

Спектральная эволюция термоядерных вспышек рентгеновских барстеров

Валерий Сулейманов

Universität Tübingen, Germany Казанский (Приволжский) Федеральный Университет Институт Космических Исследований

Представленные результаты получены совместно с

J. Poutanen, M. Ревнивцев, K. Werner, J. Kajava, J. Nättilä, M.C. Miller, A. Steiner, C. Мольков, А. Лутовинов, Zh. Li, T, Salmi, M. Falanga, R.Xu

Государственный Астрономический Институт им. Штернберга 16 Ноября, 2021

ПЛАН

- 1. Мотивация массы и радиусы нейтронных звезд и уравнение состояния вещества в их ядрах
- 2. Барстеры нейтронные звезды в LMXBs с термоядерными вспышками на поверхности Формирование спектров барстеров – роль комптоновского рассеяния
- 3. Спектральная эволюция вспышки как основа для определения масс и радиусов нейтронных звезд. Direct cooling tail method. Результаты.
- 4. Химический состав атмосфер барстеров во время вспышки. Вынос продуктов термоядерного горения в фотосферу.
- 5. Нагрев атмосфер барстеров аккрецией на поздних стадиях вспышек.
- 6. Влияние быстрого вращения нейтронных звезд.

Мотивация: Радиусы Нейтронных Звезд

Внутреннее строение нейтронных звезд

Фундаментальная проблема - свойства холодного свехплотного вещества во внутреннем ядре нейтронных звезд, ака уравнение состояния.

Рисунок Д.Г. Яковлева

Связь между уравнением состояния (EOS) $\Gamma = \Gamma(\varrho)$ и параметрами нейтронных звезд

Credit: A. Watts et al. 2018

Ограничение на уравнение состояния (EOS) из наблюдений Массы и радиусы нейтронных звезд

Ограничения из события GW170817 и миллисекундных пульсаров

Барстеры и формирование спектров их излучения

Вспыхивающие в рентгене нейтронные звезды: Барстеры

Terzan 2

X-ray burst in Low Mass X-ray Binary (artist veiw)

BURSTS FROM 4U/MXB 1820-30

10

Вспыхивающие в рентгене нейтронные звезды: Барстеры

- Маломассивные рентгеновские системы (LMXBs) с термоядерными вспышками на поверхности нейтронных звезд
- Светимость особо мощных вспышек достигает предела Эддингтона (photospheric radius expansion (PRE) bursts)
- Спектры во время вспышек хорошо аппроксимируются функцией Планка

Идеальные источники для измерения масс и радиусов нейтронных звезд

Спектр барстера во время вспышки описывается функцией Планка

Suleimanov et al. 2011

Действительно ли спектр является спектром абсолютно черного тела?

Эффективная температура $T_{eff} = \int_0^\infty F_E dE$ Цветовая температура Т_С - Из формы спектра в кокой-либо спектральной полосе Wavelength [cm] 10 0.1 10⁻¹⁴ $B_{\nu}(\nu,T) = \frac{2\pi\nu^2}{c^2} \frac{h\nu}{e^{h\nu/kT} - 1}$ 10⁻¹⁵ Brightness B_{γ} [erg cm⁻² sec ⁻¹ δr^{-1} Hz⁻¹] $T = T_{eff} = T_C$ 10⁻¹⁶ CMB 10⁻¹⁷ FIRAS COBE satellite DMR COBE satellite LBL - Italy White Mtn & South Pole ground & balloon Princeton COBRA sounding rocket 10⁻¹⁸ Cyanogen optica 2.726 K blackbody 10⁻¹⁹ 10 100

Frequency [GHz]

Пример: спектры горячих звезд

Frequency and Photon energy

Плоскопараллельная модель оболочки с термоядерным горением

Непрозрачность

Коэффициент непрозрачности - величина обратная длине свободного пути фотона, выраженной через колонковую плотность

$$\kappa = m_{fp}^{-1}$$
 $[\kappa] = cm^2 g^{-1}$ $\tau \approx \kappa m$

Непрозрачность: Два физически различных процесса

Электронное рассеяние - фотон только меняет направление (Thomson, coherent)

$$\sigma_e = \sigma_T \frac{N_e}{\rho} \approx 0.2(1 + X) \ cm^2 \ g^{-1}$$
 X is hydrogen mass fraction

Комптоновское рассеяние – энергия и импульса фотона изменяются

$$\sigma_e = \sigma_e(E,T) \ cm^2 \ g^{-1}$$

Истинная непрозрачность – результат взаимодействия двух частиц (иона и электрона)

Фотон исчезает (или рождается)

$$k_{ff} = \sigma_E \frac{N_e N^+}{\rho} \sim E^{-3} \rho T^{-1/2} cm^2 g^{-1}$$

free-free opacity

Формирование спектра на разных энергиях фотона

Коэффициент непрозрачности - величина обратная длине свободного пути фотона, выраженной через колонковую плотность

