Jet energy dissipation mechanisms

Anna Chashkina (Tel Aviv University)

- Jet emit from many different regions
- Observed radiation has different spectral and temporal properties
- More than one dissipation mechanism is required

 Kink instability may be responsible for the emission seen as HST-1 knot in M87

Jet emission and dissipation

Jet launching

Jets are launched by spinning BHs in the presence of largescale magnetic field due to frame dragging

GRMHD simulations of BH activation by small magnetic loops: formation of striped jet and active coronae

Anna Chashkina, Omer Bromberg and Amir Levinson (Tel Aviv University)

Striped jets

Switching of polarity in the disc leads to switching of polarity in the jet -> Striped jet launches (Parfrey+ 15, Mahlmann+ 20)

Blobs of different polarity reconnect in the jet -> energy dissipation

BH activation by small scale field

- GR-FFE simulations (Parfrey+ 15, Mahlmann+ 20)
- Currents set as boundary conditions
- No disc physics. Can the loop survive? What is the efficiency?

Visualization of the plasma regimes

BH activation by small scale field

- GR-FFE simulations (Parfrey+ 15, Mahlmann+ 20)
- Currents set as boundary conditions
- No disc physics. Can the loop survive? \bullet What is the efficiency?

• GR MHD simulations (Chashkina+ 21, Nathanail+ 20, Beckwith+ 08,09)

BH Activation modes: 1 loop

- 2 modes: MAD and SANE.
- MAD (Magnetically Arrested Disc): \bullet
 - large scale fields
 - \dot{M} and Ψ are correlated
 - Switch between high and low modes
 - Intermittent jet launching
- SANE (Stable And Normal Evolution):
 - small scale fields
 - \dot{M} and Ψ are uncorrelated, Ψ is low
 - No jet launching

2.4 -1.6 - 0.8 - 0.0 -0.8 -1.6-2.4-3.2 -4.0-4.8

Activation modes: Multiple loops in 2D

- The second loop compresses the first one -> effective current sheets production - Striped jet launches

Multiple loops in 3D

Multiple loops in 3D

Jet efficiency

Current sheets and plasmoids $\log(p/\rho^{4/3})$, $t = 1811 r_g/c$

- Current sheets:
 - equatorial plane: MAD + loop switches
 - Jet-disc boundary: loop switch
- Plasmoids merge and grow in size
- Accelerate up to 0.3c
- Energy in the plasmoids is comparable to the jet energy
- May evolve to radio blobs at larger radii

Current sheets and plasmoids

log S

2D

Summary

- In order to have a global reconnection at large distances one possibility is to launch striped jets
- Striped jets can be launched from opposite polarity loops, they can be quite efficient
- Reconnection in the vicinity of a BH during polarity switching produces a chain of very energetic plasmoids at the edge of the jet, that could be the source of X-ray and gamma ray emission in the vicinity of a BH, or may evolve into radio blobs at later time

Relativistic magnetic reconnection and turbulence in kinkunstable jets

Bart Ripperda, <u>Anna Chashkina</u>, Alexander Chernoglazov, Sasha Philippov, Jordy Davelaar, Omer Bromberg and Lorenzo Sironi

-10

- Toroidal field is unstable to kink mode \bullet
- Generates helical twist in the jet, leads to reconnection ullet

(Mizuno+ 2014)

(Bromberg, Tchekhovskoy+ 2016)

- Tchekhovskoy, 2016):

- Magnetic field structure:
- $B_r(r) = 0$

•
$$B_z(r) = \frac{B_0}{[1 + (r/a)]^{\alpha}}$$

•
$$B_{\phi}(r) = \frac{aB_z}{r} \sqrt{\frac{[1 + (r/a)^2]^{2\alpha} - 1 - 2\alpha(r/a)^2}{2\alpha - 1}}$$

• Pitch:
$$P = rB_z/B_\phi$$

- Increasing pitch (IP): $P > 1, \alpha > 1$
- Decreasing pitch (DP): $P < 1, \alpha < 1$

(Bromberg+ 19)

What do we know?

- Growth rate
- Energy dissipation
- Relaxation condition (Taylor state)

For nonrotating jet

(Bromberg+ 19)

What do we want to know?

- How rotation affects the energy dissipation, relaxation condition

 In the rotation case the energy dissipation starts later

10

-0

2

Q

 10^{-2}

 10^{-3}

 10^{-4}

 -10^{-5}

σ

 10^{-5}

• By the time when non-linear kink stage develops the angular momentum drops and energy transfers into small scales

Summary (very preliminary)

- Energy dissipation in rotating jets starts at later time that in non-rotating
- Rotation affects linear stage of kinkinstability.
- Angular momentum transfers outwards during kink phase
- Kink instability can dissipate around 1/2 of magnetic energy
- What is the saturation criteria?
- How does it look like in the global simulations?

\$

