 is proportional to their mean intensity:

𝜀𝜈 = 4𝜋𝜌𝜘𝜈𝐽𝜈tot. (B3)

The local energy release in the disc through its irradiation by X-ray
photons is

𝜀 =

∫ ∞

0
𝜀𝜈 d𝜈 = 4𝜋𝜌

∫ ∞

0
𝜘𝜈𝐽𝜈tot d𝜈. (B4)

The flux 𝐻𝜈
tot is calculated for all solid angles and it takes into

account photons coming into the disc from outside minus those es-
caping the disc without absorption. Thus, the total heating of the disc

from the disc surface to the central plane through its irradiation is

𝑄irr (𝑧0) =
∫ ∞

0
𝐻𝜈

tot (𝜏𝜈ph, 𝜈) d𝜈, (B5)

where 𝜏𝜈ph = (𝜎+𝜘𝜈)Σph is the optical depth of the photosphere layers
above the disc surface, Σph is the corresponding column density. To
find it we can write (cf. (18-19))

dΣph = −𝜌d𝑧 =
d𝜏
𝜘R

(B6)

and take the value, evaluated at 𝑧0, which corresponds to 𝜏 = 2/3:

Σph =
2
3

1
𝜘R (𝑃(𝑧0), 𝑇 (𝑧0))

=
𝑃′

𝜔2
K𝑧0

. (B7)

It should be noted that photospheric column density Σph is not
included into the surface density Σ0 of the disc when we calculate
S-curves.

The irradiation temperature and irradiation parameter can be found
from the irradiation flux:

𝑄irr (𝑧0) = 𝜎SB𝑇
4
irr = 𝐶irr

𝐿X
4𝜋𝑟2 , (B8)

where 𝐿X is the X-ray luminosity of the central source.
Notice that 𝜀 is the function ofΣ, that is, the function of the vertical

coordinate 𝑧. The total X-ray optical depth is 𝜏𝜈0 = (𝜎 + 𝜘𝜈) (Σ0 +
2 · Σph). Therefore, irradiation terms 𝜀 and 𝑄irr (as well as 𝑇irr and
𝐶irr) contain the surface density Σ0 as an additional free parameter,
so the system of equations for the disc vertical structure in irradiation
scheme (ii) have two free parameters: 𝑧0 and Σ0.

Using (B2), (B5), (B8) and (31), we can obtain exact formula:

𝐶irr =

∫ ∞
0 𝐹𝜈

𝑋
{...} d𝜈∫ ∞

0 𝐹𝜈
𝑋

d𝜈
=

∫ ∞

0
𝑆(𝜈) {...} d𝜈, (B9)

where expression in {...} is the one from the (B2). For a very optically
thick disc with 𝜏𝜈0 ≫ 1, exponential terms with 𝜏𝜈0 tend to zero, and
it can be shown that 𝐶irr ∝ 𝜁0. If additionally we assume Σph = 0,
then 𝜏𝜈ph = 0, and we obtain

𝐶irr =

(
1 −

∫ ∞

0
𝑆(𝜈) 3𝜆

(1 + 𝑘𝜁0) (3 + 2𝑘) d𝜈
)
𝜁0, (B10)

or, for single-frequency incoming X-ray photons, 𝐶irr = (1 − 𝐴)𝜁0,
where the frequency-dependent albedo 𝐴 is defined following Mesch-
eryakov et al. (2011).

Moreover, one could introduce a notion of a spectrum-integrated
albedo:

𝐴∗ =
∫ ∞

0
𝑆(𝜈) 3𝜆

(1 + 𝑘𝜁0) (3 + 2𝑘) d𝜈. (B11)

APPENDIX C: VERTICAL STRUCTURE OF IRRADIATED
DISCS

Figures C1 and C2 show examples of the vertical structure for
irradiated disc together with un-irradiated case at two radii 𝑟 =

2 · 1010 and 7 · 1010 cm. Other system parameters are the same as
in Fig. 6: 𝑀 = 1.4 𝑀⊙ , 𝛼 = 0.1, 𝐿X = 𝜂 ¤𝑀𝑐2, 𝜂 = 0.1, ¤𝑀 =

1018 g s−1 ≈ 0.5 ¤𝑀edd, the chemical composition is solar. Shown are
distributions of mass coordinate Σ, temperature 𝑇 , flux 𝑄, tempera-
ture gradient ∇ and adiabatic temperature gradient ∇ad. Irradiation
is taken into account through two methods (i) and (ii), see Sect. 2.4.
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Ṁ = 0.1 Ṁedd
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Figure B1. Radial profile of 𝐶irr, system parameters and notations are the
same as in Fig. 7. It is clearly seen, that this value almost does not change
over radius (it changes by a factor of ∼1.5 by two orders of magnitude along
the radius).

