Моделирование вспышек в вязком аккреционном диске вокруг нейтронной звезды

Г. Липунова, К. Маланчев, С. Цыганков, Н. Шакура, А. Тавлеев, Д. Колесников

8 февраля 2022

План

- FREDDI : Эволюция вязких дисков во время вспышек LMXB. Виды кривых блеска.
- Модель облученного вязкого диска вокруг замагниченной нейтронной звезды
- Вспышка AQL X-1 в 2013
- Вязкие диски рентгеновских пульсаров

Рентгеновские новые

FREDs = Fast Rise Exponential Decay

Эволюция вязкого диска

Код FREDDI для численного расчета эволюции диска вокруг ЧД (Липунова и Маланчев 2017)

Aql X-1

 $R_{cor} \approx 25 \text{ km}$

7

Колена на кривых блеска АМХР

- Gilfanov+1998: пропеллер или эволюция диска (DIM)
- Powell+2007: моделирование "exponentiallinear decay" параметрическими зависимостями для эволюции диска
- Hartmann+2011 : DIM + пропеллер

IGR J00291+5934

Fig. 1. The 3–25 keV light curve of SAX J1808.4–3658. The PCA fluxes are those from Table 1, the ASM count rate was converted to 3–25 keV energy flux assuming a Crab like spectrum. The solid lines are $L_X \propto e^{-t/10^d}$ and $L_X \propto e^{-t/1.3^d}$.

пульсации не прекращались и после ускорения падения наблюдаемого потока ⁸

Figure 1. The light curve of SAX J1808.4-3658 during the 2002 outburst. The flux is computed in the 3-20 keV energy band. We divide the outburst into four stages: P, SD, RD and FT, which are coloured in red, green, blue and magenta, respectively. Stripes indicate different outburst stages (see Table 1). The insets show the pulse profiles at different times in the 2-3.7 and 10-24 keV energy bands (blue and red histograms, respectively).

Ibragimov & Poutanen 2009: размер горячего пятна на H3 уменьшается — внутренний радиус диска увеличивается

Пропеллер в Aql X-1

• Zhang +1998, Campana+1998: пропеллер соответствует переходу в жесткое состояние, обусловленному резким уменьшением мягкой компоненты

Maccarone & Coppi 2003, Asai+2013: But: the transition luminosities at the outburst rise and the decay are significantly different, which resemles the `inner-disc transitions'. They suggest that propeller transition occurs when hard-high shifts to hard-low state.

FIG. 1.—Spectral evolution of Aql X-1 during its outburst decay phase. The hardness ratio (10–30/5–10 keV) remained as almost a constant when the PCA count rate decreased from ~3000 to ~700 counts s^{-1} and then suddenly increased significantly when the count rate was around and below 200 counts s^{-1} .

Моделирование пропеллера Aql X-1

Güngör+2017 моделировали кривые блеска Aql X-1 (2000, 2011 и др.) - предполагая, что пропеллер включается постепенно - подбирали параметры для зависимостей:

$$L(t) = L_0 \left(1 + \frac{t - t_0}{t_v} \right)^{-\alpha} \qquad f = \frac{1}{2} \left[1 + f_{\min} + (1 - f_{\min}) \tanh\left(\frac{\omega_c - \omega_*}{\delta}\right) \right]$$

Figure 5. The $f = \dot{M}_* / \dot{M}$ vs. fastness parameter ω_* relation obtained from the outbursts of Aql X–1.

$$\omega_s \equiv \omega_{\star} / \omega(R_{\rm in}) = (R_{\rm in}/R_{\rm cor})^{3/2}$$

→ f — получается более крутая зависимость , чем получено в разных моделях Lipunov & Shakura 1976; Menou et al. 1999.

Вопросы для численного моделирования freddi:

- Что является причиной колена кривых блеска Aql X-1 пропеллер или эволюция диска?
- Видим ли мы включение пропеллера на кривых блеска Aql X-1?

