
Chapter 1
The Standard Model of Disc Accretion

Galina Lipunova, Konstantin Malanchev, and Nikolay Shakura

Abstract Accretion discs are powerful energy factories in our Universe. They
effectively transform the potential energy of gravitational interaction to emission,
thereby unraveling the physics of distant objects. This is possible due to the presence
of viscosity, driven by turbulent motions in accretion discs. In this chapter, we
describe the equations for disc accretion in the framework of the standard model.
We outline basic elements of the theory of turbulent viscosity and the emergence
of the α-parameter. We further describe the radial and vertical structure of thin
stationary accretion discs, and present analytical solutions to the basic equation of
the evolution of a viscous accretion disc for both an infinite disc and for a disc in
a binary system. Finally, we present a numerical method to solve the equations of
disc evolution and vertical structure simultaneously.

1.1 Introduction

The theory of disc accretion has tremendously broad applications in astrophysics—
it is used to study for example bright objects at a wide spectral range in our own
Galaxy, the luminous centres of other active galaxies, relativistic jets from compact
objects, protostars and the formation of planetary systems, and to explain the most
luminous sources of the universe, the gamma-ray bursts.
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The bases for the theory of standard disc accretion are found in the papers
by Shakura (1973) and Shakura and Sunyaev (1973). Other important early works
include the papers by Gorbatskii (1965), Lynden-Bell (1969), and Pringle and Rees
(1972). The development of the theories for the various processes connected to disc
accretion can be found in the textbooks by Kato et al. (1998), Frank et al. (2002) and
in the overview by Abramowicz and Fragile (2013). Galactic discs, discs in close
binaries and in protoplanetary systems are discussed in the textbook by Morozov
and Khoperskov (2005). Bisikalo et al. (2013) studied the gas dynamics of mass-
transfer in close binary systems. A short and comprehensive overview of standard
disc accretion, including aspects of discs in dwarf and X-ray novae, can be found in
Lasota (2015).

In this chapter we consider the basic properties of stationary and non-stationary
discs in the framework of the standard model of disc accretion, touching only lightly
upon relativistic effects. We derive the basic equations describing non-radial infall
of matter in astrophysical situations, where the effects of viscous stresses lead
to heating of the matter and subsequent emission of thermal energy that can be
observed by astronomical instruments from enormous distances.

Discs are formed around stars as a result of matter with non-zero angular
momentum being captured by the star’s gravitational field. The matter may originate
from the interstellar medium or be transferred from a close companion star. If the
matter is rotating in approximately a single plane, the structure is called an accretion
disc. As a result of transfer of angular momentum the matter moves towards the
central object and thereby releases its gravitational energy. This energy is transferred
to kinetic energy, increasing towards the centre, and to thermal energy of the plasma.
If the thermal energy can be emitted effectively, the disc is relatively thin.

We here consider geometrically thin ‘flat’ accretion discs. In a geometrically
thin disc, the half-thickness in the direction perpendicular to the disc plane is
much smaller than the distance to the centre at a given point in the disc. If a
geometrically thin disc has an optical depth much exceeding unity (τ � 1) in
the direction perpendicular to the disc plane, the equations of energy balance can
be written in a rather simple form. In this case the photons are absorbed and
dissipated or scattered many times before they leave the disc and we can assume
local thermodynamic equilibrium. In a geometrically thin disc we may also neglect
radial advection (the transfer of heat with matter moving radially). The condition of
local thermodynamic equilibrium suggests equal temperature of electrons and ions
in the plasma. Moreover, the standard models do not take into account mass loss
from the disc surface: the matter leaves the disc only through its inner boundary.
In reality, or rather in the current largely consistent picture of accretion discs, these
conditions are satisfied at distances far from the disc centre.

It is important to note that the accretion process is driven by viscosity caused by
turbulent motions of the matter in the disc. The characteristic time scale for changes
in the radial structure of the disc is called the viscous time scale. The viscous time
scale is related to the radial motion of matter in the disc. In the framework of the
standard equations for accretion discs, discussed in this section, the characteristic
viscous time scale τvis is much longer than the dynamic time scale τdyn, set by the
orbital velocity of matter in the disc. The viscous time scale is also much longer
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than the ‘hydrostatic’ time scale τhyd, on which the thickness of the disc changes
with pressure, and much longer than the ‘thermal’ time scale τth, that is, the time
for a given patch of the disc to radiate the stored thermal energy and to change the
temperature:

τvis � τdyn ; τvis � τhyd ; τvis � τth .

As in stars, the disc equilibrium structure depends on its luminosity. For a wide
range of accretion rates, the disc luminosity is proportional to the rate with which
matter flows into the disc. There is, however, a critical luminosity close to which
radiation pressure starts to play a decisive role for the formation of the disc
structure. This is the Eddington luminosity limit. Like in stars, the Eddington
luminosity is determined from the balance between the forces of radiation pressure
and gravitational forces acting on the proton. In the case of spherical symmetry:

LEdd = 4π c G M mp

σT

≈ 1.25× 1038
M

M�
erg/s . (1.1)

We use the following notations: the universal gravitational constant G, the mass of
the central body M , the mass of the Sun M� ≈ 2 × 1033 g, the proton mass mp,
the Thomson cross section for electron scattering σT. Using the expression for the
effective luminosity in the accretion process L = ηaccr Ṁ c2, we obtain the critical
accretion rate in the disc:

ṀEdd = 4π G M

c ηaccr κT
≈ 1.4 × 1018

M

M�
g/s ,

where we have set the energy conversion efficiency of accretion ηaccr = 0.1
(ηaccr = 1/12 in the Newtonian metric for a disc with the inner boundary at
radius 6G M/c2), and the Thomson cross section per gram κT ≈ 0.4 cm2/g. In disc
models the accretion rate is often normalised to this value. However, it is only an
approximate evaluation of the accretion rate, above which the disc becomes thick.
The thin disc approximation is no longer valid in a region, the radius of which is
proportional to the accretion rate, and this regionmay experience outflow of material
from the disc surface.

Various disc instabilities may arise at accretion rates lower than the critical
one. For example, at temperatures and densities corresponding to the conditions
for recombination of ions in the plasma, thermal instability arises which results in
a change in the vertical structure of the disc on thermal time scales (Meyer and
Meyer-Hofmeister 1981). In particular, this instability leads to outbursts in dwarf
novae. Close to the disc centre, if the radiation pressure exceeds the gas pressure,
viscous and thermal instabilities arise (Lightman and Eardley 1974; Shibazaki and
Hōshi 1975; Shakura and Sunyaev 1976). Nevertheless, there exists a wide range of
accretion rates at which the structure of the accretion disc can be treated as quasi
stationary.
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1.2 Disc Equations

When examining geometrically thin discs, it is convenient to work in cylindrical
coordinates (r , ϕ, z). We assume that accretion discs are axially symmetric. This
leads to the disappearance of all derivatives with respect to ϕ. For thick discs or for
a study of the structure of outflowing matter, spherical coordinates should be used.

1.2.1 Important Note

In the standard theory of disc accretion, as we outline it here following Shakura
and Sunyaev (1973), the viscous stress tensor is frequently written as a physically
positive value. In Chap. 1 this value appears under notation wt

rϕ = −wrϕ .

1.2.2 Continuity Equation

The continuity equation in cylindrical coordinates in the axial symmetric case takes
the form:

∂ρ

∂t
+ 1

r

∂

∂r
(ρ vr r) + ∂

∂z
(ρ vz) = 0 . (1.2)

1.2.3 Equations of Motion

The equations of motion in cylindrical coordinates in the axial symmetric case are
written as:

∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
− v2ϕ

r
= −∂Φ

∂r
− 1

ρ

∂P

∂r
+ Nr, (1.3)

∂vϕ

∂t
+ vr

∂vϕ

∂r
+ vz

∂vϕ

∂z
+ vrvϕ

r
= Nϕ, (1.4)

∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
= −∂Φ

∂z
− 1

ρ

∂P

∂z
+ Nz, (1.5)

where Φ is the gravitational potential, P is the pressure, and Nr , Nϕ , and Nz are the
components of the viscous forceNNN per unit mass. We write the components ofNNN in
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the case of axial symmetry as:

ρNr = 1

r

∂

∂r
(rwrr) − wϕϕ

r
+ ∂wrz

∂z
, (1.6)

ρNϕ = 1

r2

∂

∂r
(r2wϕr) + ∂wϕz

∂z
, (1.7)

ρNz = 1

r

∂

∂r
(rwzr ) + ∂wzz

∂z
, (1.8)

where wik are the components of the viscous stress tensor. We write these
components:

wrr = 2η
∂vr

∂r
+

(
ζ − 2

3
η

)
divvvv, (1.9)

wrϕ = wϕr = η

[
r

∂

∂r

(vϕ

r

)]
, (1.10)

wrz = wzr = η

(
∂vz

∂r
+ ∂vr

∂z

)
, (1.11)

wϕϕ = 2η
vr

r
+

(
ζ − 2

3
η

)
divvvv, (1.12)

wϕz = wzϕ = η
∂vϕ

∂z
, (1.13)

wzz = 2η
∂vz

∂z
+

(
ζ − 2

3
η

)
divvvv , (1.14)

where

divvvv = 1

r

∂

∂r
(rvr ) + ∂vz

∂z
.

Here η is the dynamic coefficient of the shear viscosity due to the relative motion
of different layers of the flow, and ζ is the second viscosity (Landau and Lifshitz
1959). In the following, we will omit the effects of second viscosity.

For thin accretion discs, the only significant component of the viscous stress
tensor is wrϕ . As a result we have that

ρNϕ = 1

r2

∂

∂r
(r2wrϕ), (1.15)

wrϕ = ηr
∂

∂r

vϕ

r
= ηr

∂ω

∂r
, (1.16)

where ω = vϕ/r is the angular velocity of matter in the disc.
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We will consider thin stationary discs for which the partial derivatives with
respect to time in the equation of motion (1.3)–(1.5) become zero. For such discs
the most important terms in Eq. (1.3) are v2ϕ/r and the gravitational potential
gradient. For a Newtonian gravitational potential Φ = −GM/r , neglecting the
self-gravitation of the disc, we obtain Kepler’s law:

ωK =
√

GM

r3
. (1.17)

In this case the radial component of the friction force and the pressure gradient are
negligible comparing to the gravitational force from the central body.

In the direction perpendicular to the disc plane, hydrostatic equilibrium is
established, in which the vertical gravity component is balanced by the vertical
pressure gradient. From (1.5) we have:

− 1

ρ

∂P

∂z
= G M

r3
z . (1.18)

1.2.4 Energy Conservation Equation

The energy conservation equation for the general case is written in the following
way (Landau and Lifshitz 1959; Kato et al. 2008):

∂E

∂t
+ div

[
(E + P)vvv − (vvv wik) + FFF th

]
= ρεmass , (1.19)

where E = ρ (e + v2/2 + Φ) is the sum of the thermal, kinetic and potential
energy per unit volume. Its change over time is a result of the energy flux arising
due to motion of the medium, the work of pressure and viscosity forces, and other
possible energy flows. In a thin plane disc, the energy flux connected to viscous
forces is radial and equals (−vϕ wrϕ). The vector FFF th contains other types of
thermal energy flows: radiative, conductive and convective. In a thin disc the main
contribution is given by Fz, which includes the radiative flux transferring energy
to the radiating disc surface. In general, there could be other heating or cooling
mechanisms operating within a unit volume (for example, nuclear reactions, Joule
dissipation or radiative cooling of the optically thin medium). The rate of such
heating or cooling per unit mass is εmass.
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1.2.5 Energy Dissipation

Let us consider the change of kinetic energy in the flow expressing the total velocity
derivative with the help of the Navier-Stokes equation (Eqs. (1.3)–(1.5)):

d

dt

(v2

2

)
= vvv

(
− ∇Φ − 1

ρ
∇P + NNN

)
. (1.20)

Subtracting this equation from the equation for the total energy conversion (1.19)
and using the first law of thermodynamics

T ds = de + P d

(
1

ρ

)
,

where s is the specific entropy, we arrive at the following equation for the thermal
balance:

ρ T
ds

dt
= ε + ρ εmass − divFFF th , (1.21)

for a gravitational potential Φ constant in time, where

ε = wik
∂vi

∂xk

(1.22)

is the dissipated energy per unit volume per unit time due to viscosity (summation
over indices).

In cylindrical coordinates for an axisymmetric flow:

ε = η

[
4

(
∂vr

∂r

)2

+ 2

(
∂vz

∂z

)2

+
(

∂vϕ

∂r
− vϕ

r

)2

+
(

∂vϕ

∂z

)2

+

+
(

∂vz

∂r
+ ∂vr

∂z

)2 ]
− 2

3
η

(
∂vrr

r∂r
+ ∂vz

∂z

)2

. (1.23)

In thin accretion discs, vϕ dominates significantly over other velocity terms. We
note that vϕ does not change with z in a thin disc. Thus, the dominant component in
the energy dissipation has the form:

ε = wrϕ

(
∂vϕ

∂r
− vϕ

r

)
= η

(
∂vϕ

∂r
− vϕ

r

)2

= η r2
(

∂ω

∂r

)2

. (1.24)
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1.2.6 Energy Source in the Disc

The main source of energy which dissipates in the disc due to friction, and which
in principle can be radiated, is the released potential energy as the matter moves
progressively closer to the gravitating body. Let us illustrate this for a thin Keplerian
disc.

With the help of expressions (1.7), (1.10) and (1.24), it can be shown that the
identity

ρ vϕ Nϕ + ε = 1

r

∂

∂r
(r vϕ wrϕ) . (1.25)

holds in a thin disc.
To write down ρ vϕ Nϕ , we use (1.20). Let the mass of the central object and its

gravitational potential be constant in time. We have:

ρ vr
∂

∂r

(v2

2
+ Φ

)
= 1

r

∂(r vϕ wrϕ)

∂r
− ε. (1.26)

Here, we omit the term vr ∂P/∂r , which is small compared to the other terms, i.e.
we neglect the work performed by pressure forces in a Keplerian disc.

And thus, the energy from the gravitational interaction extracted as the matter
moves in the disc progressively towards the centre is transformed to kinetic energy
of orbital motion, then redistributed in the disc due to viscous forces transferring
angular momentum, and finally spent on heating of the disc (Lynden-Bell and
Pringle 1974; Shakura and Sunyaev 1976).

1.3 Viscosity in Accretion Discs

The key hypothesis in models for accretion discs is the turbulent nature of their vis-
cosity (Shakura 1973; Shakura and Sunyaev 1973; Zeldovich 1981; Fridman 1989;
Dubrulle 1993; Balbus and Hawley 1998; Richard and Zahn 1999; Bisnovatyi-
Kogan and Lovelace 2001; Marov and Kolesnichenko 2011). The values of the
coefficients of molecular viscosity obtained from studies of the properties of
liquids and gases cannot explain the observed properties of astrophysical discs. The
required rate of transfer of mass towards the disc centre and the accompanying
outward transfer of momentum can be explained only for very high values of
viscosity in the disc matter, exceeding the molecular viscosity by several orders
of magnitude. Turbulent motions of the matter may lead to significant stresses wrϕ

in the disc. In addition, the Reynolds number for accretion discs is very large and
this in itself may serve as a basis for development of turbulence regardless of the
specific mechanisms for it occurrence.



1 The Standard Model of Disc Accretion 9

Differential rotation in Keplerian gaseous discs is considered the basic source
of their turbulence. The angular momentum transfer by small-scale magnetic fields
in accretion discs was suggested in Shakura and Sunyaev (1973). In the late 1950s
and early 1960s, Velikhov (1959) and Chandrasekhar (1960) discovered the MHD-
instability in shear flows with angular velocity falling outwards in the existence of
a seed poloidal magnetic field. The importance of this instability for accretion discs
was shown in the calculations by Balbus and Hawley (see the reviews by Balbus
and Hawley (1991, 1998)). Disc accretion with the presence of magnetic fields was
studied by many authors (see, for example, Eardley and Lightman 1975; Galeev
et al. 1979; Coroniti 1981; Tout and Pringle 1992; Brandenburg et al. 1996).

At the present stage of development of theories of accretion discs, there is no
full consensus regarding how to express viscous stresses in a viscous flow. Most
authors describe the action of a small scale viscosity by a phenomenological α-
prescription (Shakura 1973; Shakura and Sunyaev 1973).

In Sect. 1.2 it was assumed that the derived equations describe the average
large-scale motions in the gas. Turbulence arises as a result of transfer of part
of the energy of the large-scale motions to random perturbations on smaller
scales. In general, such chaotic perturbations in the flow have a very complicated
structure and an individual description does not seem possible. Numerical solutions
to the associated non-linear equations cannot be achieved at present due to the
unreasonably large computational power needed for such a task, and an analytical
solution to the general spatially-unbounded problem with smooth initial conditions
have not been found either. A solution to the Navier-Stokes equations is one of the
seven Millennium Goals announced in 2000 by the Clay Mathematical Institute. In
applied problems, methods based on various approximations are mainly used, for
example the Reynolds method of averaging or large-eddy simulations (Deardorff
1970).

1.3.1 The Reynolds Equations and the Reynolds Tensor

Reynolds suggested a decomposition of the hydrodynamic fields in the real medium
into two components: an average field and a fluctuating (chaotic) field, followed by
an averaging of the equations. For example, for the velocity components we assume
vi = vi + v′

i , for the pressure p = p +p′, etc. The average fields are always smooth
and slowly changing. The fluctuating fields are chaotic in both space and time. Note
that elsewhere in this chapter, we will use ρ without a bar for the local averaged
density of the turbulized matter.

Averaging the Navier-Stokes equations according to the rules suggested by
Reynolds leads to equations of motion for the average quantities—the Reynolds
equations. The method of averaging is not very important. It may be over time,
in space, or it may be a theoretical average over a statistical ensemble of various
hydrodynamic flows with common boundary conditions (Monin and Yaglom 1971).
Average quantities over space and time converge to theoretic-probabilistic mean
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values if the random process is stationary and spatially homogeneous. The second
condition is always a mathematical idealization. In practice, we can only talk about
homogeneity in some limited space and time domain. The general condition for
convergence of the values that are averaged over space and time to probabilistic
mean values is the condition of ergodicity.

Let us write down the Navier-Stokes equation in tensor notation:

ρ

(
∂vi

∂t
+ vk

∂vi

∂xk

)
= fi − ∂ (P δik)

∂xk

+ ∂wik

∂xk

, (1.27)

where fi are the components of an external force acting on a unit volume of matter.
For an incompressible fluid (ρ = const) we use the equalities

∂vk

∂xk

= 0 and
∂ (vivk)

∂xk

= vk
∂vi

∂xk

,

in particular, replacing the second term on the left in (1.27) with ∂(vivk)/∂xk.
We perform averaging according to the Reynolds rules (Monin and Yaglom 1971,

their chapter 2), part of which looks like the following:

f ′ = 0 ,
∂f

∂x
= ∂f

∂x
, vi · vk = vi · vk + v′

i · v′
k .

The average mass transfer due to turbulent motions is zero: ρ v′
i = 0.

In the Reynolds-averaged Navier–Stokes equation, we find the appearance of an
additional term dependent on the pulsating velocity (with a prime) arising due to the
non-linearity of the original equation:

ρ

(
∂ vi

∂t
+ ∂ vivk

∂xk

+ ∂ (v′
iv

′
k)

∂xk

)
= fi − ∂ (P δik)

∂xk

+ ∂wik

∂xk

.

To find out the meaning of the last term, we consider the average flow of momentum:

Πik = P δik + ρ vivk − (wik − ρ v′
iv

′
k) . (1.28)

The two first terms on the right-hand side are responsible for the reversible
(mechanical) transfer of momentum by the average motion.

We see that for turbulent motion, the viscous tensor, dependent on the properties
of the medium, is accompanied by the term connected with chaotic flows. Thus,
turbulent motions lead to exchange of momentum between different regions of the
fluid. In other words, turbulent mixing acts like viscosity. The following way of
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writing the Reynolds equations emphasizes this interpretation:

∂ vi

∂t
+ vk

∂ vi

∂xk

= fi

ρ
− 1

ρ

∂ (P δik)

∂xk

+ ∂

∂xk

(
η

∂vi

∂xk

− v′
iv

′
k

)
. (1.29)

Here, we use the expression for the viscous stress tensor in an incompressible fluid
wik = η (∂vi/∂xk + ∂vk/∂xi) (see, for example, Chapter 2 in Landau and Lifshitz
1959) and apply the incompressibility condition of the fluid.

The quantity

Rik = −ρ v′
i v′

k (1.30)

is called the Reynolds tensor for turbulent viscosity. The form of this term is
unknown and we should make more or less empirically based assumptions to
solve the Reynolds equations. The main problem of the phenomenological theory
of turbulence is finding the unknown turbulent flows (flow of momentum for the
equations above) expressed in the averaged parameters of the properties of the
medium. This problem is referred to as a closure problem.

