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Abstract. A brief review is given on the topic of viscously-evolving
accretion discs around compact objects that covers the development of
analytical studies and our numerical model freddi allowing comparison
of theory with observations.
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1 Introduction

The most suitable sources to compare observations with predictions of the theory
of viscously evolving accretion discs are X-ray novae with black holes (BHs),
when emission of the disk dominates during flares, if a source is in a ‘soft’ state.
An outburst of an X-ray novae typically lasts from a couple of tens of days to few
months and can have quite different shapes. Among all the variety of outburst
profiles, there are so-called FRED flares (’fast-rise exponential-decay’). They are
of particular interest for theoretical study.

Although there is still a lot to be learned about spectra formation and vari-
ability, and mechanisms causing peculiarities of light curves, the general prop-
erties of FRED outbursts are reliably explained in the theory of a viscous disk.
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2 Theoretical advance

The equation of the viscous disc evolution that governs its long-term dynam-
ics (see, e.g., Lyubarskij & Shakura 1987)
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is derived from equations of conservation of mass and angular momentum (see
also Lynden-Bell & Pringle 1974, LP74). Since the suitable geometry for the
disc is a cylindrical one, all values are integrated over the disc height: the sur-
face density Σ and the viscous torque F = 2π r2Wrϕ, where Wrϕ = 3

2 ωKνtΣ
is the integrated component of the viscous stress tensor. Note that the radial
coordinate is substituted by the specific angular momentum h =

√
GM?r. This

change of variable allows one to deal with a simplified form of the equation as
well as to pose boundary conditions in the most suitable way.

Turbulent motions, believed to be generated by the MHD instabilities, sus-
tain the viscosity of astrophysical accretion discs. The kinematic coefficient of
viscosity νt is a product of the characteristic length and velocity of turbulent
motions and can be related to the α-parameter of the standard model (Shakura
& Sunyaev 1973; Shakura et al. 2018).

A list of analytic solutions of Eq. (1) is given in Fig. 1. There are two groups
of solutions (see also Fig. 2): when the kinematic coefficient of viscosity νt de-
pends only on the radius (the left column) and when it also depends on the
hydrodynamic parameters (the right column; this case is of a special impor-
tance since α-discs falls into this category). When Eq. (1) is a linear differential
equation, Green functions (GF) is an effective method to solve it. LP74 in their
foundational work found GF for a disc with a zero inner radius and infinite outer
radius. Later, Tanaka (2011) and Nixon & Pringle (2020) found GF when the
inner boundary is at the finite radius. GF for a disc with finite outer radius are
given by Lipunova (2015) and Mushtukov et al. (2019). The latter have been
used to build a power density spectra of X-ray variability generated by mass ac-
cretion fluctuations over the disc around a magnetized neutron star (Mushtukov
et al. 2019).

King & Ritter (1998) (KR98) proposed a model with constant νt to explain
the exponential evolution of X-ray nova FREDs; Lipunova & Shakura (2000)
(LS00) showed that in an α-disc the accretion rate evolves not exponentially
but as a power-law, although it is observed in X-rays to be very close to expo-
nential. Figure 2 compares the solutions of the linear and non-linear Eq. (1) with
similar absolute values of νt. It is evident that during few viscous characteristic
(exponential) times these solutions are very close.
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Fig. 1. Analytic solutions for freely expanding (top) and radially confined (bottom)
discs.
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Fig. 2. Analytic solutions for discs with constant νt (brown line) and α-discs (green
line). In interval A, discs are freely-expanding over radius. In a binary, there is a stage
when a disc ’feels’ its outer boundary: interval B. Curves in interval C depicts accretion
rate evolution when the hot part of a disc shrinks.

3 Observations vs. theory

Analysing observed light curves of X-ray novae, one can in principle infer the
value of the α-parameter (Smak 1999; Lipunova & Shakura 2002; Suleimanov
et al. 2008; Lipunova & Malanchev 2017; Tetarenko et al. 2018). It turns out that
self-irradiation has impact not only on the observed optical flux but also on the
course of the evolution. Thus, a combined analysis of observations in X-ray and
optical is necessary to build a physically-consistent model of an accretion disc.
To determine reliably α-parameter, the binary parameters (masses, inclination)
are need to be known quite accurately.

Furthermore, a spectral analysis in X-ray band is desirable, since we need
to separate the disc flux from other spectral contributions to derive the central
accretion rate variation in order to compare it with a model. If non-thermal
components in spectra are bright and evolving, jets are contributing, the analysis
becomes very involved.

It must be noted that analytic solutions are not applicable to discs with
non-uniform type of viscosity. For example, if a disc is large, the matter in its
outer part is not ionised and quite ‘cold’ (temperature . (1 − 3) 104 K), and
the viscous time is considerably larger there. The boundary, or transition zone,
between ’hot’ and ’cold’ part of the disc moves during an outburst.
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To numerically model the disc evolution and to take into account described
components of the model, we have developed an open code freddi (Malanchev
& Lipunova 2016). Its original version dealt with accretion discs around black
holes (Lipunova & Malanchev 2017). Recently, accretion discs around neutron
stars are incorporated in freddi and applied to an outburst of Aql X-1, a LMXB
with a NS (Lipunova et al. 2021). The code allows one to include a thermal wind
from its surface (Avakyan et al., in press). It calculates the evolution of the disc
radial structure and light curves in user-specified bands. Optical flux can be
calculated taking into account irradiation of the companion star.
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