Модель облученного вязкого диска вокруг замагниченной нейтронной звезды

- Взаимодействие диска с магнитосферой
- Облучение и движение внешнего радиуса горячей зоны диска
- Наблюдаемый поток от НЗ, диска и звезды-компаньона

Уравнение вязкой эволюции

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{4\pi} \frac{(GM_{\rm x})^2}{h^3} \frac{\partial^2 F}{\partial h^2}$$

Поверхностная плотность

$$\Sigma = \int \rho \mathrm{d}z$$

"α-диски"

Шакура 1972, Shakura-Sunyaev 1973

Удельный момент импульса

$$h = \sqrt{GMr}$$

Момент вязких сил $F=2\pi r^2 W_{rarphi}=3\pi h
u_{
m t} \Sigma$

Кинематический коэффициент вязкости можно выразить через *Q*-параметр

Внутренний радиус диска

$$R_{\rm in} = \xi_{\rm mag} R_{\rm mag}$$
 $R_{\rm mag} \equiv \left(\frac{\mu^2}{\dot{M}_{\rm out} \sqrt{G M_{\star}}}\right)^{2/7}$

Оценки на ξ_{mag} в 1D моделях:

0.5 (Ghosh & Lamb 1979), **0.3** – **1** (Chashkina et al. 2017), < **1.5** $\mbox{M} \xi_{mag} = \xi_{mag}(\omega_s)$ (Kluźniak & Rappaport 2007). $\omega_s \equiv \omega_{\star}/\omega(R_{in})$

3D МГД расчеты

ξ_{mag} ~ **0.4** – **0.5** (Long et al. 2005; Bessolaz et al. 2008) Но другие степени, отличные от определения Альфвеновского радиуса, получаются у Kulkarni & Romanova (2013).

Наблюдения

Ibragimov & Poutanen 2009: внутренний радиус диска не более чем в 2 раза меньше Альфвеновского радиуса (вспышка AMXP SAX J1808.4-3658 в 2002)

Момент сил на внутреннем крае диска

$$F_{\rm in} = \kappa_{\rm td} \, \frac{\mu^2}{R_{\rm in}^3}$$
 for $R_{\rm in} > R_{\rm cor}$

Снаружи от $R_{\rm cor}$ к диску приложен ускоряющий момент сил.

Внутри радиуса коротации диск тормозится

Davidson & Ostriker 1973; Lynden-Bell & Pringle 1974; Syunyaev & Shakura 1977; Lipunov 1992; Spruit & Taam 1993; Wang 1987, 1995; Armitage & Clarke 1996; Lai 1999; Matt & Pudritz 2005; Kluźniak & Rappaport 2007; and others...

Планы: Решение вязкого уравнения диффузии с учетом магнитных сил

Неоднородность вязкости по диску

- Скачки температуры в зонах рекомбинации
- Уменьшение параметра турбулентности α в зонах с неионизованным веществом

$$t_{vis} \propto \frac{\sqrt{GMr}}{\alpha T_c}$$

Внешняя граница горячей зоны диска

Meyer & Meyer-Hofmeister 1984; Tuchman et al 1990; Dubus et al 2001; also Tetarenko+2018

Внешняя граница горячей зоны диска

$$Q_{\rm irr} > Q_{\rm vis}$$

горячая зона диска контролируется облучением \rightarrow T_{irr} = 10⁴ K Tuchman et al. 1990; King & Riter 1998; Dubus et al. 1999

$$Q_{\rm vis} > Q_{\rm irr}$$

движение "холодного фронта" **Ludwig et al. 1994**; Menou et al. 1999; Dubus et al. 2001; Lasota 2001; Hameury 2020

$$\sigma T_{\rm vis}^4 = \frac{3 \, (G \, M_{\star})^4 \, F}{8 \, \pi \, h^7}$$

собственный поток тепла диска

$$\sigma T_{\rm irr}^4 = C_{\rm irr} \frac{L_x}{4 \pi r^2}$$

термализованный рентгеновский поток

Сценарии движения границы зоны полной ионизации R_{hot}

Три параметра **freddi** управляют выбором сценария: Qirr2Qvishot, bouncond и Thot