1.3.1.1 Compressible Fluids

In the case of a compressible fluid, instead of the Reynolds average, the weighted
average as suggested by Favre (1969) is used. The weighted average velocity is
equal to ṽi = ρ vi/ ρ, where bars over the values indicate the Reynolds average
(time average). The velocity of the flow is then represented by the sum of the
weighted average and the fluctuating velocities: vi = ṽi + v′′

i . Now v′′
i �= 0 (average

over the ensemble) for ṽ′′
i = 0 (weighted average, average over the ensemble), but,

as before, the turbulent motions do not lead to transfer of mass, ρv′′
i = 0 (see, for

example, Marov and Kolesnichenko 2011, their chapter 3).
After such a representation of the hydrodynamic functions and averaging over

time of the Navier-Stokes equation for ρ �= const , we arrive at an equation of
motion, which also can be written in compact form, analogous to (1.29), but with an
additional term, which corresponds to the turbulent viscosity, of a more complicated
form:

R∗
ik = −ρv′′

i v′′
k + η

(
∂v′′

i

∂xk

+ ∂v′′
k

∂xi

− 2

3
δik

∂v′′
k

∂xk

)
. (1.31)

We ignore here fluctuations in the coefficient of molecular viscosity η. Thus, if
density fluctuations are present in the medium, the viscosity tensor cannot be divided
into two constituents, one dependent on the properties of the environment only (the
viscosity η and the average velocity vi of the laminar flow) and the other dependent
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only on the turbulent dynamics of the flow (terms with fluctuating velocity). It is
expected, however, that the second term in the last expression, the term that includes
the molecular viscosity, is significantly smaller than the first term (Pletcher et al.
1997).

1.3.2 The Closure Problem

The form of the Reynolds tensor cannot be found from the hydrodynamic equations.
The second-order moment tensors for the velocity field v′

i v′
k can be expressed from

the third- or higher-order moments (v′
i v′

j v′
k , etc.), but the number of unknowns is

always greater than the number of equations. The impossibility of finding a closed
system of equations for a finite number of moments is a consequence of the non-
linearity of the equations of hydrodynamics. In the case of weighted averaging, the
problem becomes even more complicated (Marov and Kolesnichenko 2011, their
chapter 3).

The need to solve practical problems have led to the performance of a large
number of experiments regarding turbulent flows. Based on these studies, semi-
empirical theories of turbulence have been worked out, which systematize the
obtained results.

Important steps in this direction were taken by Boussinesq (in the end of the
nineteenth century) and by Taylor, Prandtl and Karman in the 1920s and 1930s. The
semi-empirical models of turbulence are based on the analogy between turbulence
and molecular viscosity. An application of the simplest models allows us to close
the very first equations for hydrodynamic fields—the ones for lower moments (the
Reynolds equations). As a result, the Reynolds equations can be solved if Rik is
expressed from certain large-scale characteristics of the flow. These characteristics
describe the transfer of heat and momentum through the turbulent medium. Large-
scale characteristics of turbulence are to a great deal dependent on the geometry
of the boundaries of the flow and the nature of external influences, which are
always different in different situations. Therefore, on the one hand, we talk about
the ambiguity of semi-empirical closing relations. On the other hand, using more
complex closing relations leads to neither more general nor more exact solutions.
Thus, in most cases, preference is given to the simpler models, and the limits to their
applicability are studied (see Marov and Kolesnichenko 2011, their Sect. 1.1.6).

1.3.3 Coefficient of Turbulent Viscosity

The Reynolds equations can be solved only with the addition of closing relations,
which use the averaged characteristics of the turbulent flow (pressure, density,
temperature, and average velocity). This is the way semi-empirical models for
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Fig. 1.1 Coordinates in a
plane flow

turbulence are constructed.Most of these models are based on Boussinesq’s gradient
hypothesis (1897) which suggests that there is a linear connection between the
turbulent viscous tensor and the shear tensor which in turn is a linear combination
of the terms ∂v̄j /∂xi together with certain local proportionality coefficients (coeffi-
cients of turbulent transfer). It is, however, necessary to make concrete assumptions
regarding these coefficients.

Let us consider a small area inside a turbulent flow (Fig. 1.1). We consider this
area to be flat and assume that the average motion is directed along the plane of the
area (along the x-axis). Let the area be located in the plane z = 0. The frictional
force acting on a unit area, directed along the x-axis is equal to:

wxz − ρ v′
xv′

z = ρ ν
∂vx

∂z
− ρ v′

xv′
z .

According to what is called Bussinesq’s gradient hypothesis, there is an analogy
between the viscous and the turbulent flow of momentum and we may set:

− ρ v′
xv′

z = ρ νt
∂vx

∂z
, (1.32)

introducing the proportionality constant νt. This approach allows us to solve the
Reynolds equations using standard methods if we know the kinematic coefficient of
turbulent viscosity νt that replaces the usual coefficient of molecular viscosity. The
turbulent viscosity coefficient cannot be derived from microscopic considerations.

The gradient model works well for quasi-stationary flows. It is assumed that a
local equilibrium is formed in the structure of developed turbulence, in which the
characteristics of turbulence at every point of the flow are completely determined by
the local characteristics of the field of the averaged flow in the vicinity of this point
and by the local averaged parameters of the state of the medium itself.

In general, νt is significantly larger than ν. The turbulent viscosity coefficient,
as opposed to the molecular viscosity coefficient, does not describe the physical
properties of the fluid but the statistical properties of the fluctuations. Its value
depends on the method of averaging over the ensemble of analogous flows. A semi-
empirical model of turbulence can be constructed if νt is estimated in the course of
experiments. For example, it is known that in the case of motion of a turbulent flow
in a plane channel, νt cannot be constant since it has been established empirically
that νt → 0 close to the walls. In an infinite turbulent flow, however, it is often quite
reasonable to assume that νt = const (see Sect. 5.8 in Monin and Yaglom 1971).
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And thus, we moved from the unknownReynolds tensor to the turbulent viscosity
coefficient, which is also unknown. Choosing this parameter is another separate task
and, to solve it, other semi-empirical theories have been proposed in turn. These
theories, in particular, use the concept of mixing length. This concept plays an
important role in the theory of turbulent viscosity in accretion discs.

1.3.4 Mixing Length

The concept of mixing length introduced by Prandtl to the theory of turbulence
(1925) allows us not only to express simply the coefficients of turbulent mixing (in
particular, the turbulent viscosity coefficient), using the length of the mixing path,
but also to obtain defining relations for turbulent flows in some particular cases. The
mixing length is the distance which a unit volume of gas travels in a turbulent flow
before this volume is mixed completely with the surroundingmedium. This distance
is in a sense analogue to the mean free path in kinetic gas theory.

Turbulent stresses are the result of transfer of momentum due to fluctuations of
turbulent velocity. Prandtl’s hypothesis is that vortices, shifting as ‘trickles’ along
the z-axis for the path of the ‘mixing length’ ξ ′

z, retain their momentum. This is
similar to the picture of turbulent diffusion of impurities. At the height z + ξ ′

z, a
fluctuation v′

x may be represented as the difference between the proper velocity
of a trickle vx(z) (the average velocity at the initial level) and the velocity of the
surrounding flow vx(z + ξ ′

z). Linearization of the profile of the average velocity
vx yields: vx(z + ξ ′

z) = vx(z) + ξ ′
z ∂vx/∂z. We thus write the Prandtl relation for

transfer of momentum as:

v′
x = −ξ ′

z ∂vx/∂z . (1.33)

In the case of a plane shear flow, we get for the component of the Reynolds
tensor (1.30):

Rxz ≡ −ρ v′
x v′

z = ρ ξ ′
z v′

z

∂vx

∂z
. (1.34)

If we define the kinematic coefficient of turbulent viscosity as

νt = ξ ′
z v′

z , (1.35)

formula (1.34) is terminologically consistent with the gradient hypothesis (See
expression (1.32)). Formula (1.35) is similar to the formula for the molecular
viscosity coefficient: ν = lmvm, where lm is the mean free path of the molecules and
vm is the velocity of their thermal motion. The ‘amount of exchange’ in a turbulent
flow νt is also a product of the distance and velocity at which turbulent exchange
takes place—the mixing speed. The value of ξ ′

z is essentially a random (fluctuating)
quantity.
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In order for formula (1.34) to be applied in practice, the mixing speed v′
z should

also be estimated, which Prandtl does (1925). As a result of mixing, the mixing
speed itself should decrease as the conditions (velocities) in the medium are leveled
out. From this follows the assumption that the mixing speed should be proportional
to the velocity gradient of the average motion ∂vx/∂z. This simultaneously means
that the fluctuations of velocity in different directions have similar absolute values,
i.e. v′

z ∼ v′
x (Monin and Yaglom 1971).

We thus use (1.33), substituting in (1.34), and obtain:

Rxz = ρ (ξ ′
z)

2
∣∣∣∂vx

∂z

∣∣∣ ∂vx

∂z
,

where the modulus is inserted in order that the sign of the turbulent viscosity tensor
be the same as for ∂vx/∂z. This corresponds to the fact that momentum is transferred
from layers moving faster to those moving more slowly. Then for the kinematic
coefficient of the turbulent viscosity we obtain the Prandtl formula (1925):

νt = α∗ L2
∣∣∣∂vx

∂z

∣∣∣ , (1.36)

where α∗ is a dimensionless quantity of the order of 1. The local mixing path ξ ′
z is a

too uncertain quantity and cannot be measured. Here, the distance L, or the mixing

length, is already not a random quantity. Its magnitude is of the order of
√

(ξ ′
z)

2 and
characterizes the scale of turbulence. Now, what is left is to establish the dependence
of L on the coordinates, for example, empirically.

The expression (1.36) may also be retrieved from dimensional considerations.
For this we use the principle of local similarity of turbulent transfer (Sect. 3.3 in
Marov and Kolesnichenko (2011)),—the coefficients of turbulent transfer in each
point depend only on the properties of the medium in this point, the local size of the
scale of turbulence L and on certain characteristics of the averaged flow. In other
words, νt is a function of the quantities ν, L, and ∂vx/∂z. The scale L characterizes
the geometry of the turbulent flow or the characteristic size. Far away from the
hard surface, ν can be excluded from the list of parameters, and the dimensional
considerations yield the Prandtl formula (1.36).

The constant factor α∗ is determined for each specific type of motion on the basis
of experimental data.

1.3.5 Turbulent Viscosity Parameter α

Let us consider an accretion disc, with orbital motion in circular orbits and orbital
velocities in the plane parallel to the disc symmetry plane. Placing an imaginary
wall perpendicular to the radius in a given point at a distance r� from the centre, we
find the frictional force applied per unit area of the wall.
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The averaged velocity of matter in the disc is tangential to the radius with
great accuracy since the orbital velocity dominates over other components. Let the
imaginary wall rotate around the centre with the averaged velocity of the flow. The
frictional force is directed tangentially and is equal to the density of the flow of the
ϕ-component of momentum in the radial direction. If we assume, as mentioned in
Sect. 1.3.1.1 after formula (1.31), that the first term in the turbulent viscosity tensor,
defined only by the dynamics of the flow, dominates over the others, which contain
the molecular viscosity coefficient η, then the rϕ-component for the frictional stress
on the wall is equal to

(wrϕ − ρ v′′
r v′′

ϕ) r=r� = (ρ ν r
dω

dr
− ρ v′′

r v′′
ϕ) r=r� ,

where we used the expression for the component of the stress tensor in cylindrical
coordinates (see Chapter 2 in the book by Landau and Lifshitz 1959).

According to common practice, we will define wt
rϕ as the quantity with opposite

sign to the component of the viscous stress tensor in the disc wrϕ .1 Using the
gradient hypothesis (see Sect. 1.3.3 and (1.32)) we can write:

wt
rϕ ≡ ρ v′′

r v′′
ϕ = −ρ νt r

dω

dr
, (1.37)

where νt is the kinematic coefficient of the turbulent viscosity [cm2/s]. For a
Keplerian disc, we get from (1.37):

wt
rϕ = 3

2
ωK νt ρ . (1.38)

As a consequence of the Prandtl hypothesis (1.35), νt = vt lt , where vt and
lt are the velocity and length of turbulent mixing, respectively, which both take
random values in a turbulent flow.2 Applying the Prandtl relation to describe the
radial transport of turbulent velocity

vt = lt r

∣∣∣∣dωd r

∣∣∣∣
(cf. (1.33)), we get, substituting in (1.37), that

wt
rϕ = ρ v2t ≡ m2

t ρ v2s ,

1With this definition, wt
rϕ will be positive in accretion discs. In other literature on the subject, the

definition trϕ = −wt
rϕ is often used instead.

2They are analogous to the quantities v′
x and ξ ′

z discussed in Sect. 1.3.4.
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where the averaged turbulent velocity squared (fluctuating component of the

velocity of matter in the disc) v2t is expressed using the sound speed vs and the

Mach number m2
t = v2t /v2s .

The last formula can be rewritten as

wt
rϕ = αP , (1.39)

where the dimensionless quantity α is called the turbulent parameter and P is the
total pressure (the sum of gas and radiation pressures).

Disc models, in which turbulence is taken to be the source of viscosity and
where the connection (1.39) is used, are called α-discs. In the simplest models,
this coefficient is considered fixed within the whole accretion disc. Its value may
be found from a comparison with observations of transient phenomena, which are
manifestations of viscous evolution of discs in the case of non-stationary accretion
onto space objects.

Equating (1.38) to the quantity αρ v2s , we obtain a relation between the dimen-
sionless turbulence parameter and the kinematic viscosity coefficient in a Keplerian
disc:

νt = 2

3
α v2s

1

ωK

= 2

3
α vs zhyd , (1.40)

where we introduce the ‘hydrostatic half-thickness’ of the disc, which can be found
from approximate integration of (1.18):

zhyd ≡
√

p

ρ

1

ω2
K

= vs

ωK

.

Using (1.35), which is a consequence of the Prandtl hypothesis, we may write:

α = vt lt
2
3 vs zhyd

.

From general considerations it is clear that the α-parameter is a quantity whose value
does not exceed unity. Indeed, if the turbulent motions have velocities exceeding the
sound speed, these motions are quickly quenched by shock-waves. The inequality
lt > zhyd would suggest that the turbulence has an anisotropic character since the
transverse thickness of the disc is limited by the quantity ∼ zhyd.

The use of the α-parameter is justified in situations where it may be considered
approximately constant. As proved during the last decades, such an approximation
describes well a variety of observed phenomena in sources with disc accretion.
Numerical modelling of outbursts in dwarf novae and X-ray transients demonstrates
that the α-parameter can be considered constant for certain ranges of physical
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conditions in these astrophysical discs. Typical values from observations are 10−2−
1 (Meyer and Meyer-Hofmeister 1984; Cannizzo 1998; Kotko and Lasota 2012).

1.4 Thin Discs

1.4.1 Equations of Radial Structure

Let us write down the equations for disc accretion for geometrically thin α-discs. We
will neglect any dependence of the physical parameters in the disc on z, averaging
(integrating) along the vertical. We will consider discs without radial advection
(transfer of heat with matter moving radially) and without mass loss from the disc
surface. In such discs, the angular velocity of the rotating matter at each radius r

is approximately equal to the angular rotational velocity of a free particle. In other
words, vr � vϕ .

The parameters determining the structure of a geometrically thin disc are the
mass of the gravitating centre M , the inner radius of the accretion disc rin and the
accretion rate Ṁ .

1.4.1.1 Mass Conservation Equation

We introduce the surface density

Σ0(t, r) =
∫ +z0

−z0

ρ(t, r, z) dz , (1.41)

where z0 is the disc half-thickness at radius r . As agreed earlier, the velocities in
thin discs are independent of z. Integrating (1.2) along the disc height, we obtain:

∂Σ0

∂t
= −1

r

∂

∂r
(Σ0 vr r) . (1.42)

The product within parentheses on the right-hand side of this equation, multiplied
by 2π , is equal to the radial flow of the matter in the disc [g/s] through a cylindrical
surface with radius r .

1.4.1.2 The r-Component of the Equation of Motion

For a thin stationary disc, the dominant terms in this equation are

v2ϕ

r
= ∂Φ

∂r
. (1.43)
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For a Newtonian potential, this equation corresponds to Kepler’s law:

ωK =
√

G M

r3/2
.

Other potentials that take into account the curvature of space around a
Schwarzschild black hole are discussed in Sect. 1.4.4.

1.4.1.3 The ϕ-Component of the Equation of Motion

After multiplying by ρ r2, we integrate vertically (1.4) and obtain the law of
conservation of the angular momentum

Σ0 vr r
∂ (ω r2)

∂r
= − ∂

∂r
(Wrϕr2) , (1.44)

where

Wrϕ(t, r) =
∫ +z0

−z0

wt
rϕ(t, r, z) dz (1.45)

is the height-integrated component of the viscous stress tensor.

1.4.2 Solution for a Constant Accretion Rate

From the continuity equation (1.42) it follows that in the stationary regime

Σ0 vr r = const .

We determine the accretion rate as the mass of matter intersecting the surface of a
cylinder with radius r per unit time:

Ṁ ≡ −2πr vr Σ0 . (1.46)

The minus sign is inserted in order to make a quantity Ṁ positive and to compensate
for the fact that as matter moves towards the centre, vr < 0.

For a constant accretion rate, the equation of motion (1.44) can be easily
integrated:

Ṁ ω r2 − 2π Wrϕ r2 = const . (1.47)
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This is the law of conservation of angular momentum for a stationary disc. The
constant can be determined from the boundary conditions at the inner edge of the
disc:

Ṁ (h − hin) = F − Fin,

where F is the momentum of viscous forces between adjacent rings of the disc (the
viscous torque, a positive quantity in our notation)

F = 2π Wrϕ r2 , (1.48)

and h = ω r2 is the specific angular momentum, where the subscript indicates
quantities at the inner disc radius.

The equation of conservation of angular momentum can be written in the form:

Wrϕ = Ṁ ω

2π
f (r) or F = Ṁ h f (r) , (1.49)

where the function f (r) = 1 − hin/h + Fin/(Ṁ h) contains information about
inner boundary conditions for the viscous stress tensor (the form of f (r) at Ṁ(r) �=
const , see Sect. 1.5.3). For example, in the case of black holes, the viscous stress
tensor is set to zero since the inner radius of the disc is determined by the radius
of the last stable orbit, from which matter falls freely onto the black hole. Then, far
away from the inner radius, f (r) ≈ 1. For accretion onto a magnetized star, the
stress tensor at the inner edge of the disc depends on the strength of the magnetic
field and its radial distribution changes accordingly. For central objects with a
sufficiently strong magnetic field, accretion may seize at the inner radius of the
disc. Such discs are called disc reservoirs (Syunyaev and Shakura 1977). In a disc
reservoir F is radially constant close to the inner boundary, and at large radii F is
affected by the conditions at the outer boundary.

1.4.3 Radial Velocity of Matter in the Disc

Let us estimate the radial component of the velocity of matter in a disc in the
stationary regime from the ϕ-component of the equation of motion. For this, we
use (1.49) in the approximation f (r) ∼ 1, which is valid in the quasi-stationary
case, far away from the centre, and definition of accretion rate (1.46):

|vr | = Ṁ

2π r Σ0
= Wrϕ

ω r Σ0
.
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Obviously, this velocity, with which matter approaches the gravitating object,
depends on the value of the viscosity. We use the formula (1.38) and obtain:

|vr | = 3

2

νt

r
, (1.50)

where Wrϕ ≈ 2 z0 wt
rϕ and Σ0 ≈ 2 z0 ρ (cf. (1.41), and (1.45)).

The characteristic time scale for movement of the matter radially towards the
centre is

τvis ∼ r

|vr | = 2

3

r2

νt
.

Making an assumption regarding the α-viscosity in the disc and using the
relation (1.40) between νt and α, we re-write the obtained formulas in the form:

|vr | = α vs
z0

r
= α vϕ

(z0

r

)2
, (1.51)

τvis = 1

α ωK

(z0

r

)−2
. (1.52)

In a geometrically thin disc, the viscous time scale is much larger than the cha-
racteristic dynamic time scale

τdyn ∼ r

vϕ

∼ 1

ωK

. (1.53)

1.4.4 Accretion Onto a Black Hole

In Chap. 3, devoted to relativistic standard discs, a theory will be presented, the
basics of which were worked out by Novikov and Thorne (1973). For further
acquaintance with the astrophysical aspects of this theory we also recommend the
books by Shapiro and Teukolsky (1983), Thorne et al. (1986). Here, we outline only
the basics of the behavior of an accretion disc around a black hole.

Close to the black hole the curvature of space-time plays a crucial role for the
formation of an accretion disc. The thin-disc approximation, according to which
matter rotates in approximately circular orbits, breaks down. The flow of matter
onto the black hole speeds up, becomes highly supersonic in the radial direction
and, starting from some certain radius, goes in the free-fall regime.

At free fall, the momentum of the in-falling matter is conserved. In this case,
there is no outward flux flow of the viscous tensor, implying that it is equal to zero
at the disc inner boundary: Fin = 2πWrϕr2in = 0. This condition is confirmed
by numerical one-dimensional calculations of the equations of hydrodynamics in a
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post-Newtonian potential (Shafee et al. 2008). It turns out that the conditions for the
viscous stress tensor to be equal to zero are satisfied close to the innermost stable
circular orbit.

For non-rotating black holes, the radius of the innermost stable circular orbit
rISCO = 3Rg, where the Schwarzschild radius Rg is the event-horizon radius of a
non-rotating black hole:

Rg = 2G M/c2 .

The radius rISCO for a rotating black hole is determined in the Kerr space-time metric
and given by formula (3.22) in Sect. 3.1.3.

At radii less than 3Rg, there is no energy release due to viscosity. We note that in
this area radiation may be generated as a result of processes which involve plasma
and magnetic fields.

Thus, for accretion onto a Schwarzschild black hole, the boundary condition at
the inner radius is written as

Wrϕ(r = 3Rg) = 0 .

We use Eq. (1.47) for Ṁ = const in the form

Ṁ(ωin − ω) = 2π Wrϕ ,

or, for the viscous torque,

F = Ṁ(h − hin) , (1.54)

where hin is the specific angular momentum of the matter at the innermost orbit
around the black hole.