Фактор дилюции w

$$F_E \approx w B_E (T_c = f_c T_{eff})$$

$$T_c > T_{eff}, \quad w \approx f_c^{-4} < 1, \quad f_c > 1$$

Цветовая поправка

$$F_E^{obs} \approx K_{BB}B_E(T_c) =$$

$$wB_E(T_c) \frac{R^2(1+z)^2}{D^2}$$

$$K_{BB} = \frac{R_{BB}^2}{D^2} \qquad w\sim 0.1$$

$$R_{BB} \approx \sqrt{w} R (1+z)$$

19

Атмосфера

Тонкая плазменная оболочка между источником энергии и открытом космосом. Энергия переносится сквозь оболочку и излучается в открытое пространство.

Модель атмосферы

Численная модель, результат самосогласованного решения системы уравнений, описывающих основные физические законы и процессы:

- сохранение массы
- сохранение импульса
- сохранение энергии
- перенос энергии
- уравнение состояния плазмы

Входные параметры модели атмосферы

Ускорение свободного падения на поверхности

$$g = \frac{GM}{R^2} (1+z)$$
 1+ z = $\left(1 - \frac{2GM}{Rc^2}\right)^{-1/2}$ Гравитационное красное смен

Гравитационное красное смещение

Болометрический поток $F = \sigma_{SB} T_{eff}^4$

Эффективная температура *T_{eff}*

или

Относительная светимость $\ell = L/L_{Edd}$

Химический состав

Accretion – composition of the accreted matter

Low accretion – gravitational separation, the lightest element domination

Powerful X-ray bursts – burning ash?

Основные уравнения

Спектры атмосфер горячих нейтронных звезд Определяющая роль комптоновского рассеяния

Сетка моделей атмосфер горячих нейтронных звезд. Сравнение моделей с точной релятивистской функцией перераспределения и моделей с использованием оператора Компанейца.

 $\ell = \frac{L}{L_{Edd}}$ $L_{Edd} = \frac{cGM(1+z)}{0.2(1+X)}$ Возможно существование формально сверх-Эддингтоновских моделей

Теоретические зависимости

Рассчитаны с использованием моделей атмосфер горячих нейтронных звезд

- 4 chemical compositions: H, He, solar H/He with Z = 1 and 0.01 Z_{sun}
- 9 surface gravities: log g from 13.7 to 14.9, with the step 0.15
- **28** relative luminosities $I = L / L_{edd}$ from 0.001 to 1.1 (super-Eddington luminosities for Thomson cross-section)

Suleimanov et al. 2017

Почему спектры становятся относительно жестче при высоких светимостях?

$$P_g \approx m(g - g_{rad}) \sim \rho T$$
 $L \approx L_{Edd}$
 $L \rightarrow L_{Edd}, \Rightarrow g_{rad} \rightarrow g$
 $\rho \rightarrow 0, \Rightarrow k_{ff} \rightarrow 0$
Следовательно, мы видим относительно
более глубокие и горячие слои в
атмосферах высокой светимости.
 $L \ll L_{Edd}$

3. Direct cooling tail method

X-ray observatory Rossi X-ray Timing Explorer (RXTE) 1996-2012

Proportional Counter Array (PCA), 3-20 keV, 6500 cm2 . High time resolution, 1 μ s. No images – collimator with about 1 degree field of view.

Два спектральных состояния LMXBs между вспышками

Термоядерная вспышка в LMXB SAX J1810.8-2609 Direct cooling tail method

For every pair M and R we can obtain the theoretical curve $L/L_{Edd} - w$ (interpolation) and find the best fit for the observed curve $F_{BB} - K$. The fitting parameters $F_{Edd,\infty}$ and Ω

$$F_{BB} = \frac{L}{L_{Edd}} \frac{L_{Edd} (1+z)^{-2}}{4\pi D^2} \qquad K_{BB} = w \left(\frac{R^2 (1+z)^2}{D^2}\right)$$

depend on the distance to the source **D** only.

Time (sec)

Термоядерная вспышка в LMXB SAX J1810.8-2609 Direct cooling tail method. Результат – карта χ^2 .

Результаты для еще двух систем

Nättilä et al. 2016

 Химический состав атмосфер барстеров Ультракомпактная система 4U 1820-30 Гелиевый белый карлик как донор?