- $R_{hot} = const$ (Thot=0, остальные не важно)
- Горячая зона контролируется облучением, когда его вклад больше чем Qvis, а в дальнейшем стартует холодный фронт (Qirr2Qvishot=1, bouncond=Tirr u Thot=1e4)
- Горячая зона контролируется холодным фронтом (Qirr2Qvishot=BIG, bouncond=Tirr и Thot=BIG)
- Горячий диск всегда там, где $T_{irr} > 10^4$ K (Qirr2Qvishot=0, bouncond=Tirr и Thot=1e4)
- Горячий диск всегда там, где ($T_{irr}^4 + T_{vis}^4$)^{1/4} > 10⁴ K (Qirr2Qvishot=0, bouncond=Teff и Thot=1e4)
- Горячий диск всегда там, где T_{vis}> 10⁴ К (пока(?) не реализован)

Облучение диска

Параметризация облучающего потока

$$Q_{\rm irr} = C_{\rm irr} \, \frac{L_x}{4 \, \pi \, r^2}$$

Альбедо

$$C_{\rm irr} = (1 - A) \Psi(\theta) \frac{z_0}{R} \left(\frac{d \ln z_0}{d \ln r} - 1 \right)$$

Диаграмма направленности центрального облучения (усредненная по времени) косинус угла луча к нормали освещаемой им площадки

$$C_{\rm irr} = \widetilde{C}_{\rm irr} \left(\frac{z_0/r}{0.05}\right)^k \Psi(\theta), \qquad k =$$

Рентген от центральной звезды

$$\Psi(\theta) = 1$$

Рентген от центра диска

α

θ

1;

$$\Psi(\theta) = 2 \cos(\theta) \approx 2 z_0/r$$

Обычно облучение рентгеном НЗ больше

ZO

β

Болометрическая светимость

$$\mathcal{I}$$
иск

$$L_{\operatorname{disc}} = \left(F_{\operatorname{in}} + \frac{\dot{M}_{\operatorname{in}} h_{\operatorname{in}}}{2}\right) \times \omega_{\operatorname{in}}$$

$$F_{\operatorname{in}} \quad - \operatorname{момент } \text{вязких сил} \qquad h_{\operatorname{in}} = \sqrt{G M_{\star} R_{\operatorname{in}}} \quad - \operatorname{удельный } \operatorname{момент}$$

$$\omega_{\operatorname{in}} = \sqrt{G M_{\star}/R_{\operatorname{in}}^3} \quad - \operatorname{угловая } \operatorname{скорость} \operatorname{на } \operatorname{внутреннем } \operatorname{радиусе } \operatorname{диска} R_{\operatorname{in}}$$

$$\mathcal{I}_{\operatorname{disc}} = \frac{\dot{M}_{\operatorname{in}} h_{\operatorname{in}}}{2} \times \omega_{\operatorname{in}}$$

Мощность, выделяемая на поверхности НЗ

Из интеграла уравнения сохранения импульса вещества, движущегося в магнитосфере (Ghosh et al. 1977; Ustyugova et al. 1999, а также Ландау-Лифшиц "Механика", Шакура-Сюняев 1988, Kley 1991) —

$$L_{\star} = \frac{\dot{M}_{\star} G M_{\star}}{R_{\star}} \left(1 - \frac{R_{\star}}{R_{\text{in}}} \right) + \frac{\dot{M}_{\star} \omega_{\star}^2}{2} \left(R_{\star}^2 - R_{\text{in}}^2 \right) + \frac{\dot{M}_{\star} G M_{\star}}{2 R_{\text{in}}} \left(1 - \frac{\omega_{\star}}{\omega_{K(R_{\text{in}})}} \right)^2$$

КПД зависит от темпа аккреции, если у НЗ есть магнитное поле

Суммарная мощность диска и звезды "больше" $\frac{\dot{M}_{\star} G M_{\star}}{R_{\star}}$ за счет

1) работы магнитного поля по торможению диска (энергия вращения НЗ)

2) работы падающего вещества по ускорению НЗ (с другим знаком)

Эта добавка равна нулю, когда НЗ вращается с равновесным периодом.