If the viscous stress tensor is equal to zero at the inner boundary of a stationary
infinite disc, the function in (1.49) is:

f (r) = 1 − hin/h(r) + Fin/(Ṁ h) = 1 − hin/h(r). (1.55)

In the Newtonian approximation, f (r) = 1 − √
rin/r and

Wrϕ = Ṁ ω

2π
(1 − √

rin/r) .

To approximately take into account the effects of general relativity in the vicinity
of non-rotating black holes, the Paczynski–Wiita potential can be used (Paczynsky
and Wiita 1980):

ΦPW = − G M

r − Rg
. (1.56)
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For free particles in circular orbits, the velocities can be found from (1.3):

v2ϕ

r
= dΦ

dr
. (1.57)

As a result, we obtain

vPWϕ

c
= 1√

2

√
r Rg

(r − Rg)
,

and the specific angular momentumof a test particle in the Paczynski-Wiita potential
is:

hPW = vPWϕ r =
√

G M r

(1 − 2G M

c2 r
)2

. (1.58)

The modified potential (1.56) is often used (for example when substituting
into (1.43)) since it fits quite well the curvature effects of the space-time metric
around a Schwarzschild black hole. Other approximate potentials, in particular such
applicable to the case of rotating black holes, can be found in the book by Kato et al.
(1998).

Let us write down the Schwarzschild stationary metric as the square of the
interval between two events separated in time and space

ds2 = −(1 − Rg/r) dt2 + (1 − Rg/r)−1 dr2 + r2(dθ + sin2 θ dϕ) .

Here, t, r, θ, ϕ are the Schwarzschild coordinates. Due to the curvature of space-
time near a black hole, the distance element dl along the radius, as measured by a
local observer, is longer than the corresponding coordinate element dr (see Fig. 1.2):

dl = dr√
1 − Rg/r

.

Fig. 1.2 Illustration of the
‘shrinking’ of a coordinate
element dr , corresponding to
an element of distance dl,
measured by a stationary
observer
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To describe the relativistic motion in the vicinity of a Schwarzschild black hole,
we may use the following ‘logarithmic’ potential (Landau and Lifshitz 1973; Thorne
et al. 1986; Abramowicz 2016):

Φ = c2

2
ln

(
1 − Rg

r

)
= c2 ln

√
1 − Rg

r
. (1.59)

Here
√
1 − Rg/r is the lapse function in the Schwarzschild metric. It determines

the redshift of the signal emitted from the vicinity of the black hole and the
difference between two time intervals, one of which, dt , is measured at infinity and
the other, dτl , by an observer in the local stationary reference frame:

dτl/dt =
√
1 − Rg/r . (1.60)

The time measured in the frame of moving particle is related to the time measured
by the local stationary observer as

dτp/dτl =
√
1 − v2/c2 . (1.61)

The momentum ppp and the energy Elocal of a relativistic particle with rest mass
mo relative to the local stationary observer are

ppp = mo vvv√
1 − v2/c2

, and Elocal = mo c2√
1 − v2/c2

,

respectively, where v2 = v2r + v2ϕ for particles moving in the equatorial plane.
We may also introduce the notion of ‘energy at infinity’ E. This value remains
unchanged along the particle trajectory. Let us determine it.

Consider a particle travelling past a stationary observer who is located at a
distance r from the centre of a black hole. The equation of particle motion in the
reference system of this observer looks as follows:

dppp

dτl

= − mo√
1 − v2/c2

∇∇∇Φ . (1.62)

Note that the potential Φ is spherically symmetric. On multiplying Eq. (1.62) by vvv,
we obtain

vvv
d

dτl

(
movvv√

1 − v2/c2

)
= − mo vvv√

1 − v2/c2
∇∇∇Φ = − mo vvv eeer√

1 − v2/c2

dΦ

dl
, (1.63)
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where eeer is a unit radial vector in the Cartesian reference system of the local
observer. Further, we differentiate the left-hand side of (1.63):

1

2

mo√
1 − v2/c2

dv2

dτl

+ 1

2

mo v2/c2

(1 − v2/c2)3/2

dv2

dτl

= − mo vvv eeer√
1 − v2/c2

dΦ

dl
.

When multiplying this by (1 − v2/c2)3/2, cancelling out the two equal terms
with opposite signs in the left-hand part of the equation and using the equality vr =
dl/dτl for the radial velocity, we obtain

1

2

d

dτl

(1 − v2/c2) = (1 − v2/c2)
dl

dτl

d

dl
ln(1 − Rg/r)1/2 ,

which is equivalent to the following equation

d

dτl

ln(1 − v2/c2) = d

dτl

ln(1 − Rg/r) .

Finally, we obtain the following relationship:

(1 − Rg/r)
/

(1 − v2/c2) = const.

Hence, the value

E = mo c2√
1 − v2/c2

√
1 − Rg

r
= Elocal

√
1 − Rg

r
= const , (1.64)

does not change for a freely moving particle, while the locally measured energy
Elocal varies in the gravitational field of the black hole. This value E is termed
‘energy-at-infinity’ (Thorne et al. 1986). For a photon, the rest mass of which is
mo = 0, Eq. (1.64) yields the relation between its frequency in the reference system
of the local observer νo and its frequency detected at infinity ν∞ = νo

√
1 − Rg/r ,

describing the redshift effect.
In the non-relativistic approximation, the expression for the energy EN of the

particle has the well-known form

E − mo c2 = EN = mo v2/2 − mo G M/r .

Let us now determine the components of the particle velocity in the equatorial
plane. A freely moving particle with mass mo keeps its angular momentum
unchanged

hp = mo vϕ r√
1 − v2/c2

. (1.65)
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When taking into consideration that v2 = v2r + v2ϕ , Eqs. (1.64) and (1.65) yield

v2r

c2
= 1 − m2

o c4

E2

(
h2p

r2 m2
o c2

+ 1

) (
1 − Rg

r

)
. (1.66)

Multiplying this by a factor E2/(m2
o c4) and using (1.61) and (1.64) together with

the relation

v2r

c2
= 1

c2

(
dr

dτp

)2
m2

o c4

E2 ,

we may rewrite (1.66). As a result, we obtain the law of motion for a particle with
energy E, which is identical to the exact solution in GR, see Shapiro and Teukolsky
(1983):

1

c2

(
dr

dτp

)2

= E2

m2
o c4

−
(

h2p

r2 m2
o c2

+ 1

) (
1 − Rg

r

)
.

Note that in the approximation of the Newtonian potential, this law of motion looks
as follows:

v2r = 2

mo

(
EN + mo

G M

r

)
− h2N

r2 m2
o

,

where hN = mo vϕ r = const .
Let us consider particles moving in circular orbits around a Schwarzschild

black hole. For such motion, both vr and dr/dτp become zero. For the sake of
convenience,we may introduce an effective potential (Shapiro and Teukolsky 1983):

V (r) =
(

h2p

r2 m2
o c2

+ 1

) (
1 − Rg

r

)
.

For circular orbits, the first derivative of this potential becomes zero (the potential
has an extremum). The system of equations

dr

dτp
= 0 ,

∂V (r)

∂r
= 0

yields the following angular momentum in a circular orbit:

h2p = m2
o r Rg c2

2 − 3Rg/r
. (1.67)
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After squaring (1.65), we derive the tangential velocity, as measured by the local
observer, from (1.67):

vϕ

c
= 1√

2

√
Rg

r − Rg
. (1.68)

For the local observer, the angular velocity of a particle is

ωl = vϕ

r
= c√

2 r

√
Rg

r − Rg
. (1.69)

Using (1.60), we obtain for an observer at infinity:

ω = c
√

Rg√
2 r3/2

=
√

G M

r3/2
, (1.70)

that is, the classical expression following from Kepler’s law.
According to the Rayleigh criterion (Rayleigh 1917), stable orbits cannot exist

where dhp/dr < 0. This criterion implies that the last stable circular orbit has a
radius rISCO = 3Rg.

When substituting the velocity vϕ = c/2, which corresponds to rISCO, into (1.64),
we determine the energy of a particle rotating in the innermost possible stable
orbit. The energy of this particle, E = mo c2 2

√
2/3, is less than its rest energy

at infinity, m0 c2. This means that when a particle moves from infinity towards the
Schwarzschild black hole, that is, in the process of accretion, the released energy is
(m0 c2−E) ≈ 0.0572m0 c2. Thus, the energy conversion efficiency in the accretion
process onto a non-rotating black hole is equal to∼ 6%. A calculation using the Kerr
metric shows that the binding energy of the particle is largest for an extremely-fast
rotating black hole and equals to 1 − √

1/3 ≈ 0.423 times the rest energy (Kato
et al. 2008).

Extracting the square root of (1.67), we find the specific angular momentum of a
particle in circular orbit in the Schwarzschild metric:

h = hp

mo

=
√

G M r√
1 − 3G M

c2 r

. (1.71)

Figure 1.3 (upper panel) shows the dependence of the specific angular momentumof
a test particle on the radius of the orbit in the gravitational field of the black hole. In
addition, the respective dependencies are shown in the Newtonian potential (dashed
line) and in the Paczynski–Wiita potential (dotted line). In the gravitational field of
the Schwarzschild black hole, the specific angular momentum h becomes minimum
at the radius of the innermost stable circular orbit 6G M/c2. In contrast to the case
of the Newtonian potential, the first derivative of the specific angular momentum,
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Fig. 1.3 Specific angular
momentum h of a test particle
in the gravitational field of a
black hole (uppermost panel)
and the viscous torque F(h)

in a stationary disc,
normalised values (lower
panels). The inner radius of
the disc is
rin = 3Rg = 6G M/c2. Solid
lines show the dependence in
the exact logarithmic
potential (1.59), dotted lines
show the same in the
Paczynski–Wiita potential,
dashed lines—in the
Newtonian approximation. In
the middle panel, a
rectangular area is drawn,
shown enlarged in the lower
panel
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dh/dr , vanishes at this radius (see Fig. 1.3, upper panel). The innermost stable orbit
is located at 3Rg in both the approximate Paczynski–Wiita potential (1.56) and
the exact potential (1.59). The binding energy in the Paczynski–Wiita potential,
however, differs from the value in the Schwarzschild metric:

(m0 c2 − E)/(m0 c2)

Newtonian potential: 1/12

Paczyński–Wiita potential: 1/16

Logarithmic potential and Schwarzschild metric: 1 − 2
√
2/3

Circular orbits exist only down to the radius where vϕ = c. In the logarithmic
potential, the innermost circular orbit lies at 3Rg/2, which coincides with the exact
value predicted by general relativity. In the Paczynski–Wiita potential, the innermost
circular orbit is located at 2Rg.

Figure 1.3 also shows the viscous torques in the disc as functions of radius given
by formula (1.54). Note that, for both the Paczynski–Wiita and the logarithmic
potentials, the torque itself, as well as its first derivative, vanishes at the innermost
stable orbit (see Fig. 1.3, lower panel).

1.4.5 Energy Release in Geometrically Thin Discs

Let us return to the study of discs in the Newtonian approximation. A detailed
analysis of the energy balance equation is given, for example, in the appendix of
the book by Kato et al. (1998). The energy dissipated in the disc per unit volume per
unit time is equal to

ε = ρ νt r
2
(
dω

dr

)2

. (1.72)

In the general case of optically thick discs, the energy release ε can be given in
the form of a power-law function of temperature and density (Tayler 1980).

In the simplest approximation for a geometrically thin disc, all the energy
released due to friction in a disc ring is radiated away from the top and bottom
surfaces of this ring. The energy released per unit time per unit surface area of a
geometrically thin disc in a calculation per one side of the disc is

Qvis(t, r) ≡
∫ +z0

0
ε(t, r, z) dz = −1

2
Wrϕ r

dω

dr
. (1.73)

Note that the last formula works also in the case of disc reservoirs (Syunyaev and
Shakura 1977), in which the accretion rate is zero. In view of (1.49), we have for an
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accreting disc:

Qvis = − Ṁ

4π
ω r

dω

dr
f (r) . (1.74)

For a Keplerian disc, the above expressions can be re-written in the form
(using (1.72)):

ε = 3

2
ωK wt

rϕ = 9

4
ρ νt ω

2
K , Qvis = 3

4
ωK Wrϕ = 3

8π
Ṁ

G M

r3
f (r) .

(1.75)

One can see that the viscous time scale (1.52) in a geometrically thin disc is much
larger than the characteristic thermal time scale, on which the thermal energy in a
unit volume changes:

τth ∼ ρ v2s

ε
∼ 1

α ωK

, (1.76)

where we have replaced νt using (1.40).
For an accretion disc with a zero viscous torque at the inner boundary and with a

Keplerian distribution of angular momentum, we have (see Eq. (1.55)):

Qvis = 3

8π
Ṁ

G M

r3

(
1 −

√
rin

r

)
,

where rin is the radius of the inner boundary of the disc.
The most general expression for the viscous heat in a Keplerian disc, including

one with zero accretion rate, is:

Qvis = 3

8π

ωK F

r2
or Qvis = 3

8π
F

(G M)4

h7K
, (1.77)

where hK is the specific angular momentum and F is the viscous torque (1.48).
The energy balance equation for geometrically thin discs reflects the fact that the

thermal energy released due to viscosity at radius r is completely radiated away at
the same radius:

Qvis(r) = Qrad(r) , (1.78)

whereQrad(r) is the radiated flux from one of the two surfaces of the accretion disc.
The last equation requires a modification if the accretion rate is high, � ṀEdd. It
turns out that the radial transport of heat should also be taken into account.
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In the approximation of a disc radiating like a blackbody, it is possible to
characterize its flux with an effective temperature:

Qrad = σSB T 4
eff , Teff ∝ r−3/4 . (1.79)

The effective temperature at the disc surface has its maximum Tmax at radius

rmax =
(
7

6

)2

rin ,

and is equal to

Tmax = 23/4
(
3

7

)7/4
(

G M Ṁ

π σSB r3in

)1/4

= 2

(
3

7

)7/4
(

Ld

π σSB r2in

)1/4

.

We introduced in the last formula the total bolometric luminosity from both sides
of the disc, equal to half the released gravitational energy of the matter falling from
infinity to the gravitating centre:

Ld = 4π

∫ rout

rin

Qrad r dr = 1

2
Ṁ

G M

rin
.

The specific potential energy of a particle moving from infinity to the inner edge of
the disc decreases from zero to −G M/rin. Half of this energy heats the disc and is
radiated and the other half goes into kinetic energy of rotation.

This ‘virial theorem’ does not apply to individual rings in the disc. We integrate
the energy released from the disc at distances r � rin from both sides of the disc:

2
∫

3

8π
Ṁ

GM

r3
2π r dr = 3

2
Ṁ

GM

r
,

and find that it is three times as high as the amount of released gravitational energy.
This happens since along with angular momentum, transferred outwards from the
centre during the accretion process, a part of the energy is transferred as well.

Indeed, using the definitions of the integrated quantities (1.45), (1.46), and (1.73),
let us multiply the energy balance equation (1.26) by 2πr and integrate it over disc
thickness, keeping in mind that we agreed to use the positive valuewt

rϕ = −wrϕ for
accretion discs. We obtain

Ṁ
∂

∂r

(v2ϕ

2
+ Φ

)
= 2π r × 2Qvis + ∂

∂r
(ωK F) , (1.80)

where F = 2π r2Wrϕ is the total viscous torque between neighboring rings in the
disc, introduced in Sect. 1.4.2. And thus, the energy from gravitational interaction,
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released as matter moves towards the centre, is dissipated (radiated from both sides
of the disc) and is redistributed over the disc as a result of the work of viscous forces
transferring angular momentum.

Another important conclusion can be drawn from considering the last equation.
The disc releases heat and radiates even if the accretion rate is zero. If the matter
cannot pass through the inner boundary, the radial motion of matter towards the
disc centre may be interrupted. This happens, for example, if the central object is a
neutron star with a strong magnetic field. While Ṁ = 0, the viscous forces do not
stop working, the matter is heated up and the heat turns into radiation. The energy in
such a disc, along with the angular momentum, comes from the neutron star through
the inner boundary of the disc.

1.4.6 Disc Radiation

The radiative flux in a unit solid angle from a flat accretion disc at distance d from
the disc is equal to

Fν = 2π

d2 cos i

∫ rout

rin

Iν r dr , (1.81)

where i is the inclination of the disc to the line of sight and Iν(r) is the intensity of
radiation from the disc surface.

In the disc photosphere, the following radiative processes are frequently consid-
ered (see, for example, Kato et al. 2008):

• Free-free and bound-free transitions,
• Scattering off free electrons,
• Compton scattering (scattering off cold electrons),
• Inverse Compton scattering (if the energy of the electrons and/or ions are very

high),
• Line broadening caused by the rotation of the disc.

The Planck spectrum describes the spectral density of electromagnetic radiation
emitted by an isothermal atmosphere if scattering is not taken into account. At every
radius, the disc radiates like a blackbody of temperature Teff with intensity:

Bν(Teff) = 2 h ν3

c2

1

ehν/kTeff − 1
. (1.82)

The spectral flux integrated along the disc radius in shown in Fig. 1.4.
For a disc spectrum as shown in Fig. 1.4, the power-law distribution describes

the middle interval. Let is determine the power-law index of this distribution.
Almost the whole disc, with the exception of the central parts (which, however,
give an overwhelming contribution to the total amount of the radiated energy),
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Fig. 1.4 Spectral distribution
of radiative flux density from
a standard optically thick,
geometrically thin disc in the
Newtonian metric. The
horizontal axis shows the
normalised radiation
frequency. The vertical axis
shows the spectral radiative
flux density in units of
[erg/Hz/cm2/s] normalised to
the maximum flux density at
h ν/k Tmax ≈ 0.8. The
maximum of distribution νFν

is at h ν/k Tmax ≈ 2.5

may be characterized by the effective temperature in the form of a simple power-
law function of radius (1.79). Substituting r = r0(T0/Teff)

4/3 and (1.82) in the
integral (1.81), we get

Fν = 16π

3 d2 cos i

(
k T0

h

)8/3
h ν1/3

c2
r20

∫ xout

xin

x5/3

ex − 1
dx ,

where we have made the substitution x = hν/kTeff = (hν/kT0) (r/r0)
3/4.

The radius r0 can be chosen rather close to rin, implying that T0 ≈ Tmax with
fairly good accuracy. Then x = (hν/kTmax)(r/rin)

3/4. At those frequencies where
the conditions xin � 1 and xout � 1 are satisfied, the value of the integral in the
last expression varies only little for different ν, and is approximately equal to the
integral from zero to infinity when expressed with the help of the special gamma
function and Riemann zeta function as (10/9) Γ (2/3) ζ(8/3) ≈ 1.93. Thus, for a
wide frequency range (rin/rout)

3/4 < hν/kTmax < 1, the spectral flux density of
disc radiation depends on the frequency according to Fν ∝ ν1/3.

For a homogeneous atmosphere where scattering is present, the spectrum will
differ from that of a blackbody (Felten and Rees 1972):

Iν �
√

�a

�a + �sc
Bν(Teff) ,

where �a is the absorption coefficient and �sc is the coefficient for scattering off free
electrons. If electron scattering dominates over absorption and if the disc spectrum
is susceptible to Comptonization, the change in shape of the X-ray spectrum from a
disc around a stellar mass compact object is approximately described by the spectral
hardening factor fc:

Fν = 1

f 4
c

π Bν(fc Teff) ,
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where Fν is the flux from a unit surface into a half-space. The product fc Teff is
called the colour temperature. The power of four is explained by the fact that the
total radiated energy from the disc is independent of the spectral shape.

1.5 Stationary α-Discs

As we have seen in Sect. 1.4, the use of the continuity equation and the equation of
motion, integrated (or averaged) along the vertical coordinate, enable us to find out
the radial structure of thin stationary accretion discs. Is is possible to separately
study the vertical and the radial structure of the disc because the characteristic
time scales, namely, viscous and hydrostatic ones, are significantly different. The
characteristic hydrostatic time scale corresponds to the time scale for changes in
the thickness of the disc at a given radius as a result of a change of its central
temperature. For dimensional reasons, this quantity is proportional to the disc half-
thickness divided by the sound speed, z0/vs ∼ 1/ωK ∼ τdyn, and corresponds to
the dynamical time which is much smaller than the viscous time in a thin disc (see
Sect. 1.4.3).

The vertical structure of accretion discs in the general case (stationary as well
as non-stationary) is described by a system of four ordinary differential equations,
the exact solution to which, for given boundary conditions, can be found using
numerical methods. In some sense, a calculation of the vertical structure of a disc
is similar to the calculation of the internal structure of stars (Tayler 1980). The
system of differential equations for the vertical structure of a disc was solved by a
number of authors (see, for example, Meyer and Meyer-Hofmeister (1982), Shaviv
and Wehrse (1986), Suleimanov (1992), Cannizzo (1992), Ketsaris and Shakura
(1998), Hameury et al. (1998), Dubus et al. (1999)).

The disc can be divided into different zones (A, B, and C) according to the
processes predominant in opacity formation and depending on comparative role of
gaseous and radiative pressure (Shakura and Sunyaev 1973). A high temperature
zone with main contribution from radiation pressure may arise in the central parts
of the disc—the so-termed zone A. In this region, the opacity is determined by
electron scattering. There are a number of studies devoted to the instabilities in
this region (Lightman and Eardley 1974; Shibazaki and Hōshi 1975; Shakura and
Sunyaev 1976). It was shown that zone A is thermally and viscously unstable. Its
vertical structure can be described using the polytrope approximation. Convection
plays an important role in the energy transfer to the disc surface (Bisnovatyi-Kogan
and Blinnikov 1976; Shakura et al. 1978). In addition, the standard model should
be modified since it is necessary to take into account non-Keplerian motion of
gas in the disc due to a significant contribution of the pressure gradient in the
equation of motion. It is also important to address the non-local character of the
energy balance equation because the heat is effectively transported together with
the radially moving matter (Paczynski and Bisnovatyi-Kogan 1981).
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For quick estimates, one can use the following expressions. The boundary
between zones A and B, where the gas pressure equals the radiative pressure, is
located at

RAB/(3Rg) ∼ 80 (mx α)2/21 (Ṁ/ṀEdd)
16/21 .