Irradiation temperature 𝑇irr is obtained in advanced method (ii) and
serves as input parameter in method (i).

It is clearly seen that at 𝑟 = 2 · 1010 cm the external irradia-
tion almost does not affects the disc structure, although irradiation
temperature 𝑇irr = 17300 K > 14840 K = 𝑇vis. This agrees with a re-
quirement for the disc inner structure to be dominated by irradiation
(Lyutyi & Sunyaev 1976; Dubus et al. 1999):

𝑄irr
𝑄vis

=
𝑇4

irr
𝑇4

vis
> 𝜏0. (C1)

For model in Fig. C1, 𝑄irr/𝑄vis ≈ 1.85 and total optical depth
𝜏0 ≈ 4000, so at 𝑟 = 2 · 1010 cm the irradiation does not penetrate
deep into the disc and heats only near-surface layers, which is seen on
the flux dependency in Fig. C1. Energy in disc is transferred mostly
by radiation (see the upper right panel).

On the contrary, at 𝑟 = 7 · 1010 cm un-irradiated disc is unstable
and fully convective, but irradiation stabilizes the disc structure and
makes the disc thicker. In this case 𝑇irr = 9700 K > 5800 K = 𝑇vis.
The convection disappears in the irradiation-stabilized disc.

In that case the irradiation affects the whole disc in the vertical
direction, which is clearly seen on the temperature dependency in
Fig. C2. This is in disagreement with the criterion (C1), where 𝜏0 >

103, and 𝑄irr/𝑄vis ≈ 8 for disc region in Fig. C1. The reason is that
relation (C1) is derived in the diffusion approximation of radiative
transfer, which breaks in the presence of strong convective energy
transport.

APPENDIX D: BRIEF CODE DESCRIPTION

Main input parameters of the Python 3 code, that solves equations
of vertical structure, are: mass of central object 𝑀 , radius 𝑟, the
viscous torque 𝐹, type of opacity (Kramers, BellLin or MESA) and
EoS (ideal gas with a given molecular weight 𝜇 or MESA with user-
defined chemical composition), turbulence parameter 𝛼. Also code
contains several functions, that calculate S-curves and radial profile
of stationary disc.

If irradiation takes place, there are two cases:
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Figure C1. Vertical structure of irradiated disc together with un-irradiated
case for 𝑀 = 1.4 𝑀⊙ , 𝛼 = 0.1, 𝑟 = 2 · 1010 cm and tabular opacity for
accretion rates ¤𝑀 = 1018 g s−1. Shown are mass coordinate Σ, temperature
𝑇 , temperature gradient ∇, adiabatic gradient ∇ad, and energy flux 𝑄. Ir-
radiation is taken into account through two approaches (i) and (ii), where
𝐿X = 𝜂 ¤𝑀𝑐2. Irradiation temperature 𝑇irr = 17300 K is obtained from cal-
culations by method (ii) and serves as input parameter in method (i). The
corresponding 𝐶irr = 2.84 · 10−4.
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Figure C2. Vertical structure of irradiated disc together with un-irradiated
case. System parameters and notations are the same as in Fig. C1, but the
radius 𝑟 = 7 · 1010 cm. The obtained 𝑇irr = 9700 K, and corresponding
𝐶irr = 3.49 · 10−4.
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(i) If irradiation is described in terms of 𝑇irr or 𝐶irr, then the code
has one additional input parameter – irradiation temperature 𝑇irr or
irradiation constant 𝐶irr.