Темп аккреции на НЗ

Переход на режим "пропеллера" (Илларионов и Сюняев 1975): ц.б. барьер отток аккумуляция вещества в диске

Когда $R_{in} = \xi_{mag} R_{mag}$ больше R_{cor} , часть вещества продолжает аккрецировать на H3 (Romanova 2018, Zanni & Ferreira 2013)

Вводим параметр $f_{\star} = \dot{M}_{\star} / \dot{M}_{\rm in}$

- доля вещества, упавшая на H3

Romanova+2018: эффективность пропеллера доля вещества, вылетающего из диска со скоростью больше некоторой доли от скорости убегания

$$1-f_* = \begin{bmatrix} 0,7 \\ 0,6 \\ 0,5 \\ 0,4 \\ 0,3 \\ 0,2 \\ 0,1 \\ 0 \end{bmatrix}$$

$$f_{\star} = 1 - 0.0006 \,\omega_s^{4.01}$$
$$\omega_s \equiv \omega_{\star} / \omega(R_{\rm in}) = (R_{\rm in}/R_{\rm cor})^{3/2}$$

Сценарии

Scenario	Concept	Accreted part	Torque coefficient		
		$f_{\star} = \dot{M}_{\star} / \dot{M}_{\rm in}$	for $R_{\rm in} < R_{\rm cor}$	for $R_{\rm in} > R_{\rm cor}$	
SA	no-outflow, everything falls onto NS	1	$\kappa_{\rm t} = \xi_{\rm mag}^{7/2}$	$\kappa_{\rm td} = \kappa_{\rm t}$	
РО	propeller outflow; nothing falls onto NS if $R_{in} > R_{cor}$	$H(R_{\rm cor}-R_{\rm in})$	$\kappa_{\rm t} = \xi_{\rm mag}^{7/2}$	$\kappa_{\rm td} = 0$	
POSA	gradual blocking, matter partly outflows	$f_{\star}(\omega_s)$	$\kappa_{\rm t} = \xi_{\rm mag}^{7/2}$	$\kappa_{\rm td} = \kappa_{\rm t}$	

POSA $f_{\star} = 1 - 0.0006 \,\omega_s^{4.01}$ (Romanova+2018)

 $\xi_{mag} = 0.5$

Эволюция диска вокруг нейтронной звезды

$$\frac{\partial \Sigma}{\partial t} = \frac{1}{4\pi} \frac{(GM_{\star})^2}{h^3} \frac{\partial^2 F}{\partial h^2} \quad \longrightarrow \quad$$

Наблюдаемый поток

Рентген

Table 2. Fixed	parameters	of the	model	of Aql	X-1.
----------------	------------	--------	-------	--------	------

Variable	Parameter	Value	Ref.	
M_{\star}	NS mass	1.4 <i>M</i> ⊙		
R_{\star}	NS radius	$1.12 \times 10^{6} \text{ cm}$		
ν_{\star}	NS spin frequency	550 Hz	(1)	
R _{cor}	Corotation radius	2.5×10^6 cm	Eq. (6)	
R _{light}	Light cylinder radius	8.7×10^6 cm	Eq. (5)	
R _{tid}	Tidal radius of the disc	$0.9R_{L1} = 1.87R_{\odot}$	(2)	
Porb	Orbital period	0.7895126	(1)	
T0	Ephemeris	2455810.387 d	(3)	
q	Mass ratio	0.39	(3,4)	
a	Semi-axis	$4.5 R_{\odot}$		
$M_{\rm opt}$	Optical star mass	$0.55~M_{\odot}$		
Topt	Optical star temperature	4500 K	(3)	
a _{opt}	Optical star albedo	0.5	(5)	
$R_{\rm pol}/R_{\rm pol}^{\rm Roche}$	Roche lobe filling	1		
d	Distance to the source	5 kpc	(3,4,6)	
i	Inclination of the orbit	40°	(3)	
E(B-V)	Color excess	0.64 ± 0.04	App.C	
ξmag	$R_{\rm in}/R_{\rm mag}$	0.5	Eq. (4)	
κ _t	Magnetic torque coef.	$\xi_{ m mag}^{7/2} pprox 0.088$	§2.3	
fcol	Inner disc color correction	1.7	§2.5	
$S_{\rm X}/(4\piR_{\star}^2)$	Hot spot fraction	0.4	§2.5	
$(z/r)_{\rm cold}$	Outer disc relative	0.05		
	semithickness			