The boundary between zones B and C, where the cross-sections of absorption and
scattering of photons are equal:

RBC/(3Rg) ∼ 330 (Ṁ/ṀEdd)
2/3 .

The outer boundary of zone C, beyond which recombination of hydrogen starts:

RC/(3Rg) ∼ 105 (Ṁ/ṀEdd/mx)
1/3 .

We have normalised here the accretion rate to its critical value ṀEdd = 1.4 ×
1018 mx g/s (see Sect. 1.1), the radius, to the characteristic value of the inner radius
of a disc around a compact object, 3Rg ≈ mx × 8.9× 105 cm (see Sect. 1.4.4), and
the mass of the central body, to the solar mass: mx = M/M�.

In this section, we consider only the stable zones of the disc where the standard
model holds. In Sect. 1.5.1 we write down the standard disc equations (Shakura and
Sunyaev 1973). In Sects. 1.5.2 and 1.5.3 we consider zones B and C, for which we
present stationary solutions.

1.5.1 Equations of Vertical Structure

1.5.1.1 Equation of Hydrostatic Balance

The equation of hydrostatic equilibrium along the z-coordinate in the Newtonian
metric in the case of a thin disc has the form:

1

ρ

dP

dz
= −ω2

K z , (1.83)

whereP(z) is the total pressure in the disc, equal to the sum of the radiation pressure
Prad(z) = aT 4/3, where a = 7.56×10−15 erg/cm3/K4 is the radiation constant, and
the gas pressure Pgas(z), which is determined from the equation of an ideal gas:

Pgas = ρ

μ

kT

mp
,

where μ is the mean molecular weight of matter in the disc, T (z) is the temperature
and ρ(z) the density of the matter.
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1.5.1.2 Energy Generation

The heat dissipated in the disc at a given radius between the plane of symmetry of
the disc and a given level at height z is a function of the vertical coordinate z:

Qvis(z) =
∫ z

0
ε dz̃ .

The rate of energy generation ε [erg/cm3/s] in a Keplerian disc is determined by the
viscous stress tensor. From (1.75) we have:

dQvis

dz
= 3

2
ωK wt

rϕ . (1.84)

The component of the turbulent viscosity tensor in the disc wt
rϕ(z) is locally

expressed in terms of the total pressure in this location with the help of the α-
parameter

wt
rϕ = α P .

These equations represent the simplest hypothesis regarding energy release in the
disc. It is possible to model the disc vertical structure under more complicated
assumptions. For example, Nakao and Kato (1995) study the case of a disc with
turbulent diffusion determining the dependence of viscous heating, and the α-
parameter itself, on z.

1.5.1.3 Radiative Transfer in the Disc

If the opacity in the disc does not exceed certain values, energy is transferred
vertically towards the disc surfaces by electromagnetic radiation. Let us assume
that the condition of local thermodynamic equilibrium (LTE) holds inside the disc,
i.e. Kirchhoff’s law applies, according to which (Sobolev 1969)

jν = 4π�a(ν) Bν(T ) ,

where jν is the emission coefficient per gram [erg/Hz/s/g/sr], �a(ν) is the absorption
coefficient per gram [cm2/g], Bν(T ) is the Planck distribution [erg/Hz/cm2/s/sr] and
T (z) is the temperature.

We write down the moments of the stationary equation for radiative trans-
fer (Mihalas and Mihalas 1984), assuming that the medium is motionless in the
direction of radiation propagation, along the z-axis. The zeroth moment of the
transfer equation is given as a result of integrating the basic radiative transfer
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equation over all solid angles. After integrating over all frequencies we get

1

ρ

dQrad(z)

dz
= 4π(�P B(T ) − �a J (z)) , (1.85)

where �a is the frequency-averaged absorption coefficient per gram, which is
equal to the Planck mean opacity coefficient �P (Mihalas and Mihalas 1984) at
thermodynamic equilibrium, Qrad(z) is the radiative energy flux along the z-axis,
B(T ) = σSBT 4/π the Planck function integrated over frequency and J (z) the mean
intensity of radiation entering the layer dz, integrated over frequency. The physical
meaning of this equation is clear: the change in the flux of radiative energy is equal
to the input of energy as a result of radiation of the matter (this term is written with
the help of Kirchhoff’s law) minus the energy absorbed by the matter.

The first moment of the equation of radiative transfer is obtained when we
multiply it by the cosine of the angle to the unit area, divide by c, and integrate
over all solid angles. This equation in principle expresses the conservation of the
total momentum of radiation.

1

ρ

dPrad(ν, z)

dz
= −(�a(ν) + �s(ν))

Qrad(ν, z)

c
. (1.86)

where �s(ν, z) is the scattering coefficient, which is generally frequency-dependent,
Qrad(ν, z) is the radiative energy flux along the z-axis, and Prad(ν, z) is the radiation
pressure at frequency ν. Thus, the radiation pressure force balances the change in
momentum of the radiation caused by interaction with the matter.

If we consider the moments of the equation, we get rid of the angular coordinate.
The mean intensity of the radiation Jν is the zeroth moment of the intensity. The
spectral flux of radiative energy Qν is the first moment, and the radiation pressure
Prad is the second moment. As is well known, every moment of the transfer equation
contains a quantity a higher order. The solution to such systems of equations requires
imposition of certain additional closing relations. The main closing method for an
isotropic field is the Eddington approximation.

The mean intensity of radiation J (z) is related by definition to the radiation
energy density via the relation:

εrad = 4πJ

c
. (1.87)

For an isotropic radiation field, there exists a simple relation between the radiation
energy density and the radiation pressure:

Prad = εrad

3
. (1.88)

This approximation works well in the case of a geometrically thin disc (optically
thin as well as optically thick).
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An optically thick disc (optical depth τ � 1) may be studied in the ‘dif-
fusion approximation’. Let us consider the first moment of the radiative transfer
equation (1.85). We assume that the change in Qrad is insignificant there, and the
left-hand side of (1.85) is zero. Thus, the radiation field spectrum is close to that of
a blackbody: J (z) = B(T ). It follows from relation (1.87) that εrad = 4πB(T )/c ≡
aT 4, and taking into account the isotropy of the radiation field, integrating the
second moment of the radiative transfer equation (1.86) over frequency, we obtain:

c

3�Rρ

d(aT 4)

dz
= −Qrad , (1.89)

where the Rosseland opacity �R(z) is introduced

1

�R
≡

∫ ∞
0

1
�a(ν)+κs(ν)

∂Bν(T )
∂T

dν∫ ∞
0

∂Bν(T )
∂T

dν
. (1.90)

If we consider quantities averaged over z, we obtain:

Qrad = 1

3

c

�R ρ z0
εrad . (1.91)

With allowance for convection, the vertical structure of discs was studied by
Meyer and Meyer-Hofmeister (1982) for two variants of viscosity: proportional to
the gas pressure and to the total pressure.

1.5.1.4 Dependence of the Surface Density on z

We introduce the quantity Σ(z) for the surface density of the disc ‘gathered’ up to
a certain height z, and with the help of this quantity we rewrite (1.41):

dΣ

dz
= ρ . (1.92)

1.5.2 Solution for the Vertical Structure

This section describes an approach to the solution of the disc vertical structure
equations, proposed and implemented by Ketsaris and Shakura (1998). The method
consists in finding similar solutions to the system of equations converted to a
dimensionless form. The opacity coefficient and the rate of energy release are
expressed as power-law functions of ρ and T . The obtained solution is compared
to the numerical results of Suleimanov et al. (2007), and the agreement of the two
methods is shown.
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For sufficiently high temperatures (> 106 K), Thomson scattering off free
electrons plays the most important part. The corresponding region of the disc,
in which gas pressure dominates at the same time, is called zone B. Further out
from the centre, where photo-ionization of ions from heavy elements and free-
free transitions dominate, we have zone C. The contribution of radiation pressure
to the total pressure in these two zones is neglected. In zone B, this assumption
significantly limits the accuracy of the solution if Prad � (0.2–0.3) Pgas.

When calculating the disc vertical structure, we will assume that all heat from
the work of viscous forces at given r and z is transformed to radiative energy. In
particular, local energy balance (1.78) will apply. We replace everywhereQrad(z) =
Qvis(z) = Q(z).

We list together the equations of the vertical structure of the disc (1.83), (1.84),
(1.89), and (1.92):

1

ρ

dP

dz
= − ω2

K z ,

dΣ

dz
= ρ ,

dQ

dz
= 3

2
ωK wt

rϕ ,

c

3�Rρ

d(aT 4)

dz
= −Q. (1.93)

The rate of energy release ε in α-discs is proportional to the pressure. The opacity
coefficient is written as follows:

�R = �0
ρς

T � . (1.94)

For hydrogen discs:

ς = � = 0, �0 = 0.4 cm2/g , if �T � �ff , (1.95)

ς = 1,� = 7/2, �0 = 6.45 × 1022 cm5 K7/2/g2 , if �ff � �T , (1.96)

and for discs with solar chemical abundances (Frank et al. 2002; Kurucz 1970,
1993):

ς = � = 0, �0 = 0.335 cm2/g , if �T � �ff ,

ς = 1,� = 7/2, �0 ≈ 5 × 1024 cm5 K7/2/g2 , if �ff � �T , (1.97)

Calculations of absorption in the plasma, including collective and quantum effects,
electron degeneracy, etc., performed by the OPAL project at Livermore laboratory
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Fig. 1.5 Dependence of the opacity coefficient on density and temperature according to the OPAL
project (Iglesias and Rogers 1996) and calculations for the low-temperature region in a medium
with solar composition (Ferguson et al. 2005). The horizontal line corresponds to the value of
the scattering coefficient off free electrons �0 � 0.34 cm2/g. Two fits are shown for a density of
ρ = 10−5 g/cm3, namely, (1.98) and the dependence �R = 1.2 × 1025 ρ T −7/2 cm5 K7/2/g2 that
gives a better fit in the high-temperature region (solid lines)

(Iglesias and Rogers 1996) (see Fig. 1.5) better fit another law in the absorption-
dominated region:

ς ≈ 1,� ≈ 5/2, �0 ≈ 1.5 × 1020 cm5 K5/2/g2 , if �ff � �T . (1.98)

For convenience, we introduce the dimensionless variable3

σ = 2Σ(z)

Σ0
,

and in addition the dimensionless functions of this variable:

p = P(z)/Pc , θ = T (z)/Tc , z′ = z/z0 , j = ρ(z)/ρc and q = Q(z)/Q0 .

3In the original paper by Ketsaris and Shakura (1998), the parameter Σ0 was defined as half the
total surface density of the disc. Due to this, there is a difference in the numerical coefficients in
some of the formulas given below compared to the formulas in Ketsaris and Shakura (1998).
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The symbols Pc, Tc, and ρc represent physical quantities in the equatorial plane of
the disc and Q0 = (ac/4) T 4

eff is the blackbody flux from one surface of the disc.
We rewrite the system of Eq. (1.93) in the following form:

dp

dσ
= −Π1 Π2 z′ ; Π1 = ω2

K z20 μ

� Tc
;

dz′

dσ
= Π2

θ

p
; Π2 = Σ0

2 z0 ρc
;

dq

dσ
= Π3 θ ; Π3 = 3

4

α ωK � Tc Σ0

Q0 μ
≡ α � Tc Σ0

Wrϕ μ
;

dθ

dσ
= −Π4

q jς

θ�+3
; Π4 = 3

32

(
Tef

Tc

)4
Σ0 �0 ρ

ς
c

T �
c

.

(1.99)

The heating per gram ε/ρ = ∂Q/∂Σ determines the dependence of the
temperature on z. In principle, the intensive mixing in the disc can lead to a situation
where the energy output per unit mass is not dependent on the height z. The quantity
ε depends in this case only on the density. The temperature dependence disappears
from the equation describing the energy release (the third line in (1.99)), and Π3
becomes equal to 1. A solution for such a case was also obtained by Ketsaris and
Shakura (1998).

To find a solution to (1.99), i.e. to find the four functions p(σ), z′(σ ), q(σ), θ(σ )

and the four unknown parameters, it is necessary to set eight boundary conditions—
four at the surface of the disc and four in its symmetry plane. Ketsaris and Shakura
(1998) performed a numerical integration of the equations and tabulated values
Π1..4. These values are given in Tables 1.1 and 1.2. Figure 1.7 shows functions
z′(σ ), p(σ), θ(σ ), and q(σ) in the Kramer opacity regime. Plots for other cases can
be found in the work by Ketsaris and Shakura (1998).

In the symmetry plane of the disc for σ = 0, we have the obvious conditions:

p(0) = 1; z′(0) = 0; q(0) = 0; θ(0) = 1 .

The first two boundary conditions at the disc surface can also be straightfor-
wardly determined as:

z′ (1) = 1; q (1) = 1 .

The surface of the disc is defined as the level at which thermalization of radiation
occurs. We may find boundary conditions for the pressure and temperature from
approximate solutions to the equations of radiative transfer and hydrostatic balance
close to the disc surface. Note that there is a difference in boundary conditions for
different opacity regimes (see Fig. 1.6). In zone B, where absorption dominates,
the disc surface is defined as the level in the photosphere where the optical depth,
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Table 1.1 Dimensionless
parameters of the solution to
the equations of vertical
structure for Thomson
opacity versus the decimal
logarithm of the free
parameter δ

log δ Π1 Π2 Π3 Π4

6.00 6.99 0.492 1.150 0.460

5.80 6.96 0.493 1.150 0.460

5.60 6.92 0.495 1.150 0.460

5.40 6.87 0.496 1.150 0.460

5.20 6.82 0.498 1.150 0.460

5.00 6.77 0.500 1.150 0.460

4.80 6.70 0.503 1.150 0.460

4.60 6.63 0.505 1.150 0.460

4.40 6.55 0.508 1.150 0.460

4.20 6.47 0.512 1.150 0.460

4.00 6.37 0.516 1.150 0.460

3.80 6.26 0.520 1.149 0.460

3.60 6.13 0.525 1.149 0.460

3.40 5.99 0.531 1.149 0.460

3.20 5.84 0.538 1.149 0.460

3.00 5.67 0.546 1.149 0.459

2.80 5.48 0.555 1.148 0.459

2.60 5.26 0.566 1.147 0.458

2.40 5.02 0.578 1.146 0.458

2.20 4.76 0.593 1.145 0.456

2.00 4.47 0.610 1.142 0.454

1.80 4.15 0.629 1.138 0.450

1.60 3.81 0.652 1.133 0.444

1.40 3.43 0.678 1.126 0.435

1.20 3.03 0.707 1.117 0.420

1.00 2.61 0.740 1.105 0.398

0.80 2.19 0.776 1.091 0.366

0.60 1.77 0.813 1.075 0.324

0.40 1.38 0.849 1.059 0.274

0.20 1.03 0.884 1.044 0.219

0.00 0.74 0.914 1.032 0.166

calculated from the outside inwards, is equal to 2/3. In the zone with predominant
Thomson scattering, the disc surface is taken as the level where the effective optical
depth, calculated including scattering, is equal to 1.

Let us derive the remaining boundary conditions in two opacity regimes.

1.5.2.1 Kramers Opacity

We will measure the optical depth τ from the surface of the disc in the direction
of its symmetry plane, i.e. in the direction of decreasing height z. Deep inside the
photosphere, where τ ∼ 1, we will use the solution to the equations of radiative
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Table 1.2 Dimensionless
parameters of the solution to
the equations of vertical
structure for Kramers opacity
versus the decimal logarithm
of the free parameter τ0

log τ0 Π1 Π2 Π3 Π4 log τ

6.00 7.75 0.465 1.131 0.399 6.046

5.80 7.71 0.466 1.131 0.399 5.847

5.60 7.67 0.468 1.131 0.399 5.646

5.40 7.62 0.469 1.131 0.399 5.445

5.20 7.56 0.471 1.131 0.399 5.245

5.00 7.50 0.473 1.131 0.399 5.045

4.80 7.44 0.475 1.131 0.399 4.845

4.60 7.36 0.477 1.131 0.399 4.644

4.40 7.27 0.480 1.131 0.399 4.444

4.20 7.18 0.483 1.131 0.399 4.244

4.00 7.07 0.487 1.131 0.399 4.043

3.80 6.95 0.491 1.131 0.399 3.843

3.60 6.82 0.496 1.131 0.399 3.643

3.40 6.67 0.501 1.131 0.399 3.443

3.20 6.50 0.508 1.131 0.398 3.243

3.00 6.31 0.515 1.131 0.398 3.043

2.80 6.10 0.524 1.130 0.398 2.842

2.60 5.87 0.534 1.130 0.398 2.642

2.40 5.60 0.546 1.129 0.397 2.442

2.20 5.31 0.560 1.128 0.397 2.241

2.00 4.98 0.576 1.126 0.395 2.040

1.80 4.62 0.596 1.124 0.393 1.839

1.60 4.23 0.619 1.120 0.389 1.638

1.40 3.79 0.647 1.114 0.383 1.434

1.20 3.33 0.679 1.106 0.371 1.232

1.00 2.83 0.716 1.095 0.354 1.025

0.80 2.34 0.756 1.081 0.326 0.819

0.60 1.86 0.798 1.065 0.286 0.613

0.40 1.42 0.838 1.050 0.237 0.406

0.20 1.05 0.876 1.036 0.185 0.202

0.00 0.75 0.908 1.025 0.136 −0.001

The rightmost column shows the decimal loga-
rithm of the disc optical depth (1.114)

transfer and radiation balance for the case of LTE and for a frequency-independent
absorption coefficient in the Eddington approximation (Sobolev 1969):

T

Teff
=

(
1 + 3

2τ

2

)1/4

. (1.100)

Let the dimensionless variable σ = 1 at the level where τ = 2/3 and T = Teff.
Using the definition of the parameter Π4, we obtain the boundary condition for the
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Fig. 1.6 The surfaces at which the boundary conditions are set, the upper surface of the disc and
its equatorial plane (solid lines). Values of the dimensionless coordinate σ and functions at these
surfaces are shown. The arrows indicate directions of increasing height z′ = z/z0 and optical depth
τ , calculated from the exterior towards the equatorial plane. The two disc zones with different
opacity regimes are separated nominally by the grey bar. In zone B (on the left), the optical depth
at the disc surface τT(τ

∗ = 1) � 1. In zone C (on the right), τff = 2/3. The dashed line is the
level where the disc temperature equals the effective temperature of the outgoing radiation

dimensionless temperature θ :

θ (σ = 1) =
[
16

3

Π4

τ0

]1/4
,

where we have introduced the dimensionless parameter τ0, proportional to the total
optical depth of the accretion disc (see (1.96)):

τ0 = Σ0 �0 ρc

2 T
7/2
c

.

This quantity is a free parameter of the problem and varies widely (from a few to
∼ 106).

To determine the boundary condition for the dimensionless pressure, we use the
equation of hydrostatic balance (the first in system (1.93)). We divide both parts of
this equation by the opacity coefficient �R and replace variables using the formula

d τ = −�R ρdz

and making use of (1.96), arrive at:

1

2

dP 2

dτ
= ω2

K z0 � T 9/2

�0 μ
.

Close to the photosphere, the z coordinate practically does not change and is equal
to z0. Integrating the last equation from τ = 0 to τ = 2/3, we get as a result the
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Fig. 1.7 Solution to the system of Eq. (1.99) in the form of dimensionless functions of the
dimensionless variable σ , proportional to the column density: temperature θ(σ ), pressure p(σ),
radiative flux q(σ ), and height from the equatorial plane z′(σ ). In the equatorial plane σ = 0, at
the disc surface σ = 1

boundary condition for the dimensionless pressure:

p (σ = 1) =
[

3

16 × 21/8
Π1 Π2

Π4

(
16

3

Π4

τ0

)17/8

f (τ = 2/3)

]1/2

,

where

f (τ) =
∫ τ

0
(1 + 3

2
τ̃ )9/8 dτ̃ , f (τ = 2/3) ≈ 1.05 .

Figure 1.7 shows the solution to the system of equations for the given case.

1.5.2.2 Thomson Scattering

If scattering processes are of high importance in the photosphere, thermalization
occurs at the depth where the so-termed effective optical depth is of the order of 1:

τ ∗ = −
∞∫

z0

(�ff �T)
1/2 ρ dz ≈ 1 .
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The effective optical depth is accumulated as
√

�ff(�T + �ff) ρ dz (see for example
Zel’dovich and Shakura 1969, Mihalas 1978), which approximately gives the above
condition. At this level, the optical depth due to scattering is much larger than 1:

τT(τ ∗ = 1) = −
∞∫

z0

�T ρ dz � 1

and T � Teff (3 τT/4)1/4 from (1.100). Thus, the boundary condition for the
dimensionless temperature has the following form:

θ (σ = 1) �
[
8Π4 τT(τ ∗ = 1)

�T Σ0

]1/4
.

For the pressure, we have:

p (σ = 1) = 2Π1 Π2
τT(τ

∗ = 1)

�T Σ0
.

A convenient free parameter turns out to be the quantity

δ = �T Σ0/2

τT(τ ∗ = 1)
. (1.101)

This parameter is the ratio of half the total optical depth due to scattering to the
optical depth due to scattering at the thermalization depth.