35

Результаты для ультракомпактной системы 4U 1820-30

Porb = 11.4 min

Еще одна система с аккрецией гелия? Случай 4U 1702-429

37

Еще одна система с аккрецией гелия? Случай 4U 1702-429Метод прямого фитирования спектровNättilä et al. 2017

24 observed spectra were simultaneously fitted by model spectra of hot NS

Атмосферы могут быть обогащены тяжелыми элементами (продуктами термоядерного горения) во время фазы мощного сверх-Эддингтоновского ветра

Finnish heavy metal

Finnish heavy metal atmospheres. Цветовые поправки

Diluted blackbody approximation is not good below this line

A – enhancement factor of number density of heavy element ions A=1 corresponds to solar abundance

Мощная длинная вспышка в системе НЕХЕ J1900.1-2455

42

Мощная вспышка в GRS 1747-312 с длинной PRE фазой

43

5. Взаимодействие с аккреционным потоком

Сравнение с наблюдениями на поздних стадиях вспышек Величина отклонений от модели зависит от относительной величины потока до вспышки

Высокий относительный поток

Возможное решение: Аккреция горячего потока плазмы на поздних стадиях вспышки

Fast ions with $kT_{ion} \sim kT_{Vir}$ and $V_a \sim V_{ff}$ bombard neutron star atmosphere and heat it

Атмосферы нагреваемые аккрецией

 $\dot{m}_a(H_a, \overline{A}m_p, v_a, kT, \Psi)$ - local mass accretion rate, g s⁻¹ cm⁻² Атмосферы низкой светимости нагретые аккреционными потоками с различными значениями угла падения потока **Ф**

$$L = 0.001 L_{Edd} \quad L_a = 0.05 L_{Edd} \quad \chi = \frac{kT_{ion}}{kT_{vir}} = 0.2 \quad \eta = \frac{V_a}{V_{ff}} = 0.75$$

$$\int_{0}^{10^{23}} \int_{0}^{10^{23}} \int_{0}$$

Suleimanov, Poutanen, & Werner 2018

48

Модельные кривые для атмосфер, нагретых аккрецией Цветовые поправки f_c больше, а факторы дилюции w меньше, чем для невозмущенных атмосфер. Величина отклонений пропорциональна темпу аккреции.

49

Блияние
 быстрого вращения
 нейтронных звезд

Нейтронные звезды в LMXBs вращаются быстро (200-600 Гц)

52

Особенности: увеличивается видимая площадь и эффективная сила тяжести уменьшается от полюса к экватору

 $g_{eff} \approx g(R_{\theta}) - \Omega_*^2 R^2$

Особенности: Релятивистский эффект Доплера

с угловым распределением как для электронной рассеивающей атмосферы

10

Photon energy (keV)

Основная идея:

Расширить применимость direct cooling tail method на случай быстро вращающихся нейтронных звезд

Два дополнительных параметра, частота вращения *v*_{*} (Ω_{*}=2π*v*_{*}) и *i*

последовательность действий:

- 1) Для данных *M* и *R* невращающейся H3 найти экваториальный радиус *R*_e и увеличенную массу *M*′ быстро вращающейся H3.
- 2) Рассчитать все свойства быстро вращающейся НЗ на ее поверхности.
- Рассчитать спектры такой звезды при различных значениях L/L_{edd} и аппроксимировать их спектрами дилютированного черного тела.
 Рассчитать модельную кривую w - L/L_{edd} и сравнить с наблюдаемой кривой F_{BB} – K используя расстояние как свободный параметр.
- 4) Повторить для всех М и R.
- 5) Результат карта χ² на плоскости *М R* для данных *ν*∗ и *i*

Здесь L_{Edd} рассчитывается для невращающейся НЗ с данными М и R 55

Based on the accurate computations performed by Cook et al. 1994

Поверхность вращающейся звезды +

Приближенные выражения для формы звезды *R*(ϑ), метрического тензора g_{ij} и эффективного ускорения силы тяжести g(ϑ) на поверхности были взяты из Al Gendy & Morsink (2014)

Гравитационное красное смещение вычисляется точно из g_{ij}, Доплеровское смещение и frame dragging считаются приближенно (точно для экватора и полюса).

Искривление лучей света считается в геометрии Шварцшильда по аналитической формуле Белобородова, улучшенной Юрием Поутаненом Два возможных предположения о распределении потока по поверхности быстровращающейся нейтронной звезды во время вспышки

Термоядерная вспышка в LMXB SAX J1810.8-2609 χ² карта после использования direct tail cooling method модифицированного для вращающихся нейтронных звезд

Термоядерная вспышка в LMXB SAX J1810.8-2609 χ² карта после использования direct tail cooling method модифицированного для вращающихся нейтронных звезд

Выводы

Изучение спектральной эволюции термоядерных вспышек на поверхности нейтронных звезд является мощным инструментом исследования как собственно термоядерных вспышек, так и непосредственно нейтронных звезд.

Радиусы нейтронных звезд заключены в пределах 11-13 км.

Возможно исследование химического состава атмосфер барстеров.

Аккреционный нагрев атмосфер важен на поздних стадиях вспышек.

Учет быстрого вращения нейтронной звезды уменьшает оценку радиуса невращающейся НЗ на 1 -1.5 км.