Результаты моделирования

Все вещество все время падает на НЗ

Rin=Rcor - до колена

Свободные параметры: параметры самооблучения, α, магнитное поле, темп аккреции в пике

Эволюция ключевых безразмерных параметров диска

Table 3. Parameters of resulting models. Columns are: (1) Figure number; (2-6) Resulting parameters; (7) Parameter restrictions or changes to values given in Table 2: (8-10) Resulting χ^2 and \mathcal{R}^2 for X-ray and optical data; (11) Model ID. For the 'POSA' scenario, the material with $v < v_{esc}$ falls onto NS and there is no outflow when the disc reaches the star surface.

Fig	B_x (Gs)	$\dot{M}_0~({ m g/s})$	α	$\widetilde{C}_{ m irr}$	$\widetilde{C}_{\mathrm{irr}}^{\mathrm{cold}}$	Comment	χ^2 (X)	$\mathcal{R}^2(X)$	χ^2 (opt)	Model ID
No outflows										
7	6.3e+08	7.3e+17	0.74	1.5e-03	1.2e-03	$\alpha \ge 0.5$	21348	0.986	155	SA1
SF2	5.2e+08	7.9e+17	0.11	1.3e-04	1.6e-03	$\alpha \le 0.5$	21395	0.988	186	SA2
SF3	6.2e+08	9.6e+17	0.10	1.2e-04	1.7e-03	k = 0	52435	0.971	127	SA3
SF4	5.3e+08	8.4e+17	0.69	1.3e-03	0.0e+00	fixed $\tilde{C}_{irr}^{cold} = 0$	20805	0.986	306	SA4
SF5	7.0e+08	9.6e+17	1.59	3.8e-03	0.0e+00	fixed $\widetilde{C}_{irr}^{cold} = 0, a_{opt} = 1$	35387	0.982	571	SA5
SF6	5.3e+08	7.9e+17	0.11	1.3e-04	3.8e-03	$a_{\rm opt} = 1$	21406	0.988	193	SA6
SF7	1.0e+02	1.1e+18	0.68	1.3e-03	5.5e-04	fixed B_x , $\alpha \ge 0.5$	34573	0.979	162	SA7
SF8	1.0e+02	9.8e+17	0.13	1.6e-04	1.2e-03	fixed B_x , $\alpha \leq 0.5$	32725	0.981	177	SA8
	Partial outflow if $R_{\rm in} > R_{\rm cor}$									
SF9	5.5e+08	8.1e+17	0.56	9.7e-04	1.4e-03		20469	0.986	175	POSA9
					Complet	e outflow if $R_{\rm in} > R_{\rm cor}$				
10	3.6e+08	7.1e+17	0.53	1.2e-03	1.0e-03		49943	0.967	249	PO10
				Dead	disc for a p	plato, which is one point in X:				
11	3.3e+07	9.0e+17	0.29	5.2e-04	1.1e-03	B_x explains plato, $R_{\text{dead}} = R_{\text{cor}}$	21647	0.948	163	SA11
11	6.3e+08	7.3e+17	0.74	1.5e-03	1.2e-03	$R_{\text{dead}} \approx 3.3 R_{\text{cor}}$ explains plato in SA1	21348	0.986	155	SA12
					No	disc irradiation:				
12	3.3e+08	8.2e+17	0.06	1.0e-10	0.0e+00	fixed $C_{\text{irr}} = C_{\text{irr}}^{\text{cold}} = 0$ and B_x ;	55158	0.981	1574	PO13
12	6.0e+02	1.5e+18	0.06	1.0e-10	0.0e+00	fixed $C_{irr} = C_{irr}^{cold} = 0;$	334770	0.874	1250	PO14
No irradiation and constant outer radius $R_{\text{hot}} = R_{\text{tid}}$										
12	4.2e+08	1.3e+18	4.00	1.0e-10	0.0e+00	fixed $C_{\rm irr}$, $C_{\rm irr}^{\rm cold}$ & $R_{\rm hot}$	423694	0.830	2137	PO15
12	1.0e+06	2.2e+18	4.00	1.0e-10	0.0e+00	fixed \widetilde{C}_{irr} , $\widetilde{C}_{irr}^{cold}$, B_x & R_{hot}	907624	0.622	1990	PO16
Irradiation of hot disc with constant outer radius $R_{hot} = 10^{10}$ cm, no cold disc										
SF17	3.3e+08	3.6e+18	0.07	1.0e-10	2.4e-03	fixed $\widetilde{C}_{irr}^{cold}=0$ and B_x	969733	0.717	3212	PO17
Irradiation of whole disc; hot part has constant outer radius										
SF18	3.3e+08	3.4e+18	0.07	5.0e-02	1.3e-05	fixed B_x , $R_{\text{hot}} = 10^{10} \text{ cm}$	966438	0.717	2121	PO18
SF19	3.3e+08	3.3e+17	4.00	1.7e-03	1.2e-05	fixed B_x , $R_{\rm hot} = R_{\rm tid}$	1528271	0.512	1823	PO19