1.5.3 Radial Dependence of Physical Parameters in Stationary
α-Discs

In order to explain observations of sources with accretion discs as extended objects,
whose properties vary significantly from the centre to the periphery, we have to
calculate radial dependencies of the disc physical parameters. For this it is necessary
to solve the equation of angular momentum transfer, which was done for the case of
a stationary disc in Sect. 1.4, and also to solve the equations of vertical structure (see
the previous section). Analytical approximations for radial dependencies of the disc
parameters were given in the work by Suleimanov et al. (2007). We will describe
these analytical approximations below.

We consider the following physical parameters: surface density Σ(r), disc half-
thickness zo(r), density ρc(r) and temperature Tc(r) at the symmetry plane of the
disc for z = 0. It is necessary to define what we consider to be the surface of the
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disc. When studying observed spectra it turns out to be convenient to assume that the
disc surface corresponds to the level where the Rosseland optical depth τR = 2/3.

The vertical structure of the disc is determined by Eq. (1.99) for known values
of the dimensionless parameters Π1..4. We express the quantities z0, Σ , ρc, and Tc
from (1.99). The resulting expressions contain the basic given parameters of the
disc (accretion rate, mass of the central object, the turbulent α-parameter) as well as
the radial structure defined by ωK(r) and Wrϕ(r). We take the radial dependence of
the vertically integrated component of the viscous stress tensor Wrϕ(r) for the case
of a stationary disc (1.74), and the angular velocity of rotation we set equal to the
Keplerian angular velocity ωK = √

GM/R3. The radial distribution of the radiative
flux from the disc surface is determined by viscous stresses Wrϕ(r). We recall that
the function f (R), which describes the influence of the boundary conditions on the
surface tension Wrϕ(r), is written as (cf. (1.49)):

f (r) = 2π Wrϕ(r)

Ṁ ω
= F

Ṁ h

in a disc with constant accretion rate. For a thin disc with a stress-free inner radius,
we have

f (r) = 8π

3

Qvis

Ṁ ω2
= 1 − hin

h
.

For the case Ṁ = Ṁ(r, t) �= const , it is necessary to use the function f (r) in its
general form

f (r) = F(h, t)

Ṁin(t) h
= F(h, t)/h

∂F (h, t)/∂h
∣∣
h=hin

. (1.102)

We normalise the accretion rate at the inner boundary of the disc and other param-
eters to their characteristic values in binary systems with stellar mass components:

M = mx M�, Ṁ = Ṁ17 × 1017g/s,
r = R7 × 107cm (zone B) or r = R10 × 1010cm (zone C).

(1.103)

As a characteristic value for the coefficient �0 from expression (1.94) we use
the quantity �∗

T = 0.335 cm2/g in zone B, taken from an approximation to the
tabulated values (Kurucz 1970, 1993), for a mediumwith mass fraction of hydrogen
X = 0.69 and helium Y = 0.27 and �∗

0 = 5 × 1024 cm5 K7/2/g2 in zone C (see
Frank et al. 2002, their chapter 5). The corresponding molecular weight μ=0.62. In
a mediumwith such chemical composition, absorption of the radiation is mainly due
to photoionization of ions of heavy elements. If we assume that all parameters Π1..4
are equal to 1, �T = 0.4 cm2/g, �0 = 6.4×1022 cm5 K7/2/g2, and μ = 0.5, then the
expressions for the radial dependencies of the physical parameters become identical
to the expressions by Kato et al. (1998, their chapter 3) derived for hydrogen discs.
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1.5.3.1 Zone B

In this zone, the main contribution to the optical depth comes from scattering
off free electrons, and gas pressure dominates over radiation pressure. If we use
expression (1.74) for the heat dissipated in the disc due to viscosity, normalising the
parameters according to (1.103), we can solve the system of algebraic equations for
Π1..4 (the right part of the system (1.99)) and obtain:

z0/r = 0.0092m
−7/20
x Ṁ

1/5
17 α−1/10 R

1/20
7 f (r)1/5

( μ

0.6

)−2/5
(

�T

�∗
T

)1/10

Πz ,

Σ0 = 5.1 × 103 m
1/5
x Ṁ

3/5
17 α−4/5R

−3/5
7 f (r)3/5

( μ

0.6

)4/5 (
�T

�∗
T

)−1/5

ΠΣ [g/cm2],

ρc = 2.8 × 10−2 m
11/20
x Ṁ

2/5
17 α−7/10 R

−33/20
7 f (r)2/5

( μ

0.6

)6/5 ×

×
(

�T

�∗
T

)−3/10

Πρ [g/cm3],

Tc = 8.2 × 106 m
3/10
x Ṁ

2/5
17 α−1/5 R

−9/10
7 f (r)2/5

( μ

0.6

)1/5 (
�T

�∗
T

)1/5

ΠT [K].

(1.104)

The combinations of the dimensionless parametersΠz, ΠΣ , Πρ , and ΠT are related
in the following way to the parameters Π1..4:

Πz = Π
1/2
1 Π

1/10
3 Π

−1/10
4 ≈ 2.6 ,

ΠΣ = Π
4/5
3 Π

1/5
4 ≈ 0.96 ,

Πρ = Π
−1/2
1 Π−1

2 Π
7/10
3 Π

3/10
4 ≈ 0.67 ,

ΠT = Π
1/5
3 Π

−1/5
4 ≈ 1.2 .

(1.105)

Their values versus the free parameter δ are shown in Fig. 1.8, left panel. The free
parameter δ is derived from the expression (1.101) and may be estimated from the
total optical depth of the disc τ and other disc parameters in the following way:

δ =
√

κ0ρcT
−7/2
c

�T

τ X(δ) , (1.106)

where τ = �T Σ0/2. The numerical factor

X(δ) = δ

∫ 1

1−1/δ
(P/Pc)

1/2 (T /Tc)
−9/4dσ ∼ 2 , (1.107)
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(a) (b)

Fig. 1.8 (a) Left: The dependence of the dimensionless factors Πz, ΠΣ , Πρ and ΠT for zone B
(formulas (1.105)). (b) Right: The same factors for zone C (formulas (1.111)). The logarithms of
the dimensionless parameters, characterizing the optical depth in each zone, are displayed along
the horizontal axes. The dependencies are borrowed from Suleimanov et al. (2007) and constructed
for values from Table 1.1 (graph to the left) and Table 1.2 (graph to the right)

which is independent of the absolute values of the disc parameters, is determined
through integration of the equations of vertical structure. The value of δ may be
found recursively with any desired precision, but this approach will be redundant
in the sense of astronomical application of the obtained radial dependencies. It is
sufficient to use the following estimate:

δ = 440m
−1/20
x Ṁ

1/10
17 α−4/5 R

3/20
7 f (R)1/10

( μ

0.6

)21/20 ( �T

�∗
T

)−1/5 (
�0

�∗
0

)1/2

.

(1.108)

At high accretion rates, there is a zone in the disc where radiation pressure dom-
inates (zone A). The radius at which the radiation pressure a T 4

c /3 is comparable to
the gas pressure ρc�Tc/μ in the symmetry plane of the disc (the boundary between
zones A and B, see Shakura and Sunyaev (1973)) may be approximately estimated
as

RAB ∼ 107 m
1/3
x Ṁ

16/21
17 α2/21

( μ

0.6

)8/21 ( �T

�∗
T

)6/7

cm. (1.109)

Here, we used characteristic values (1.105) for the dimensionless parameters Π1..4
and f (r) = 1.

When the accretion rate decreases, zone B shifts radially towards the centre of
the disc, giving way to zone C.
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1.5.3.2 Zone C

The main contribution to the opacity in zone C comes from absorption processes
in the form of free-free and bound-free transitions, and the gas pressure is much
higher than the radiation pressure. As before, from the right-hand part of the system
of Eq. (1.99) and from the expressions (1.74) and (1.103), we may find the radial
dependencies of the parameters of the disc:

z0/r = 0.020m
−3/8
x Ṁ

3/20
17 α−1/10 R

1/8
10 f (r)3/20

( μ

0.6

)−3/8
(

�0

�∗
0

)1/20

Πz ,

Σ0 = 33m
1/4
x Ṁ

7/10
17 α−4/5 R

−3/4
10 f (r)7/10

( μ

0.6

)3/4 ( �0

�∗
0

)−1/10

ΠΣ [g/cm2],

ρc = 8.0 × 10−8 m
5/8
x Ṁ

11/20
17 α−7/10 R

−15/8
10 f (r)11/20

( μ

0.6

)9/8 ×

×
(

�0

�∗
0

)−3/20

Πρ [g/cm3],

Tc = 4.0 × 104 m
1/4
x Ṁ

3/10
17 α−1/5 R

−3/4
10 f (r)3/10

( μ

0.6

)1/4 (
�0

�∗
0

)1/10

ΠT [K],

(1.110)

We recall that Ṁ17 is the normalised accretion rate at the inner disc boundary. Note
that if Ṁ(r, t) �= const , we need to substitute the value of the accretion rate at the
inner boundary when using (1.104) and (1.110). This is convenient since in most
cases this value determines the energetics of observed accreting systems.

The combinations of dimensionless parameters are related to the parameters
Π1..4 in the following way:

Πz = Π
19/40
1 Π

−1/20
2 Π

1/10
3 Π

−1/20
4 ≈ 2.6 ,

ΠΣ = Π
1/20
1 Π

1/10
2 Π

4/5
3 Π

1/10
4 ≈ 1.03 ,

Πρ = Π
−17/40
1 Π

−17/20
2 Π

7/10
3 Π

3/20
4 ≈ 0.76 ,

ΠT = Π
−1/20
1 Π

−1/10
2 Π

1/5
3 Π

−1/10
4 ≈ 1.09 ,

(1.111)

and are shown in Fig. 1.8b as a function of the free parameter τ0,

τ0 = �0ρc

T
7/2
c

Σ0

2
= 500

Ṁ
1/5
17 f (r)1/5

α4/5

( μ

0.6

) (
�0

�∗
0

)2/5 Π
4/5
3 Π

3/5
4

Π
1/5
1 Π

2/5
2

, (1.112)

approximately equal to

τ0 ∼ 300 Ṁ
1/5
17 α−4/5

(
�0

�∗
0

)2/5

. (1.113)
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The full optical depth of the disc

τ =
∫ h

0
�0 ρ2 T −7/2dz (1.114)

is determined in the process of numerical solution of the vertical structure and is
uniquely dependent on τ0 (see Table 1.2). We also give the following formula,
approximating the tabulated values to an error of less than 1% for τ0 > 6:

τ ≈ 1.042 τ 1.0060 . (1.115)

The dependencies of the parameters in zones B and C are depicted in Figs. 1.9
and 1.10. The boundary between zones B and C is approximately determined from

Fig. 1.9 From the top down: relative disc half-thickness z0/r , central Tc and effective temperature
Teff (dot-dashes) and surface density Σ0. The disc parameters are mx = 10, μ = 0.62, α = 0.3,
left: Ṁ17 = 33.6 or Lbol = 0.2LEdd, right: Ṁ17 = 0.336 or Lbol = 0.002LEdd. The solid
line shows the result from the numerical calculation in Suleimanov et al. (2007). The dotted line
shows the formulas (1.104) in zone B and the dashed line the formulas (1.110) in zone C. Figures
from Suleimanov et al. (2007)
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Fig. 1.10 From the top down: density in the disc symmetry plane ρc, ratio between radiation and
gas pressure, and optical depth τ . Disc parameters: mx = 10, μ = 0.62, α = 0.3, left: Ṁ17 = 33.6
or Lbol = 0.2LEdd, right: Ṁ17 = 0.336 or Lbol = 0.002LEdd. Notations as in Fig. 1.9. Figures
from Suleimanov et al. (2007)

equating �T and �0ρT −7/2 in the equatorial plane of the disc

RBC ∼ 5 × 107 m
1/3
x Ṁ

2/3
17

( μ

0.6

)−1/3
(

�0

�∗
0

)−2/3 (
�T

�∗
T

)4/3

cm

for characteristic values of the dimensionless parameters Π1..4 and f (r) = 1.
As outer boundary of zone C we take the radius where recombination of

hydrogen atoms sets in (at Teff ∼ 104 K). When this happens, thermal instabilities in
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the disc start developing, and due to a significant increase in the opacity coefficient
of the matter, convection starts playing a role in the transfer of energy to the
surface (Meyer and Meyer-Hofmeister 1981, 1982). In such regions, it is no longer
correct to approximate the opacity coefficient �R using Kramers law. Equating the
right-hand side of (1.74) and σSB T 4

eff, we get:

RC ≈ 3.5 × 1010 m
1/3
x Ṁ

1/3
17

(
Teff

5000 K

)−4/3

cm. (1.116)

Due to irradiation of the outer parts of the disc by the central source, the boundary
RC can be further from the centre. This happens if the radiative X-ray flux, falling
on the surface of the disc, thermalizes in its outer layers and heats them up so that
the effective temperature of the disc surface does not drop below ∼ 104 K (Dubus
et al. 1999).

1.5.3.3 Thickness of the Disc

For the discs in binary systems with stellar-mass components during outbursts, the
quantities lg(δ) and lg(τ0) lie in the range of 2–4. For these values, the considered
combinations of the quantities Π1,2,3,4 practically do not change with radius, and
inside each zone we may use the following characteristic values:

(zone B) Πz ≈ 2.6, ΠΣ = 0.96, Πρ = 0.67, ΠT = 1.2, (1.117)

(zone C) Πz ≈ 2.6, ΠΣ = 1.03, Πρ = 0.76, ΠT = 1.09. (1.118)

Let us consider a disc with matter consisting solely of hydrogen plasma (μ =
0.5), choosing for the opacity a value �R = 6.4 × 1022 ρ T −7/2 cm2/g (Kato et al.
(1998); in the work by Shakura and Sunyaev (1973) a similar value was used),
which is determined only by free-free electron transitions in the plasma. This value
is two orders of magnitude less than the value of the opacity due to bound-free
transitions �∗

0 . However, the physical parameters depend only weakly on the opacity
coefficient (1.110). For example, the half-thickness of the disc changes due to a
direct decrease of �0, μ, and also Πz, since τ0 decreases almost by a factor of 10
(see (1.112) and Fig. 1.8b). Thus, the disc half-thickness z0 is ∼ 25% less for μ =
0.5 than for μ = 0.62.

The numerical solution to the equations of vertical structure as described in this
section gives a larger disc thickness compared to that of a vertically homogeneous
disc, namely, the ‘characteristic hydrostatic scale’. The latter is estimated as vs/ω,
where vs is the sound speed in the disc symmetry plane. The presence of the
factor two was indicated by Shakura and Sunyaev (1973). It is explained by the
inhomogeneity of the distribution of density and temperature over the thickness of
the disc. More exactly, this factor Πz ∼ √

Π1 ∼ 2.5, as can be seen from the first
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line in the system of Eq. (1.99):

z0 = √
Π1

√
� Tc

μ

1

ωK

. (1.119)

1.5.3.4 ‘Dead’ Discs

The formulas (1.104) and (1.110), describing radial dependencies in a disc, may be
applied also for ‘dead’ discs or disc reservoirs (Syunyaev and Shakura 1977), i.e.
discs in which transfer of matter through the inner boundary is not possible and thus
Ṁin = 0. Since the inner accretion rate and f (r) always show up as multiplicative
factors in (1.104) and (1.110), the formulas could be converted using Ṁin(t) f (r) =
F(h, t)/h (cf. (1.102)).

1.6 Non-stationary Disc Accretion

Outbursts in accreting sources, for example in binary systems and active galactic
nuclei, are of special interest. Bright events can be observed by instruments
operating in different ranges of the electromagnetic spectrum, supplying a wealth
of data about the physics of distant stars. Recently, due to the boom in studies
of exoplanets, the subject of disc evolution in protoplanetary systems has become
topical in astrophysics.

Transient phenomena in discs may be caused by different kinds of instabilities,
which in general develop on different time scales. In this section, we will address
the set up of and solution to the problem of non-stationary accretion in a viscous
disc. The problem corresponds to the disc evolution that takes place on viscous time
scales due to redistribution of angular momentum of matter in the disc.

1.6.1 Basic Equation of Non-stationary Accretion

In Sect. 1.4.1 we introduced the following quantities, integrated along the disc
thickness: the surface density Σ0 (1.41) and the integrated component of the
turbulent viscosity tensor Wrϕ (1.45). We write down again the obtained equations
for conservation of mass and angular momentum (1.42) and (1.44):

∂Σ0

∂t
= −1

r

∂

∂r
(Σ0 vr r) ,

Σ0 vr r
∂ (ω r2)

∂r
= − ∂

∂r
(Wrϕr2) .
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Substituting the combination Σ0 vr r from the second line into the first, we obtain
the basic equation for non-stationary accretion:

∂Σ0

∂t
= 1

r

∂

∂r

[
1

∂(ω r2)/∂r

∂

∂r
(Wrϕ r2)

]
. (1.120)

This is an equation of diffusion type, a parabolic equation of the second order in
partial derivatives.

The tensor component, integrated over the full thickness of the disc, is written
in the framework of the gradient hypothesis of transfer of angular momentum by
turbulent motions (1.38) in the following way:

Wrϕ(r, t) = 2

Z0∫
0

wt
rϕ dZ = 3ωK

Z0∫
0

νt ρ dZ . (1.121)

If the kinematic coefficient of the turbulent viscosity νt is independent of z, we get:

Wrϕ(r, t) = 3

2
ωK νt Σ0 . (1.122)

We introduce as a new independent parameter the specific angular momentum
h(r) = vϕ(r) r = ω r2. We further define the specific angular momentum of a free
particle, rotating in a Newtonian potential, as the quantity hK ≡ √

G M r . Herewith,
dr = 2 hK dhK/(G M).

In the case of Keplerian orbits, Eq. (1.120) taken together with (1.122) is written
in the following form:

∂Σ0

∂t
= 3

4

(G M)2

h3

∂2(Σ0 νt h)

∂h2
, h ≡ hK . (1.123)

We also consider an alternative version of this equation, convenient from the
point of view of establishing boundary conditions in an evolving disc. It is, in
addition, more appropriate for α-discs in models where the viscosity is parametrized
using the turbulent α-parameter considered as a constant value, rather than using the
kinematic viscosity coefficient νt.

We introduce the quantity F = 2π Wrϕr2, which is equal to the total viscous
torque, acting between neighbouring rings in the disc. At constant accretion rate
in the disc, and using for Wrϕ a notation of the form (1.49), for a stress free inner
boundary Wrϕ(r = rin) = 0, we may write the quantity of the total viscous torque
in the following way:

F = Ṁ
√

G M r

(
1 −

√
rin

r

)
, Ṁ = const . (1.124)
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As we can see, F is linearly proportional to the specific angular momentum h =√
G M r at large distances.
In the new variables, the equation of transfer of angular momentum (1.44) takes

the form (note that vr has a negative value):

− 2π Σ0 vr r = Ṁ(r, t) =
[

∂h

∂hK

]−1
∂F

∂hK

, (1.125)

and Eq. (1.120):

∂Σ0

∂t
= 1

4π

(GM)2

h3K

∂

∂hK

([
∂h

∂hK

]−1 ∂F

∂hK

)
. (1.126)

For a Keplerian disc, by definition, ∂h/∂hK ≡ 1.
Which method to use for solving the equation of non-stationary accretion (1.123),

depends on the form of the turbulent viscosity coefficient νt = νt(r,Σ0). In the
framework of the model for α-turbulence, when the turbulent viscosity tensor is
proportional to the pressure in the disc, the form of νt(r,Σ0), or in other words, the
relationship between F and Σ0, necessary for solving (1.126), may be derived from
the equations of vertical structure.

1.6.2 Solutions to the Linear Equation of Viscous Evolution in
the Disc

IfF is linearly dependent on the surface densityΣ0, in other words, if νt is a function
only of radius and does not depend on the surface density, then (1.123) becomes a
linear differential equation of diffusion type. In 1952, Lüst found particular solutions
to the equation of viscous accretion, proposed by his teacherWeizsäcker (1948), and
described the principles of constructing a general solution to both infinite and finite
problems.

For a disc of infinite extension, Lynden-Bell and Pringle (1974) used a method
of superposition of particular solutions to the equation of viscous evolution and,
in particular, found Green’s functions for two types of boundary conditions at the
inner boundary. With the help of Green’s functions it is possible to find F or Σ at
any moment in time and at any point for arbitrary initial conditions. The inner radius
of the disc in their solution is equal to zero. On long time scales, the dependencies in
the disc are self-similar and the accretion rate through the inner boundary declines
as a power law Ṁ ∝ t−(1+l), where the parameter l < 1. Pringle (1991) examined,
with the help of Green’s functions, an infinite disc with central inflow of angular
momentum. This problem describes the evolution of a disc surrounding a binary
system. A similar problem was solved by Tanaka (2011), with the difference that
the inner boundary of the disc was considered to be located at a finite, non-zero
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inner radius. King and Ritter (1998) studied the evolution of a disc with finite
radius and constant νt, and found that the accretion rate declines exponentially with
time. The problem of a finite disc was also studied numerically in Zdziarski et al.
(2009). The special case of Green’s function for a finite disc was constructed in
Wood et al. (2001) for a zero inner boundary. The full Green’s function, which
can be used together with an arbitrary initial distribution for two types of boundary
conditions, was found by Lipunova (2015). This work also described the procedure
of constructing a solution with non-zero and variable accretion rate at the outer
boundary.

Note that in all these cases, the characteristic viscous time scale τvis ∼ r2/νt is
constant in time.