(ii) If irradiation is described through the advanced scheme, the
external irradiation flux is given by Eq. (31), and the code has a
few more input parameters: the X-ray luminosity of central source
𝐿X; the spectrum 𝑆(𝜈) in form of table values (normalized over the
entire frequency range to unity) or as a Python function; cosine of
the incident angle cos 𝜃0 as a fixed value or as a fixed value in the
brackets in function (see also Eq. (42)):

cos 𝜃0 =
𝑧0
𝑟

(
d ln 𝑧0
d ln 𝑟

− 1
)
. (D1)

Note that the calculated vertical structure of a disc ring without
irradiation differs to minor extent when we use alternative boundary
conditions on pressure: (20) and (25). The first boundary condition
is implemented as described in section 2.1. The second variant can
be engaged in irradiated-disc scheme (ii) with 𝐶irr = 0 or 𝑇irr = 0.

Code is open-source and available with detailed documentation
on GitHub5. Scipy (Jones et al. 2019), Numpy (Walt et al. 2011),
Matplotlib (Hunter 2007) and Astropy (Astropy Collaboration
et al. 2013, 2018) packages are used in the code.

APPENDIX E: CALCULATION DETAILS

Since the code integrates a system of differential equations, it is
convenient to use dimensionless quantities by the order of unity. We
achieve this by normalizing 𝑃,𝑄,𝑇, Σ on their characteristic values
𝑃0, 𝑄0, 𝑇0, Σ00, and replacing 𝑧 on 𝑧 = 1 − 𝑧/𝑧0. The obtained
dimensionless system is as follows:

d𝑃̂
d𝑧

=
𝑧2

0
𝑃0

𝜔2
K 𝜌(1 − 𝑧) 𝑃̂(0) = 𝑃′/𝑃0,

dΣ̂
d𝑧

= 2
𝑧0
Σ00

𝜌, Σ̂(0) = 0,

d𝑇
d𝑧

= ∇𝑇

𝑃̂

d𝑃̂
d𝑧

, 𝑇 (0) = 𝑇eff/𝑇0,

d𝑄̂
d𝑧

= −3
2
𝑧0𝑃0
𝑄0

𝜔K𝛼𝑃̂ 𝑄̂(0) = 1, 𝑄̂(1) = 0,

(E1)

where 𝑃̂, Σ̂, 𝑇, 𝑄̂ are dimensionless functions of 𝑧. Note that ∇ is
the temperature gradient (5), and the surface density of disc Σ0 =

Σ̂(1) · Σ00.
Characteristic values of pressure, temperature and mass coordinate

are as follows:

𝑇0 =
𝜇

R𝜔2
K𝑧

2
0, 𝑃0 =

4
3

𝑄0
𝛼𝑧0𝜔K

, Σ00 =
28
3

𝑄0
𝛼𝑧2

0𝜔
3
K
. (E2)

If external irradiation is present, the boundary condition for tem-
perature 𝑇 changes:

𝑇 (0) = 1
𝑇0

(
𝑇4

vis + 𝑇4
irr

)1/4
. (E3)

If external irradiation is dealt with using the advanced scheme (ii),
following equations and boundary conditions change their view:

d𝑄̂
d𝑧

= −3
2
𝑧0𝑃0
𝑄0

𝜔K𝛼𝑃̂ − 𝜀
𝑧0
𝑄0

𝑄̂(0) = 1 + 𝑄irr
𝑄0

,

Σ̂(1) = Σ0
Σ00

.

(E4)

5 https://github.com/AndreyTavleev/DiscVerSt

Description of 𝜀, 𝑄irr and𝑇irr terms in case of advanced irradiation
scheme can be found in Appendix B.

The free parameter 𝑧0 is found using so-called shooting method.
Code integrates system (E1) with initial approximation of free pa-
rameter 𝑧0, then changes its value and integrates the system in order
to fulfill the additional condition for flux 𝑄̂(1) at the symmetry plane
of the disc. In the presence of external irradiation in scheme (i),
the only change is the boundary condition for temperature (E3). If
irradiation is calculated through the advanced scheme, code inte-
grates system (E1) changed according to (E3) and (E4) and solve
two-parameter (𝑧0, Σ0) optimization problem in order to fulfill both
𝑄̂(1) and Σ̂(1) additional boundary conditions. Namely, code min-
imises function:
𝑓 (𝑧0) = 𝑄̂(1) without irradiation;

𝑓 (𝑧0, Σ0) = 𝑄̂(1)2 +
(
Σ̂ (1)Σ00

Σ0
− 1

)2
with irradiation.

(E5)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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