Если пропеллер включается постепенно, например, на основе результатов 3D MHD моделирования Romanova+2018, то уменьшение темпа аккреции на H3 практически не влияет на форму кривой блеска

По кривым блеска можно только условно разделить сценарии "мягкого" пропеллера и НЗ без магнитного поля: χ2 хуже в 1.5 раза без магнитного поля из-за того, что КПД аккреции постоянен.

→ Идеальный пропеллер в АМХР (400-500 Hz) приводит к уменьшению *болометрической* светимости на 40-50%

Эволюция, контролируемая облучением, сменяется движением холодного фронта при Rin ~ Rcor, так как резко падает облучение — обнуляется поток от H3

→ Можно определить Bx с точностью до коэффициента из Альфвеновского радиуса

Но: мгновенное прекращение аккреции на НЗ — явно упрощенный сценарий

Вырождение параметров α и C_{irr}

Figure 9. Relation between α and maximum irradiation factor that parametrizes the reprocessed X-ray flux emitted by the neutron star for the models listed in Table 3. Red color marks the SA scenario, black POSA, and green PO.

нет оптики от холодного диска и оптич. звезды

Вырождение параметров α и $C_{\rm irr}$

- Поскольку в системе три источника оптического потока с неизвестными параметрами, снять вырождение между C_{irr} и α не получается
- Если учесть, что параметр С_{іт} пропорционален относительной полутолщине диска, качество фита рентгеновской кривой блеска улучшается в 2.5 раза.

Отвергнутые модели

Отвергаются модели: диск без облучения (контролирующего размер горячей зоны и/или оптический поток), диск постоянного радиуса любого значения.

80 100

 5×10^{-27}

20

40 60

Плато низкой светимости

- Продолжающаяся аккреция на H3: перестройка аккреционного потока из тонкого диска в ADAF в момент колена. Веществу из АДАF проще преодолеть ц.б. барьер (Zhang+1998)
- Остывание коры H3 (Brown+1998; Wijnands+2017).
- Взаимодействие ветра от пропеллера или пульсарного ветра с веществом, поступающим от соседней звезды (Cui 1997, Campana et al. 1998; Bogdanov+ 2011; Wadiasingh+2018).
- Диск-накопитель (Sunyaev & Shakura 1977; Armitage & Clarke 1996):

Модуляции оптического потока Р \sim 1.03 х Р_{огb} в полосе *R*

Table 2. Parameters of the model of Aql X-1.