1.6.3 Evolution of an Infinite Viscous Disc

Let us recall the solution obtained by Lynden-Bell and Pringle (1974). We write the
kinematic viscosity coefficient in the form

νt = ν0 rb .

Then the relation F = 3π h νtΣ0 (cf. (1.122)) may be written in the following way:

F = 3π h ν0 Σ0 rb . (1.127)

For a Keplerian disc (h ≡ h∗), the equation of viscous torque (1.123) takes the
following form:

∂F

∂t
= 3

4
ν0 h2b−2 (G M)2−b ∂2F

∂h2
, (1.128)

or in a way similar to the notation in Lynden-Bell and Pringle,

∂2F

∂h2
= 1

4

(κ

l

)2
h1/ l−2 ∂F

∂t
, (1.129)

where the constant parameters are related in the following way:

1

2 l
= 2 − b , κ2 = 16 l2

3ν0 (G M)1/2l
. (1.130)

The general solution to the linear equation (1.129) may be found by expansion in
eigenfunctions and superposition of particular solutions. The method of superposi-
tion allows for a general solution, satisfying the given initial or boundary conditions.



58 G. Lipunova et al.

In the case of a linear equation, the method of separation of variables may also be
used.

We will search for a particular solution of the form F(h, t) = f (hc ξ) ×
exp(−s t), where s is some constant of the same dimension as that of the inverse
time, ξ = h/hc, and hc is some characteristic value of the specific angular momen-
tum of the matter in the disc. Substituting such a function F(h, t) into (1.129), we
obtain a Lommel’s transformation of the Bessel equation (see Sect. 4.31 in Watson
1944):

d2f

dh2
+ s

4

(κ

l

)2
h1/ l−2 f = 0 ,

with the particular solution

f (x) = (k x)l [A(k) Jl(k x) + B(k) J−l (k x)] ,

where Jl and J−l are Bessel functions of non-integer order, k2 = s κ2 h
1/ l
c and l are

constants and x = ξ1/2l = (h/hc)
1/2l, where ξ is the normalised specific angular

momentum. The general solution is equal to the superposition of particular solutions
with all values of the parameters k, A(k), B(k) such that the specific boundary and
initial conditions are satisfied:

F(h, t) =
∞∫
0

exp

(
− k2 t

κ2 h
1/ l
c

)
(kx)l[A(k) Jl(k x)+B(k) J−l(k x)] dk . (1.131)

For example, the condition F(h) = 0 for h = 0 leads to the vanishing of all
coefficients for Bessel functions with negative index: B(k) ≡ 0.

The following method was used to determine the coefficients A(k) and B(k). Let
us choose a solution at t = 0, with the condition that all viscous stresses at the
centre are equal to zero F(h = 0) = 0, and write it using (1.131) in the form

F(h, t = 0) =
∞∫
0

(kx)l A(k) Jl(k x) dk .

We now use the Hankel inversion theorem (chapter II, theorem 19 in Sneddon
(1951), see also Watson (1944) and MacRobert (1932)) for continuous functions
f (k) in the form

f (k′) =
∞∫
0

x Jl(k
′x)

⎡
⎣

∞∫
0

k f (k) Jl(k x)dk

⎤
⎦ dx for l ≥ −1 .
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Substituting f (k) = kl−1 A(k), we see that the integral within square brackets is
equal to F(h, t = 0)/xl . It follows that

(k′)l−1 A(k′) =
∞∫
0

F(h) Jl(k
′ x) x1−l dx , (1.132)

where F0(h) ≡ F(h, t = 0). From here we can determine the coefficients A(k′).
If the initial distribution F0(h) is given, then the solution to the linear differential

equation (1.129) has the form

F(h, t) =
∞∫
0

G(h, h1, t) F0(h1) dh1 ,

where G is the Green’s function that is the solution to (1.129) at all points for
h �= h1 and t �= 0, and for which it is true that G = 0 for t < 0 in physical
systems. It is possible to consider Eq. (1.129) as a linear system with input signal
F0(h1) and output signal F(h, t), in which the Green’s function has the role of a
‘weighting function’. As is well known, the Green’s function itself is a ‘response’
of the system to a delta impulse input signal, that is, it is a solution to (1.129), if the
initial condition is a Dirac δ-function:

F0 = δ(x − x1); F(h, t) = G(x, x1, t) .

Substituting this initial distribution into (1.132), we find an expression for A(k):

A(k) = (k x1)
1−l Jl(kx1) .

To obtain the Green’s function we substitute A(k) in expression (1.131):

G(x, x1, t) = xl x1−l
1

∞∫
0

exp

(
− k2 t

κ2 h
1/ l
c

)
k Jl(kx1) Jl(kx) dk .

The integral is found using Hankel’s tables for integral transforms:

G(x, x1, t) = κ2 h
1/ l
c xl x1−l

1

2 t
exp

(
−x2

1 + x2

4t
κ2 h

1/ l
c

)
Il

(x x1

2t
κ2 h

1/ l
c

)
,

(1.133)

where Il is a modified Bessel function of the first kind (an Infeld function).
Figure 1.11 shows the Green’s function at four moments in time.

Let us choose the initial distribution F0 in the form of a Dirac delta function with
a physically motivated normalisation. We assume that the initial configuration is a
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Fig. 1.11 The Green’s function (1.133), found by Lynden-Bell and Pringle (1974), at four
moments in time: t1 = 0.001, t2 = 0.03, t3 = tmax = 0.1875 and t4 = 1. The parameters of
the solution are κ = 1, hc = 1, l = 1/3, x1 = 1

narrow ring at radius rs with total mass M0. The specific angular momentum at this
radius is equal to hs = x2l

s hc. We write down the surface density for t = 0 as
Σ0(h, t = 0) = M0δ(r − rs)/2πrs . Using (1.127) and (1.130) we obtain for the
earlier introduced variable x = (h/hc)

1/2l:

F0(x) = 2 l M0 h
1−1/ l
c κ−2 x2l−1

s δ(x − xs) .

Here we used the equality δ(x −xs) dx = δ(r − rs) ds. The evolution of this narrow
ring is determined with the help of the obtained Green’s function:

F(x, t) =
∞∫
0

F0(x1) G(x, x1, t) dx1

and has the explicit form:

F(x, t) = M0 hc l (x xs)
l

t
exp

(
−x2

s + x2

4t
κ2 h

1/ l
c

)
Il

(x xs

2t
κ2 h

1/ l
c

)
.

(1.134)

We now consider the accretion rate at the inner boundary Ṁin = (∂F/∂h)|h→0:

Ṁin(t) = x1−2l

2 l hc

∂F (x, t)

∂x

∣∣∣
x→0

= M0 τ l
e

Γ (l)

e−τe/t

t1+l
.
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It is possible to rewrite the accretion rate using its peak value

Ṁin(t) = Ṁin,max

(τpl

t

)1+l

e−τe/t ,

where we have introduced the characteristic time scale for exponential growth τe

and power-law decline τpl:

τe = κ2 h
1/ l
s

4
= 1 + l

e
τpl .

The accretion rate reaches its peak value

Ṁin,max = Mdisc

tmax

(1 + l)l

e1+l Γ (l)
(1.135)

at time

tmax = κ2 h
1/ l
s

4(1 + l)
= τpl

e
. (1.136)

1.6.4 Solution for a Disc with a Fixed Outer Radius

The boundary conditions are of high importance for the type of solution to
Eq. (1.128). Above, we considered a solution in which the disc increases in size
without limitation. A part of the matter in the disc will with time acquire very high
values of the specific angular momentum. In a number of astrophysical situations,
it is clear that it is necessary to set conditions at a finite radius from the centre. This
concerns generally discs in binary systems. The torque of tidal forces, appearing
due to gravitational influence of the companion star and acting predominantly
in the narrow area inside the Roche lobe, leads to the disc being truncated at a
certain radius (Papaloizou and Pringle 1977; Paczynski 1977; Ichikawa and Osaki
1994; Hameury and Lasota 2005). Near the truncation radius, angular momentum
is transferred from the disc to orbital motion of the binary system.

Thus, the problem now needs to be solved for a finite interval. The method of
superposition of partial solutions is modified, and the general solution is found not
as an integral (1.131), but as a sum of all the partial solutions that fulfill the specific
boundary conditions (Lüst 1952):

F(x, t) =
∞∑
i=1

e−t k2i κ−2 h
−1/l
out (ki x)l [Ai Jl(ki x) + Bi J−l (ki x)] , (1.137)
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Here we have also changed the characteristic value of the specific angular momen-
tum to the value at the outer boundary hout, where the dimensionless parameter
x = 1.

Let us set the boundary conditions at the outer radius of the disc:

∂F

∂h
= Ṁout(t) at h = hout . (1.138)

In the simplest case, if Ṁout(t) = 0, this will be a homogeneous Dirichlet boundary
condition. At the inner radius, we consider the same condition as earlier: F(h) = 0
for h = 0. The use of these two conditions gives an equation that every particular
solution has to satisfy, that is, for any k

l Jl(ki) + ki J ′
l (ki) = 0 . (1.139)

Since there in the series, representing the general solution, remain only terms
with Bessel functions of positive order, the general solution at the starting point
t = 0 is:

F(x, 0) =
∞∑
i=1

(ki x)l Ai Jl(ki x) . (1.140)

Series of the form
∞∑
i=1

kl
i Ai Jl(ki x) with the condition (1.139) are called Dini

series (see Watson 1944, Sect. 18.11). The function f (x) = F(x, 0) x−l can be
expanded in Dini series if it satisfies the Dirichlet conditions at the given interval,
and the coefficients of the expansion can be found as kl

i Ai = 2 f̄J (ki) J−2
l (ki) (Wat-

son 1944; Sneddon 1951), where we have used the finite Hankel transform

f̄J (ki) =
1∫

0

x f (x) Jl(ki x) dx .

To find the Green’s function, we search for a solution to an initial condition of
the form of a δ-function: F(x, 0) = δ(x − x1). Using its properties, substituting
f (x) into the last expression, we get:

kl
i Ai = 2 x1−l

1
Jl(ki x1)

J 2
l (ki)

. (1.141)

In this way we obtain the Green’s function for a finite disc (Lipunova 2015):

G(x, x1, t) = 2 xl x1−l
1

∑
i

e−t k2i κ−2 h
−1/l
out

Jl(ki x1) Jl(ki x)

J 2
l (ki)

, (1.142)
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Fig. 1.12 Green’s function of a finite disc with a zero torque at the centre at times t1 = 0.001,
t2 = 0.01, t3 = t∞max = 3/64, t4 = 0.1, t5 = 0.3. The ring of matter was located at xs =
(h/hout)

1/2l = 0.5 at time t = 0. The parameters are κ = 1 and l = 1/3

where ki are the positive roots of the transcendental equation (1.139) and x =
(h/hout)

1/2l . The Green’s function is depicted in Fig. 1.12 for a few moments in
time. The curve at t3 = tmax (see (1.136)) corresponds to the maximum accretion
rate through the inner boundary of the disc.

For a specific initial distribution F(x, 0), the distribution at any point in time
t > 0 can be found as

F(x, t) =
1∫

0

F(x1, 0) G(x, x1, t) dx1 . (1.143)

The accretion rate at any point in time t > 0 is

Ṁ(x, t) =
1∫

0

F(x1, 0) GṀ(x, x1, t) dx1
/

hout , (1.144)

where the Green function for the accretion rate is

GṀ(x, x1, t) ≡ ∂G(x, x1, t)

∂x2l =

= (x x1)
1−l

l

∑
i

e−t k2i κ−2 h
−1/l
out ki

Jl(ki x1) Jl−1(ki x)

J 2
l (ki)

.

(1.145)
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The functions G and GṀ in the particular case of x1 = 1 are found in the form of
analytical asymptotics by Wood et al. (2001).

The initial distribution F can be expressed through the distribution of surface
density, using (1.127) and (1.130):

F(x, 0) = 16π l2

κ2 h1/ l
r2 Σ(r) h , (1.146)

where r = h2/GM and h = hout x
2l .

For large times t , the first term in the sum (1.145) dominates and the time
dependence can be expressed as a simple exponential:

GṀ(0, x1, t)
∣∣∣
t>tvis

= kl
1 x1−l

1

2 l Γ (l)

Jl(k1 x1)

J 2
l (k1)

exp

(
− t k21

2 l tvis

)
.

The characteristic time scale for exponential decrease of the accretion rate is equal
to:

texp = h
1/ l
out

κ2

k21

= 16 l2

3 k21

r2out

νout
, (1.147)

where we have taken into account that νout = ν0 rb
out. In Table 1.3, the first zero k1 of

the equation is shown for typical values of l. The table also provides the coefficients
for calculating characteristic time scales for the growth (1.136) and the exponential
decay (1.147) of the solution.

The disc becomes quasi stationary (i.e. the accretion rate practically does not
changewith radius) in regions where r/rout < (t/texp)

2 l . The establishment of quasi
stationarity in the central regions of the disc on viscous time scales is a common
property for discs with any type of viscosity.

Table 1.3 Parameters of the Green function for a non-stationary disc

b l k1 tmax(r
2
s /νs)

−1 texp(r
2
out/νout)

−1 a0 Comments

0 1/4 1.0585 1/15 0.298 1.267 ν = const

1/2 1/3 1.2430 1/9 0.383 1.363 α-disc with h/r = const

3/5 5/14 1.2927 0.125 0.407 1.392 α-disc, τT � τff

3/4 2/5 1.3793 0.152 0.449 1.444 α-disc, τff � τT

1 1/2 1.5708 2/9 0.540 1.571 F(h) ∝ sin((π/2) h/hout)

2 ∞ – – – – tvis independent of r

The columns are: Exponent in the power law ν ∝ rb ; l from expression (1.130); the first zero of
Eq. (1.139); the numerical factor from (1.136) the numerical factor from (1.147); the parameter
describing the radial profile, a0 = Ṁin hout/Fout. The solution to the linear equation may apply to
α-discs on timescales of the order of or shorter than the viscous timescale. For α-discs the type of
opacity is shown
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Fig. 1.13 Normalised lightcurves of the X-ray novae GRO J0422+32 (1992), A 0620-00 (1975),
GS 1124-68 (1991), GS 2000+25 (1998) from Chen et al. (1997), 4U 1543-47 (2002) and XTE
J1753.5-0127 (2005) (results from ASM/RXTE). The X-ray energy range for each flare is indicated
in the plots. The solid curves show the peak-normalised accretion rates through the inner boundary
calculated according to (1.144) for l = 2/5 and texp as indicated for each flare. The initial
distribution of surface density in the disc is Σ ∝ r and the initial inner radius of the hot zone is
0.01× rout . For A 0620-00, two model lightcurves are shown, for inner radii, at t = 0, 0.001× rout
(solid line) and 0.3 × rout (dotted line), respectively. Figure from Lipunova (2015)

Bright X-ray flares, known as outbursts of X-ray novae, are observed in binary
systems consisting of a compact object and a low-mass normal star. It is well known
that in the ‘simplest’ cases, outbursts in X-ray novae show lightcurveswith a fast rise
and an exponential decay, which are called FRED profiles (Chen et al. 1997). Such
lightcurves are nicely produced within the framework of the model for viscous discs
with a viscosity coefficient constant on time scales of the order of tvis (Fig. 1.13).
This is explained by the fact that on time scales of the order of one to two tvis,
a non-stationary α-disc and a disc such as considered in this section show similar
evolution.

In order to fit the constant-viscosity solution to the evolution of a viscous α-disc,
it is necessary to estimate the most appropriate value of parameter b in (1.128).
This can be done using the relation (1.40) between the kinematic viscosity and the
turbulence parameter:

νt = ν0 rb � 2

3
α ωK r2

(z0

r

)2 1

Π1
, (1.148)

where the parameter Π1 shows up from a consideration of the vertical structure,
see (1.99). The solution for a stationary disc with dominant gas pressure and
Kramers opacity gives z0/r ∝ r1/8 (see (1.110)), thus b � 3/4 or, equally, l � 2/5,
if we neglect the dependence of the disc thickness on the accretion rate.
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One can estimate α for an X-ray nova using (1.147) and (1.148) (Lipunova and
Malanchev 2017):

α ∼ 0.15

(
rout

2R�

)3/2 (
z0/rout

0.05

)−2 (
M

10M�

)−1/2 (
texp

30d

)−1

× Π1 . (1.149)

Here, one should substitute z0 corresponding to the peak of an X-ray nova outburst.
The main uncertainty in the above formula is the radius of the disk. In addition,
the evolution of the thickness of the α-disk leads to a variation of the numerical
factor in (1.149). However, a numerical modelling of the disk evolution can provide
a self-consistent value of α (see Sect. 1.7.3).

1.6.5 Solution to the Non-linear Equation for the Evolution
of a Viscous α-Disc

Earlier we considered the case when the coefficient of kinematic viscosity depends
solely on the radial coordinate in the disc. In the more general case, we may
represent νt as a power-law function of Σ and r . Such a dependence arises in
particular if we consider discs with α-viscosity. In this case, (1.123) becomes a non-
linear differential equation in partial derivatives. To search for a solution to such an
equation, similarity methods can be used in many cases. A self-similar solution to
a non-linear differential equation accurately describes the evolution if enough time
has passed since the initial moment.

As we have seen in the previous section, self-similar solutions to a linear
differential equation are characterized by the possibility to completely separate the
time and coordinate parts of the solution. A particular solution is thus a product of
functions of different variables. In the case of a nonlinear differential equation, such
a simple separation is in general not possible. To approach the problem, we may use
the method of introducing new dimensionless variables (parameters), which contain
combinations of the dimensional parameters (for example time and coordinates)
raised to various powers.

Self-similar solutions to non-linear differential equations can be divided into two
kinds (Barenblatt 1996, 2003). The self-similar solution is of the first kind if the
self-similar function, as well as the new dimensionless parameter, can be derived
from dimensional analysis. This case is also called a complete self-similarity. The
second kind, or incomplete self-similarity, is the more general case. Here the self-
similar function is a particular solution to the problem itself (a non-linear eigenvalue
problem, see Zeldovich and Raizer (1967)). A dimensional analysis does not allow
us to determine the self-similar function, and in particular, find to which powers the
dimensional parameters should be raised to produce a self-similarity dimensionless
variable. For incomplete self-similarity, the type of solution depends on the value of
the self-similar variable.
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If the constant coefficients in a self-similar function can be found from con-
servation laws, then the self-similar solution will be of the first kind (for example
energy conservation in J. I. Taylor’s blast wave (Barenblatt 2003)) and conservation
of the total angular momentum in an accretion disc (see further Sect. 1.6.6.3)).
Self-similar solutions of the first kind were found for accretion discs with a non-
linear viscous diffusion equation in the stage of evolution when the accretion rate
is decaying (Pringle 1974, 1991). Solutions of the second kind have also been
constructed (Lyubarskij and Shakura 1987). These solutions apply to an earlier
evolutionary stage, that is, the spreading of an original ring of matter into a disc
around the gravitating centre.

The form of the turbulence parameter νt is determined by the physical structure of
the disc, which is dependent on the astrophysical conditions. For an α-disc with two
variants of opacity (Kramers’ law and Thomson scattering), within the framework of
self-similar solutions of the first kind, it was found that the accretion rate declines
as ∝ t−19/16 and ∝ t−5/4, respectively (Pringle 1974; Filipov 1984; Lyubarskij
and Shakura 1987; Cannizzo et al. 1990; Pringle 1991). Lin and Pringle (1987)
considered a molecular disc with a gravitational instability generating an effective
viscosity νt ∝ Σ2 r9/2, and found that Ṁ ∝ t−6/5. Lin and Bodenheimer (1982)
studied the evolution of a protoplanetary disc under the influence of convective
turbulent viscosity (νt ∝ Σ2), for which Ṁ ∝ t−15/14. Ogilvie (1999) investigated
an advective accretion flow, the structure of which considerably differs from that of
a thin viscous disc, and, using similarity methods, found a solution in the case of
conserved total angular momentum.

The type of solution also depends on the boundary conditions. Pringle (1991)
in addition considered the general case of an infinite cold protostellar disc with
νt ∝ Σ3 and a central source of angular momentum. Such a formulation of the
problem corresponds to the evolution of a disc around a young binary system (see
also Ivanov et al. 1999). In Rafikov (2013), a detailed consideration of the evolution
of discs around binary black holes was presented, and self-similar solutions were
found with different conditions at the inner boundary, suggesting a certain mass
transfer through the inner boundary. Rafikov (2016) built self-similar solutions for
a ‘decretion’ disc (disc with mass ejection from the centre).

For a disc with a zero (or very small) viscous stress at the inner boundary and
with a limited outer radius, a solution was found by Lipunova and Shakura (2000).
According to them, Ṁ ∝ t−10/3 for Kramers opacity and Ṁ ∝ t−5/2 for Thomson
scattering (see Sect. 1.6.7 below).

If νt = ν0 Σa rb, the kinematic viscosity coefficient is not constant in time
since the surface density varies. The relation F = 3π h νt Σ0 (cf. (1.122)) can be
presented in the following way:

F = 3π h ν0 Σa+1
0 rb . (1.150)
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Then, for a Keplerian disc (h ≡ h∗), Eq. (1.123) takes the following form:

∂F

∂t
= D

Fm

hn

∂2F

∂h2
, (1.151)

where D is a dimensional constant,

D = a + 1

2
(G M)2

(
3

2

ν0

(2π)a (G M)b

)1/(a+1)

, (1.152)

and m and n are dimensionless constants,

m = a

a + 1
, n = 3a + 2 − 2b

a + 1
.

The values of the parameters D, m and n may be determined from the equations
of vertical structure. The parameter D in (1.151) can be seen as a sort of ‘diffusion
coefficient’. It may be found from the relation between Σ0, F and h (Filipov 1984;
Lyubarskij and Shakura 1987):

Σ0 = (GM)2 F 1−m

4π (1 − m) D h3−n
. (1.153)

Comparing the equation of disc evolution in the linear and non-linear cases, (1.129)
and (1.151), we find that D = 4 (l/κ)2 for m = 0.

The non-linear problem of non-stationary accretion has the following distinctive
features. Firstly, the self-similar solutions of the second kind exist only for m �=
0. Secondly, self-similar solutions of the first kind in the third stage, while they
exist for m = 0, have an exponential profile for r → ∞, characteristic for linear
problems (see for example Lynden-Bell and Pringle 1974). Form �= 0, the boundary
of the disc is fully determined.4

1.6.5.1 The α-Discs

Lyubarskij and Shakura (1987) give the equations of vertical structure in a form
similar to (1.99). The opacity is given as:

� = �0
ρς

T � .

4This property is similar to the one that arises in problems of thermal conductivity, when, due to
the non-linearity, the heatwave boundary sharply separates the heated zone from the rest of the
region (Zeldovich and Raizer 1967).
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Table 1.4 Dimensionless parameters in the equations of non-stationary accretion for different
forms of νt

m n a b ς � αpl

�T � �ff and (1.94) 2/5 6/5 2/3 1 0 0 −19/16

�ff � �T and (1.94) 3/10 4/5 3/7 15/14 1 7/2 −5/4

OPAL (Iglesias and Rogers
1996), full ionization of H and
He

1/3 1 1/2 1 1 5/2 −11/9

Convective turbulence (Lin and
Bodenheimer 1982)

2/3 8/3 2 0 – – −15/14

Molecular disc with
gravitational instability (Lin
and Pringle 1987)

2/3 −1/3 2 9/2 – – −6/5

The parameter αpl is the power-law index of the time-dependence during the stage of declining
accretion in an infinite disc: Ṁ ∝ tαpl

After a few algebraic manipulations of the equations in the right column
of (1.99), we may find the relation between Σ0, Wrϕ r2 and ω r2, which together
with (1.153) gives5:

D = 1

4(1 − m)(2π)m

{
26+ς+2�α8+ς+2�

Π
ς
1 Π

2ς
2 Π

8+ς+2�
3 Π2

4

(�
μ

)8+2�

×
(
9�0
8 a c

)2

(GM)12+8ς

} 1
10+3ς+2�

, (1.154)

where

ς = −11m − 2n − 2

7m − n − 1
, � = −1

2

37m − 4n − 10

7m − n − 1
(1.155)

or

m = 4 + 2ς

10 + 3ς + 2� , n = 12 + 11ς − 2�
10 + 3ς + 2� (1.156)

(see Table 1.4).
It is important to note that the ‘diffusion coefficient’ D is only weakly dependent

on the opacity coefficient: as a power function of �0 with an index of 1/5 or 1/10.
This reduces the impact of the uncertainty due to the dependence of the real opacity
on the disc parameters. The combination of parameters Π1,2,3,4 in (1.154) depends
only weakly on the optical depth τ , i.e. on the radius in the disc (see Tables 1.1

5Note that here F is a factor of 2π larger than in the paper by Lyubarskij and Shakura (1987), and
our quantity D is smaller by a factor of (2π)m.
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and 1.2). Thus, D may be considered a constant in the basic equation of non-
stationary accretion (1.151).

1.6.6 Evolution of α-Disc from a Ring of Matter

It turns out that the global evolution of the disc can in general be divided into three
stages: (1) the stage of formation of the disc from an initial ring made up of matter
at some radius, (2) the establishment of a quasi-stationary distribution of parameters
in the disc, and as a special case, increasing accretion rate onto the central body, and
(3) ‘spreading’ of the disc away from the centre, accompanied by a decrease of the
accretion rate.

The ring of matter around a star may be formed as a result of a mass-transfer from
the neighbouring component in a binary system. In the presence of effective mech-
anisms of viscosity, the differentially rotating ring starts to smear out into a disc.

At the first stage, material from the inner edge of the ring, losing angular
momentum to the outer layers, starts to move towards the centre. In the region
r � Rout, the flow evolves into some self-similar regime whose characteristics
are independent of the initial mass distribution profile. The inner edge of the disc,
which has the form of a stretched-out ‘tounge’, reaches the accreting centre in a
finite time (Fig. 1.14a). The self-similar solution breaks down close to the radius of
the innermost stable orbit around the black hole, or close to the magnetosphere of the
neutron star. Nevertheless, after some transition period, accretion again evolves into
another self-similar solution, the regime of quasi-stationary accretion (the second
stage).

At the second stage, a practically radially constant distribution is rapidly estab-
lished in the inner regions of the disc, by virtue of the small viscous time scales at
small radii. The region of the quasi-stationary solution gradually expands outwards
(Fig. 1.14b), while the accretion rate gradually increases in time. Meanwhile, in the
outer region, conditions remain close to the original.

Further, the disc gradually evolves into the third final stage (the decay stage,
Fig. 1.14c) at which the details of the initial distribution are ‘forgotten’, and only
some integral quantities conserved during the accretion are important in finding the
self-similar solution. This final stage is described by a self-similar solution of type
I, whereas the two preceding cases are described by self-similar solutions of type
II, i.e. solutions in which the self-similarity index is found not from dimensionality
arguments but in the process of integrating the ordinary differential equation for the
representative function (Lyubarskij and Shakura 1987).

Thus, each stage is characterized by the motions whose distinctive property is a
similarity that is conserved in the motion itself. This means that the distribution of
any quantity, for example, the viscous torque, may be represented in the form:

F(h, t) = hA1 tA2 f (ξ) , (1.157)
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Fig. 1.14 Illustration by Lyubarskij and Shakura (1987) of the process of evolution of non-
stationary disc accretion in the form of the dependence of viscous torques acting between adjacent
rings of the disc, as a function of the specific angular momentum: (a) stage of formation and
inward motion of self-similar ‘tounge’, (b) stage of formation of quasi-stationary regime, (c) stage
of accretion decay. Dashes denote the regions into which the material was ejected and in which the
solution is non self-similar. Each figure shows the distribution for three consecutive moments in
time t1, t2, t3. The calculated dependencies are shown in Figs. 1.16 and 1.17

where f is a function of a single self-similar variable ξ = C hA3 tA4 . For com-
pletely self-similar solutions, the parameters C and A1..4 may be determined from
dimensional arguments or from conservation laws. To determine the parameters for
non completely self-similar solutions, a non-linear problem should be solved; in
addition, the obtained parameters will depend on h and t .

1.6.6.1 ‘Tounge’-Formation Stage

Let us assume that the radius of the inner edge of the disc rin or the equivalent
value hin decreases as a power law hin ∝ (−t)γ (t = 0 when the centre is reached,
thus the minus sign). As seen from Eq. (1.151), the combination D Fm t/hn+2 is



72 G. Lipunova et al.

dimensionless, which permits the solution to be represented as

F(h, t) = h(n+2)/m

(−D t)1/m
y(ξ) ; 1 ≤ ξ = h

A (−t)γ
≤ ∞ , (1.158)

where y(ξ) is the representative function of the single self-similar variable ξ . It is
not possible for the dimensionless variable ξ to be a combination of h, t and D,
so we have to introduce the additional constant A of dimensionality [cm2s−(1+γ )],
where the previously unknown exponent γ must be determined in the course of
solving the problem. We thereby arrive at a self-similar problem of the second kind,
similar to the problem of a converging shock wave (Zeldovich and Raizer 1967;
Barenblatt 1996).

Substituting (1.158) into (1.151), we obtain an ordinary differential second-order
equation for the representative

ym
[
ξ2y ′′ + 2(n + 2)

m
ξy ′ + (n + 2)(n + 2 − m)

m2 y
] − γ ξy ′ − y

m
= 0

which can be characterised as an equation for a non-linear oscillator with dissipation
(if γ is positive).

The boundary conditions are determined in the following manner. It is evident
that the accretion rate through the inner edge of the ring can be considered to equal
zero. Thus, at the inner boundary hin (corresponding to ξ = 1), both the function
F(hin, t) and its derivative ∂F (hin, t)/∂h must vanish (cf. (1.125)). Otherwise, a δ-
source (sink) appears with the substitution into Eq. (1.151). Consequently, we have
two conditions:

y(1) = y ′(1) = 0 .

Another condition follows from the requirement that all physical quantities remain
finite at time t = 0 (when the ‘tounge’ reaches the accreting centre), at any finite
radius. It follows from (1.158) that F(h, t) does not diverge as t → 0 and h �= 0
only if

y(ξ = ∞) = 0 .

Thus, the solution of the second-order equation must satisfy three conditions, which
is possible only for a specific value of γ .

Let us investigate qualitatively the equation for the representative function.
For this we turn to the variable x = ln ξ+C (substituting C will not affect the
resulting system of Eq. (1.159), but is important for adjustment of the solutions).
The derivative with respect to x will be denoted by a dot. We write the resulting
system of two equations of the first order:

ẏ = p ,

ṗ = y1−m

m
+ γy−mp − (n + 2)(n + 2 − m)

m2
y − 2n + 4 − m

m
p . (1.159)
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We are interested in the solution which leaves the origin of the plane (p, y) at ξ =
1 and returns there at ξ = ∞. For y � 1 and p � 1, the system (1.159) has
asymptotic solutions of the form

p = γ

1 − m
y1−m ; y =

( γ m

1 − m
ln ξ

)1/m

, (1.160)

p = − y

γ m
; y = ξ

− 1
γ m . (1.161)

The functions (1.160) give asymptotics when ξ → 1 and (1.161) when ξ → ∞,
respectively. The phase trajectories of the solutions to the equations are shown in
Fig. 1.15 for four values of γ .

Each point for which ẏ = 0 and ṗ = 0 is a singular point. There is a stable focus
in the phase plane with coordinates

p = 0 , y0 =
[ m

(n + 2)(n + 2 − m)

]1/m

.

For a certain γcr, there exists a closed solution (Fig. 1.15b). Numerical investigation
shows that for m = 2/5, n = 6/5 (the case �T � �ff), the sought after value is
γcr ≈ 0.595, and for m = 3/10, n = 4/5 (�ff � �T), it is γcr ≈ 0.696. The
phase trajectories are rearranged for some γ+ and the stability of the focus changes
(Fig. 1.15d).

Thus, the inner boundary of the disc moves towards the centre according to
the law: hin = A(−t)γcr (see Figs. 1.16 and 1.17). As follows from (1.161), the
asymptotic solution of the initial equation (1.151) for ξ → ∞ (i.e. for t → 0, when
the ‘tongue’ reaches the accreting centre), has the form

F = h
n+2
m

(−Dt)
1
m

[A(−t)γ

h

] 1
γ m = A

1
γcr m h

n+2
m − 1

γcr m

D1/m
. (1.162)

We note that for large h, the profile F(h, t) does not change with time during the
‘tongue’ formation stage. By ‘sewing’ the obtained self-similar solution and the
initial profile F0(h) near the radius where the material was ejected at time (−t0),
we may also determine the constant A. Within a dimensionless factor, we have
from (1.162)

A = F
γcr m

0 Dγcr/h
γcr(n+2)−1
0 ,

where h0 = √
G M r0 is determined by the initial radius of the ring r0.
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Fig. 1.15 Phase portrait of the system of Eq. (1.165) for different values γ . The arrows indicate
the direction of change in ξ from 1 to ∞ (x from C to ∞). (a) For γ < γcr the solution inside
the separatrix, shown by the bold curve, reaches the stationary point (focus) on the horizontal axis
(0, y0). (b) A closed solution is found for γ = γcr and coincides with the separatrix. The separatrix
at the same time forms a limit cycle of solutions in the region bounded by it, for x → −∞. (c) For
γcr < γ < γ+, the separatrix (bold curve) is gradually compressed. (d) For γ = γ+ it is moving
towards the point (0, y0)

1.6.6.2 Quasi-Stationary Stage with Increasing Accretion

We seek a solution to (1.151) in the form:

F = h
n+2
m

(D t)1/m
y(ξ) , 0 ≤ ξ = h

A tβ
≤ ∞. (1.163)
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Fig. 1.16 Calculated profile F(h) in the Lyubarski–Shakura solution at three stages of self-similar
evolution: (a) formation of the ‘tongue’, t2/t1 = 1/4 (t is negative and approaches zero); (b) quasi-
stationary accretion, t2/t1 = 3 (t is now positive); (c) accretion decay, t2/t1 = 2. The quantities F

and h are normalised to arbitrary values. The dotted lines in the two upper panels give the symbolic
dependence of F(h) for regions where the (unknown) solution is non self-similar. The calculation
is performed for opacity parameters m = 2/5, n = 6/5

The time t is now positive. Substituting (1.163) into (1.151), we obtain the equation
for the representative function:

ym
[
ξ2y ′′ + 2(n + 2)

m
ξy ′ + (n + 2)(n + 2 − m)

m2
y
] + βξy ′ + y

m
= 0 (1.164)

or a system of two equations

ẏ = p ;

ṗ = −y1−m

m
− β y−m p − (n + 2) (n + 2 − m)

m2 y − 2n + 4 − m

m
p (1.165)
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Fig. 1.17 Calculated profiles F(h) in the Lyubarski–Shakura solution at the stages of ‘tongue’
formation (solid line) and quasi-stationary accretion (dashed line). At the first stage, we see the
movement of the inner edge of the ‘tongue’ towards the centre. In the second stage, we can see
how the zone of quasi-stationary accretion expands with time (F ∝ h). The accretion rate increases
with time from the lowest curve to the top. The quantities F and h are normalised to characteristic
values

As ξ → ∞, the asymptotic solution of this system has the form

p = − y

β m
; y = ξ

− 1
βm ; (1.166)

we notice that the main contribution comes from the two last terms of (1.164). Hence
it follows that only if β = γcr, the distribution F(h, t) is the same as that at the
preceding stage (1.162). Thus, the self-similarity index remains as before. For ξ →
0 (at very large times t or at the accreting centre), there are two asymptotic solutions.
(Now the main contribution comes from the terms in square brackets in (1.164)).

p = −n + 2

m
y ; y = ξ− n+2

m , (1.167)

p = −n + 2 − m

m
y ; y = ξ− n+2−m

m . (1.168)

The first corresponds to (∂F/∂h)h→0 = 0, i.e. the solution without a material
sink (Ṁh→0 → 0), while the second corresponds to an accretion rate, radially
constant at small h. Near the gravitating centre, the accretion rate depends on time
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according to

|Ṁ| =
∣∣∣∂F

∂h

∣∣∣
h→0

≈ (Atβ)
n+2−m

m

(Dt)1/m
= A

n+2−m
m t

γcr(n+2−m)−1
m

D1/m
. (1.169)

It is this solution with a material sink that describes the second accretion stage in
our case (see Fig. 1.16b). We have |Ṁ| ∝ t1.67 for �T � �ff while the accretion rate
increases as |Ṁ| ∝ t2.47 for �ff � �T.

If we introduce the notation

Ṁ0 = F0

h0
, τ = hn+2

0

Fm
0 D

or τ = hn+2−m
0

Ṁm
0 D

,

the accretion rate Ṁ(t) onto the gravitating centre during the quasi-stationary stage
can be expressed in terms of the accretion rate Ṁ0, determined by the initial value of
the viscous torque F0 acting on the ring of matter with specific angular momentum
h0:

Ṁ = Ṁ0

( t

τ

) γcr(n+2−m)−1
m

at t > τ .

1.6.6.3 Accretion Decay Stage: Spreading of the Disc

We again seek a solution to (1.151) in the form (1.163), but now the variable ξ varies
within the limits 0 ≤ ξ ≤ 1 (ξ = 1 corresponds to the outer radius of the disc rout
or the specific angular momentum hout = √

G Mrout(t)). Thus, the solution for this
stage is described, as before, by (1.164) or the equivalent system (1.165) with the
boundary conditions y(0) = y(1) = y ′(1) = 0. The value of the self-similar index
β is now found from the law of conservation of the total angular momentum of the
material in the disc. Indeed, if the ring was initially located at a radius r0, much
greater than the radius of the innermost stable orbit, then the quantity

K = 2π

rout∫
0

Σ h r dr = const . (1.170)

is conserved during the accretion process. Substituting (1.163) into (1.170), with the
use of the relationship (1.153) between Σ0 and F , we obtain

K = 1

(1 − m) D

hout∫
0

F 1−m hn+1dh = A
n+2
m t

β(n+2)
m

(1 − m) D1/m t
1−m
m

1∫
0

y1−m(ξ) ξ
n+2−m

m dξ .

(1.171)
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From the condition ∂K/∂t = 0, we obtain β = (1 − m)/(n + 2). Moreover,
the expression (1.171) gives the exact relation for the constant A. For this β, the
required solution to the equation for the representative function (1.164) can be
found in explicit form. The method for solution of the non-linear ordinary second
order differential equation (1.164), or the equivalent system of first order (1.165), is
analogous to the solution of similar equations arising in heat propagation problems
with temperature dependent thermal conductivity (Zeldovich and Kompaneets
1950). Since Eqs. (1.165) contain the variable x only as a differential, the order
is lowered by introducing p(y) = dy/dx as a new unknown function of the
variable y

ym
[
p
dp

dy
+ 2n + 4 − m

m
p + (n + 2)(n + 2 − m)

m2 y
]

+ β p + y

m
= 0 .

It is then convenient to introduce function Z(y) = p(y) + y (n + 2 − m)/m:

ym
[(

Z − n + 2 − m

m
y
)dZ
dy

+ n + 2

m
Z
]

+ β
(
Z − n + 2 − m

m
y
)

+ y

m
= 0 .

We seek a solution of the form Z(y) = B y1−m. Collecting the coefficients of
powers of y1−m in the last equation, we obtain B = −β/(1−m). After substitution

of Z(y) = − β

1 − m
y1−m, the equation becomes a linear algebraic equation with

respect to y. The left part of the equation vanishes for β = (1− m)/(n + 2). On the
other hand, the equality of β to this value is a necessary condition for the existence
of a self-similar solution at the stage of accretion decay (which follows from the
condition ∂K/∂t = 0). Thus,

p = − y1−m

n + 2
− n + 2 − m

m
y

is a particular solution satisfying the boundary condition p(y = 0) = dy

dx

∣∣∣
x=0

= 0.

Integrating this expression is elementary, and with the boundary condition y(ξ =
1) = 0, the solution can be written as

y(ξ) =
[

m

(n + 2) (n + 2 − m)

]1/m(
1

ξn+2−m
− 1

)1/m

. (1.172)

This solution implies that the integral on the right-hand side of (1.171), which is an

Euler integral of the first kind, is reduced to the beta-function B
(n + 3 − m

n + 2 − m
,
1

m

)
with some coefficient, and the solution of the key equation (1.151) at the decay stage
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finally takes the form:

F = A
n+2
m

D1/m

[
m

(n + 2)(n + 2 − m)

]1/m
ξ (1 − ξn+2−m)1/m

t
=

= K m (1 − m)

(n + 2) B
(

n+3−m
n+2−m

, 1
m

) ξ (1 − ξn+2−m)1/m

t
.

The accretion rate decays according to:

Ṁ =
∣∣∣∂F

∂h

∣∣∣
h→0

= A
n+2−m

m

D1/m

[
m

(n + 2)(n + 2 − m)

]1/m

t−
n+3−m

n+2 .

The exponent in the time dependence of Ṁ(t) can also be expressed through the
exponents a and b, appearing in the expression νt ∝ Σa rb; it equals then 1 +
1/(5 a − 2 b + 4). For �T � �ff we have Ṁ ∝ t−19/16 and Ṁ ∝ t−5/4 for �ff � �T.

At both the quasi-stationary stage and the decay stage, the total energy release in
the disc is determined primarily by the release of gravitational energy in the inner
regions of the disc. The disc luminosity is equal to ηaccr Ṁin c2, where ηaccr is the
efficiency of energy release. During the ‘tongue’ stage, the energy release depends
largely on the initial distribution F(h) since the heat flux from a unit area of the disc
surface ∝ F/h7 (cf. (1.75)).

The presented solutions describe processes in real accretion discs to some
approximation. The assumption of constant opacity (or constant coefficients m and
n) does not hold for the entire disc throughout its full evolution. To completely take
into account changes in opacity, numerical calculations are required using tabulated
values of the opacity coefficients as functions of temperature and density. On the
other hand, the opacity coefficient has little effect on the presented solution, as it
appears in D as a factor raised to a very small power. It should be noted that the
opacity changes particularly strongly in regions with a variable degree of ionization.

1.6.7 Solution for α-Disc in a Binary System

Aswe have seen, the viscous evolution of a ring of matter eventually enters a stage of
unconstrained spreading, when parts of the matter in the disc acquire a high angular
momentum and reaches further and further from the centre. In binary systems, such
spreading of the disc cannot continue indefinitely due to the gravitational effects of
the companion star. Tidal forces from the companion star force the disc to be limited
to within a certain radius from the centre inside the Roche lobe.

Lipunova and Shakura (2000) found a solution describing the evolution of an
α-disc in a binary system. The obtained solution was used to model the optical and
X-ray lightcurves of the X-ray novae A 0620-00 and GU Mus 1124-68 during the
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decline after the peak of their outbursts. As a result, new constrains on the turbulence
parameter α were found (Lipunova and Shakura 2002; Suleimanov et al. 2008).