Variable	Parameter	Value	Ref.
M_{\star}	NS mass	$1.4 M_{\odot}$	
R _*	NS radius	$1.12 \times 10^6 \mathrm{~cm}$	
ν_{\star}	NS spin frequency	550 Hz	(3)
$R_{\rm cor}$	Corotation radius	2.5×10^6 cm	Eq. (5)
Rlight	Light cylinder radius	8.7×10^6 cm	Eq. 🚺
Porb	Orbital period	0.7895	(1)
T0	Ephemeris	2455810.387 d	(1)
q	Mass ratio	0.39	(1)
а	Semi-axis	$4.5 R_{\odot}$	
R_{L2}	Optical star's RL size	0.3 a	(4)
Mopt	Optical star mass	$0.55 M_{\odot}$	
Topt	Optical star temperature	4500 K	(1)
aopt	Optical star albedo	0.5	(2)
$R_{\rm pol}/R_{\rm pol}^{\rm Roche}$	Roche lobe filling	1	
R _{tid}	Tidal radius of the disc	$1.87 R_{\odot}$	
d	Distance to the source	5 kpc	(1)
i	Inclination of the orbit	40°	(1)
E(B-V)	Color excess	0.65	§3.3
ξ_{mag}	$R_{\rm in}/R_{\rm m}$	0.5	Eq. (3)
ĸ	Magnetic torque coef.	$\xi_{\rm mag}^{7/2} \approx 0.088$	§2.4

(1) Mata Sánchez et al. (2017); (2) Rucinskii 1969; Hosokawa 1959; Anderson 1981; London, McCray & Auer 1981; (3) White & Zhang (1997); Zhang et al. (1998b); Casella et al. (2008); (4) Meshcheryakov et al. (2018)

Figure 1. Lomb-Scargle periodogram for the *R* (top) and *J* (bottom) data. *R* data contained 36 data points, and *J*, 31 data points, in the interval 5 - 90 d. The peaks at ~ 1 d in the bottom diagram are probably caused by the observation times intermittency.

НО! Отсутствие модуляций отношения оптического (R) к рентгеновскому:

Для точек Flux(R)/Flux(X) *минус* модель *минус* оставшийся тренд:

- черные точки X-ray data
- красные точки -X-ray data интерполированная в моменты точек R
- линия модель в X-band
- R data
- точки Flux_R / Flux_X
- линия модель Flux_R/Flux_X

Пульсары — случай GRO J1008-57 аккреция из холодного диска

1038

1037

Ω

 R_{hot}

s N

Весь диск становится рекомбинированным, когда его внутренний радиус < R_{сог}, а темп аккреции ~ 10¹⁵ г/с

erg 1036 (bol.), 1035 1034 Propeller 10³³ Tsygankov+2017 10¹³ 10¹² R_{light} 10^{18} 10¹¹ 10^{17} 10¹⁰ R_{cor} 10¹⁶ 10⁹ $\dot{M}~({
m g/s})$ 10¹⁵ 10⁸ ä 10¹⁴ 10^{7} 20

50

P₂=93 s

Заключение

- Основной причиной наблюдаемого колена кривых блеска Aql X-1 является эволюция диска
- Зона аккреционного диска, в которой идет быстрая вязкая эволюция, уменьшается в размере.
- Облучение необходимо учитывать для объяснения и хода рентгеновской кривой и уровня оптического потока.
- Если пропеллер включается постепенно, то это практически не влияет на форму кривой блеска
- Для уточнения α-параметра необходимо заниматься детальным спектральным моделированием в оптике и определением параметра самооблучения

СПАСИБО