The angular momentum in the region of the outer radius is transferred from the
matter in the disc into orbital motion of the binary system. Papaloizou and Pringle
(1977) showed that the tidal truncation radius is on average ∼ 0.9 times that of the
Roche lobe. This radius is close to that of the last non-intersecting periodic orbit
calculated for a three-body problem (Paczynski 1977). Numerical calculations have
shown that the tidal stress tensor is important only in a rather narrow ring close
to the outer radius. Significant perturbations in this region lead to the formation of
strong spiral shock waves (Pringle 1991; Ichikawa and Osaki 1994; Hameury and
Lasota 2005).

Since the outflow of angular momentum takes place in a narrow region close
to the tidal truncation radius, we may choose not to examine this region in detail,
considering it simply a δ-type channel. The function F grows as r1/2 at radii much
smaller than the tidal truncation radius. There, the stationary disc behaves according
to the standard model, not ‘noticing’ the outer boundary conditions, and the
dependence of the viscous torque on the radius is described by expression (1.124).

We also assume in the framework of the mathematical problem that the outer
radius of the disc does not change, and that the rate of inflow of matter to the outer
disc is negligible. The assumption that the outer radius remains unchanged is valid
for transient activity phenomena during outbursts in some types of close binary
systems. Numerical calculations, in which long-term evolution of non-stationary
discs in binary systems (X-ray and dwarf novae) is modelled (DIM, Disc Instability
Models), take into account the variability of the outer radius of the disc (Lasota
2001). During powerful flares in X-ray novae, when the brightness of the source
may increase with up to a million times, the accretion rate inside the disc may be
considered to be much higher than the rate of inflow of matter from the companion
star. This corresponds to the vanishing of the derivative F(h, t) with respect to h at
the outer radius.

A solution to the basic equation of non-stationary accretion (1.151) for a disc
with a constant outer radius can be found using the method of separation of
variables:

F(h, t) = F(t) × fF (h/h0) . (1.173)

The quantity h0 = (G M rout)
1/2 equals the specific angular momentum at the outer

edge of the disc. The above mentioned properties of the viscous torque lead to the
following conditions at the outer radius:

fF (1) = 1, f ′
F (1) = 0 , (1.174)

the first of which is normalising, and the other expresses the fact that the viscous
torque has a maximum at the immediate vicinity of the disc outer radius (Fig. 1.18).
This is equivalent to the condition of zero accretion rate at rout. It can also be
said that the radial component of the velocity in the disc is zero at rout. A similar
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Fig. 1.18 Moment of viscous
forces F as a function of the
specific angular momentum h

in an accretion disc in a
binary system at two
moments in time. Time t2 is
later than t1. The accretion
rate declines with time

approachwas used, for example, by Pringle (1991) in a study of a disc surrounding a
binary system. At the inner edge of such a disc, the angular momentum is transferred
from the binary system into the disc, and the stars gradually move closer to each
other.

Thus, tidal interactions determine the specific boundary conditions at the outer
edge of the disc, thereby not changing the form of the equation that we solve (1.123)
or (1.151).

Naturally, in reality the inner edge of the disc rin �= 0. In many situations,
however, rin/rout � 1.

Using h ≡ hK, we obtain from (1.125):

Ṁ(h, t) = f ′
F (h/h0)F (t)/h0 . (1.175)

Substituting the product of the functions into the equation for non-stationary
accretion (1.151), we obtain the time-dependent part of the solution, which gives
the following asymptotic for the disc evolution after the peak of the outburst:

F(t) =
(

hn+2
0

λm D (t + t0)

)1/m

. (1.176)

Here, D is a dimensional constant (1.154) that may be obtained by solving the
equations of vertical structure, λ is a separation constant, which may be found from
the boundary conditions imposed on fF (h/ho), and t0 is the integration constant in
units of time.

The law of accretion rate change is written as:

Ṁ(t) = Ṁ(0) (1 + t/t0)
−1/m , (1.177)

where Ṁ(0) is the accretion rate at a certain moment in time t = 0, which can be
chosen as any time at the stage of declining accretion. Then, parameter t0 of the
solution is

t0 = hn+2
0

λm D Fm(0)
,
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where F(0) is the value of F(h, t = 0) at the outer radius rout. Substituting
expression (1.152) for D and taking into account that Fout = 3π h0 νout Σ0, we
get:

t0 = 4

3λ a

r2out

νout(t = 0)
, (1.178)

where a is the power of Σ in the relation νt ∝ Σa rb.
After a separation of variables in the basic equation, we obtain a non-linear

equation for fF (ξ). It constitutes a particular case of the general Emden-Fowler
equation (Zaitsev and Polyanin 2012)

d2fF

dξ2
= −λξnf 1−m

F , (1.179)

the solution to which we seek as a polynomial

fF (ξ) = a0ξ + a1ξ
k + a2ξ

l + . . . . (1.180)

Substituting fF (ξ) with the polynome into (1.179), we obtain for the second and
the third term:

k = 3 + n − m, a1 = −λa1−m
0

k(k − 1)
,

l = 2k − 1, a2 = −λa−m
0 a1

l(l − 1)
(1 − m) .

(1.181)

Table 1.5 gives the values for the constants a0 and λ, derived from the
boundary conditions (1.174) on fF (ξ) in the opacity regimes of pure scattering
and pure absorption as well as for an approximation based on the OPAL numerical
calculations of opacity (Iglesias and Rogers 1996). The corresponding functions fF

are shown in Fig. 1.19. The OPAL case turns out to be effectively somewhere in the
middle.

Table 1.5 Parameters of the analytical solution, presented by (1.176), (1.177), and (1.180), for
the truncated α-disc decay

m n λ a0 a1 a2 k l

�T � �ff 2/5 6/5 3.482 1.376 −0.396 0.019 3.8 6.6

�ff � �T 3/10 4/5 3.137 1.430 −0.460 0.030 3.5 6.0

OPAL 1/3 1 3.319 1.400 −0.425 0.025 11/3 19/3
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Fig. 1.19 The solution fF (ξ) for two cases: �ff � �T (solid line) and �T � �ff (dashes). The
plot also shows the function f (r), calculated using (1.102), that is included in the expression for
calculating radial dependencies of physical parameters (Sect. 1.5.3). The accretion rate practically
does not change with radius in the region, where f ≈ 1. The variable ξ = h/ho, where ho is the
specific angular momentum at the outer radius

The value a0, included in the expression for the accretion rate

Ṁin = Fmax

hmax
a0 ,

can also be calculated for the self-similar solution by Lyubarski & Shakura during
the concluding stage of disc decay (Sect. 1.6.6.3). Omitting the details, we only
mention that in an unconstrained disc, hmax likewise corresponds to the maximum
torque Fmax. It is remarkable that the values of a0 differ only by 2% between a
constrained and an unconstrained disc. This means that the profileF(h),in the region
of the disc whereF(h) increases, is practically independent of the conditions outside
this region.

1.6.7.1 Radial Dependencies for a Non-stationary Disc in a Binary System

Let us find the expressions for the evolution of physical parameters in the disc, using
Eqs. (1.99), (1.153), (1.154), and (1.176).

Note that the relations (1.104) and (1.110) contain another function, f (r)without
an index. Function f (r) is determined by relation (1.102). In the case of a stationary
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disc, we have fF = ξ f . In the case of a disc with a radially variable accretion rate,
for example a non-stationary disc, fF = a0 ξ f (r) (see Fig. 1.19).

Below, we derive expressions for the diffusion parameter D, surface density Σo,
temperature in the central disc plane Tc, relative half-thickness z0/r , and optical
depth τ . We use for the mass of the compact object mx = M/M�. The values Π1..4
should be chosen according to the appropriate opacity regime. The parameter t0
depends on the accretion rate at t = 0:

t0 = hn+2−m
0 am

0

λm D Ṁm
in (t = 0)

. (1.182)

It is important to remember that t0 depends on the type of opacity.

Scattering-Dominated Opacity Regime (�T � �ff)

Substituting the numerical values of the constants into (1.154), we obtain:

D [cm28/5/g2/5/s17/5] = 1.40 × 1038 α4/5 m
6/5
x

( μ

0.5

)−4/5
Π−1

Σ �
1/5
T ,

(1.183)

with the help of which we re-write (1.182):

t0 [days] = 24.12 α−4/5
(

rout

R�

)7/5 (
Ṁin(t = 0)

1018g/s

)−2/5

m
1/5
x

( μ

0.5

)4/5
ΠΣ �

−1/5
T ,

(1.184)

where (1.95) determines �T. Substituting the combination Min t
1/m
0 from (1.184)

into the expression for the declining accretion rate Ṁ(t) = Ṁ(0) (1 + t/t0)
−1/m,

and further the accretion rate and the function f (r) = fF /(a0
√

r/rout) into the
radial dependencies (1.104) in zone B, we obtain the radial dependencies of the
physical parameters in a non-stationary α-disc:

Σ0 [g/cm2] = 2.2 × 102 α−2 m
1/2
x

(
t + t0

10d

)−3/2 (
rout

R�

)3/2 (
r

rout

)−9/10

f
3/5
F ×

(1.185)

×
( μ

0.5

)2
�

−1/2
T ΠΣ

5/2 ,

Tc [K] = 1.8 × 104 α−1 m
1/2
x

(
t + t0

10d

)−1 (
rout

R�

)1/2 (
r

rout

)−11/10

f
2/5
F

μ

0.5
Π3 ,

(1.186)

z0

r
= 0.04 α−1/2 m

−1/4
x

(
t + t0

10d

)−1/2 (
rout

R�

)3/4 (
r

rout

)−1/20

f
1/5
F (Π1 Π3)

1/2 ,

(1.187)
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The dimensionless constants ΠΣ , Π1..4 were introduced in Sect. 1.5.2 where we
considered the vertical structure of the α-disc. Their interrelations are determined
by expression (1.105), in particular Π3 = ΠT ΠΣ and (Π1 Π3)

1/2 = Πz Π
1/2
Σ , and

their values can be found in Table 1.1 and in Fig. 1.8. The effective optical depth of
the disc can be estimated with the help of τ ∗:

τ ∗ =
(

�0,T �0,ff ρc

T
7/2
c

)1/2

Σ0 = 1.5 × 102 α−1
(

t + t0

10d

)−1/4 (
rout

R�

)1/2

×

×
(

r

rout

)1/10

f
1/10
F

( μ

0.5

)5/4
�

−1/4
T

( �0,ff

1022

)1/2 (
Π4

3 Π3
4

Π1 Π2
2

)1/4

,

where the units of �0,ff are [cm2K7/2/g2].

Absorption-Dominated Opacity Regime (�ff � �T)

This regime is established at lower temperatures and densities. In a similar fashion,
we obtain:

D [cm5/g3/10/s16/5] = 2.41× 1034α4/5 mx

( μ

0.5

)−3/4
Π−1

Σ

( �0,ff

1022

)1/10
,

(1.188)

t0 [days] = 36.41 α−4/5
(

rout

R�

)5/4 (
Ṁin(t = 0)

1018g/s

)−3/10

m
1/4
x × (1.189)

×
( μ

0.5

)3/4
ΠΣ

( �0,ff

1022

)−1/10
.

The value �0,ff [cm2 K7/2/g2] can be taken from (1.97) or (1.96).

Σ0 [g/cm2] = 9.9 × 102 α−8/3 m
5/6
x

(
t + t0

10d

)−7/3 (
rout

R�

)13/6 (
r

rout

)−11/10

×
(1.190)

×f
7/10
F

( μ

0.5

)5/2 ( �0,ff

1022

)−1/3
Π

10/3
Σ ,

Tc [K] = 3.1 × 104α−1m
1/2
x

(
t + t0

10d

)−1 (
rout

R�

)1/2 (
r

rout

)−9/10

f
3/10
F

( μ

0.5

)
Π3 ,

(1.191)

z0

r
= 0.05 α−1/2 m

−1/4
x

(
t + t0

10d

)−1/2 (
rout

R�

)3/4 (
r

rout

)1/20

f
3/20
F (Π1 Π3)

1/2 .

(1.192)
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The dimensionless coefficients ΠΣ , Π1..4 were introduced in Sect. 1.5.2, when we
considered the vertical structure of the α-disc. Their values can be found in Table 1.2
and Fig. 1.8. We recall that the surface density Σo is calculated between the bottom
and the top surface of the disc. The full optical depth (for which (1.112) applies in
the stationary case) is equal to:

τ = �0,ff ρc T
−7/2
c Σ0 = 2.4 × 102 α−4/3 m

1/6
x

(
t + t0

10d

)−2/3 (
rout

R�

)5/6

×
(1.193)

×
(

r

rout

)−1/10

f
1/5
F

( μ

0.5

)3/2 ( �0,ff

1022

)1/3 (
Π4

3 Π2
4

Π
1/2
1 Π2

)1/3

.

Luminosity Dependence in an α-Disc with a Constant Outer Radius

In order to calculate the bolometric luminosity of the disc, we assume a quasi-
stationary accretion rate Ṁ(t) = Ṁ(0, t) (1.175), since the main part of the energy
is released at distances from the centre r � rout. The quasi-stationarity is provided
by the fact that the characteristic time scale for evolution (viscous time scale) at
small radii is much smaller than that at large radii. Figure 1.19 illustrates this
behaviour by the fact that the function f (r) becomes approximately constant close
to the disc centre.

Substituting t0 into (1.177), we obtain for the luminosity L = ηaccr Ṁ(t) c2,
where ηaccr is the efficiency of accretion:

LT(t) [erg/s] = 8.1 × 1038 α−2 m
1/2
x

(
t + t0

10d

)−5/2 (
rout

R�

)7/2 ( η

0.1

)
×
(1.194)

×
( μ

0.5

)2
�

−1/2
T Π

5/2
Σ ,

if Thomson scattering dominates in the outer parts of the disc, and

Lff(t) [erg/s] = 6.7 × 1039 α−8/3 m
5/6
x

(
t + t0

10d

)−10/3 (
rout

R�

)25/6 ( η

0.1

)
×

(1.195)

×
( μ

0.5

)5/2 ( �0,ff

1022

)−1/3
Π

10/3
Σ ,

if Kramer’s opacity dominates. The quantities t0 differ between expressions (1.194)
and (1.195) and are determined using formulae (1.184) and (1.189), respectively.

Note that the quantities t0(T) and t0(ff) in the two regimes are not independent
of each other. In a physically consistent model with a transition between the opacity
regimes, it is necessary to find an intersection between the two solutions. This may
be done by equating the torques F and the surface densities Σ0 in the two regimes
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Fig. 1.20 Bolometric disc luminosity LT and Lff for the parameters mx = 3, α = 0.3, μ = 0.5,
rout = R�. The dashed line shows the scattering dominated opacity regime and the solid line shows
the absorption dominated regime. The transition from the solution in the scattering regime to the
solution in the absorption regime is marked with a cross. The second intersection of the curves is
marked with a bar

at radius r = 0.5 rout. These two conditions specify the intersection time itself and
the difference between times t0 in the two regimes. The value of t0 in one of the
regimes is a free parameter, and can be chosen so that t = 0 corresponds to a certain
accretion rate.

Figure 1.20 shows the bolometric lightcurves for the parameters α = 0.3, mx =
3 and �0,ff = 6.45 × 1022 cm5 K7/2/g2 and �T = 0.4 cm2/g in the two opacity
regimes. Typical values for Π1,2,3,4 are used. The normalised time in the absorption
regime (1.189) t0(ff) ≈ 107 days is obtained from the condition that the accretion
rate is Ṁ = 1018 g/s at t = 0. Equality between F and Σ in the two different
regimes occurs at radius r/rout = 0.5 when

t + t0(ff) = ttr ≈ 48d(mx/3)2/5 (α/0.3)−4/5 (μ/0.5)3/5 (rout/R�)4/5 .

The normalised time in the scattering regime can be uniquely determined: t0(T) ≈
90 days. The intersection of the lightcurves at time t = ttr − t0(ff) ≈ −59d is
markedwith a cross in Fig. 1.20.We can see that there is a smooth transition between
the solutions in the two regimes at this time. There is another intersection of the
lightcurves at t ≈ −3d, which represent a second point where the two functions
FT(ξ, t + t0(T)) = Fff(ξ, t + t0(ff)) take on equal values. This intersection exists
only in a mathematical sense. The physical conditions in the disc at this moment are
such that absorption dominates the opacity, and the values of the physical parameters
in the disc, calculated according to (1.183)–(1.193), differ.

Let us not forget that we are working within the framework of the model
for a geometrically thin disc with sub-critical accretion. Therefore, the solution
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considered is applicable only for luminosity below the Eddington value LEdd ≈
1.4× 1038 mx erg/s. Figure 1.20 shows that the evolution of the disc with L < LEdd
proceeds almost entirely in the absorption-dominated opacity regime.

When the temperature in the equatorial disc plane Tc drops at large radii down
to a value of ∼ 3 × 104 K, the opacity increases strongly due to the onset of
recombination in the plasma. The coefficientD significantly changes, and the given
solution is no longer applicable. As the mechanism of heat transfer to the surface
changes, the vertical structure of the disc readjusts on the characteristic thermal time
scale, and conditions arise for the onset of convection. This happens at t ≈ 80d for
the disc parameters mx = 3 and α = 0.3 (Fig. 1.20).

Figure 1.21 shows the bolometric lightcurve together with the lightcurves in two
X-ray bands from a disc perpendicular to the line of sight at a distance of 1 kpc.
The vertical line shows the moment in time after which the bolometric luminosity
of the disc becomes lower than LEdd. The shape of the lightcurves describes well
the exponential decay of the luminosity observed in outbursts of X-ray novae.

Suleimanov et al. (2008) modelled two outbursts of X-ray novae and compared
them with observed lightcurves in the X-ray and optical bands (Fig. 1.22). The
model included the illumination of the outer parts of the disc by the X-ray flux and
its conversion to optical emission. The model also included the effect of distortion
of the photon trajectories in the Kerr metric around the black hole (see Fig. 1.23) as
well as the presence of an extended disc atmosphere, capable of scattering the X-
ray emission at altitudes higher than the hydrodynamic thickness of the disc. As a
result, limits on the parameters of discs and binary systems were found. If we know
dynamical parameters of binaries from observations (their periods and companion

Fig. 1.21 Luminosity of the disc observed from a distance of 1 kpc, for parameters mx = 3,
α = 0.3, μ = 0.5, and rout = R�. The bolometric lightcurve (top) is shown together with the
lightcurves in two X-ray bands, 1–20 keV and 3–6 keV
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Fig. 1.22 Modelling of outbursts in X-ray novae A 06020-00 (1975) and GUMus 1124-68 (1991)
from Suleimanov et al. (2008). The parameters of the models are shown in the figure. In addition
to the notations introduced in the text, we have the following parameters: the dimensionless Kerr
parameter a of the black hole, the factor η of conversion of X-rays into optical emission, and the
height of the scattering atmosphere z(r)

masses), we may find an interval of possible values for the turbulence parameter
α. Figure 1.22 shows an example of the modelled lightcurves together with the
corresponding parameters of the model.

1.7 Numerical Modelling of Non-stationary Disc Accretion

A numerical scheme, which is described in this section, is implemented in the
FREDDI6 code. FREDDI is intended for modelling the lightcurves of X-ray novae
with fast rise and exponential decay (Lipunova and Malanchev 2017). With the help
of FREDDI it is possible to describe the time-dependence of the accretion rate onto
the black hole Ṁ(t) and to obtain lightcurves in various energy bands.

6http://xray.sai.msu.ru/~malanchev/freddi/.

http://xray.sai.msu.ru/~malanchev/freddi/
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Fig. 1.23 Angular distribution Ψ (θ) of the intensity from a standard accretion disc around a
Kerr black hole, integrated over 1.5–6 keV (from Suleimanov et al. 2008). The angle θ is the
angle between the normal to the disc plane and the line of sight. Tmax is the maximum effective
temperature of the disc. The values of the dimensionless Kerr parameter a are indicated for
the curves. The dotted line shows the angular distribution for a thin disc in the Newtonian
approximation: Ψ (θ) = 2 cos(θ). The observed flux can be found as F = L Ψ (θ)/(4πd)2, where
L is the bolometric luminosity, d is the distance to the disc. The function Ψ (θ) is calculated using
the code of Speith et al. (1995). The effects of limb-darkening are ignored here but are illustrated
in Figure 9 in Suleimanov et al. (2007)

1.7.1 Solution to the Equations of Viscous Evolution

Let us examine the equation of viscous evolution of an accretion disc (1.123)
obtained earlier in this chapter:

∂Σ0(hK, t)

∂t
= 1

4π

(GM)2

h3K

∂

∂hK

([
∂h

∂hK

]−1
∂F (hK, t)

∂hK

)
, (1.196)

where t is the time, h(r) = ω(r) r is the specific angular momentum in the disc,
hK = √

GMr is the Keplerian angular momentum, and Σ0(h, t) is the surface
density of the disc and F(h, t) the viscous torque, acting on a layer of the disc.

We will consider the case of Keplerian rotation, when hK = h. Rotation in a
relativistic potential will complicate the computations and place restrictions on the
choice of nodes for the radial coordinate h. For a Schwarzschild potential, in the
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innermost regions of the disc, each following node must be located not further than
twice as far from the centre as the previous one.

For a full set-up of the problem of viscous disc evolution, we need to give
initial and boundary conditions. In the case of accretion onto a black hole, the
boundary condition at the inner disc radius Rin, corresponding to the innermost
stable orbit (3.22), is given as the viscous torque F being equal to zero. If the
accretion disc is limited by the magnetosphere of a neutron star or a young star,
the inner boundary condition on the value of F is set by the conditions at the
magnetospheric boundary. Thus, for a number of cases the inner boundary condition
of the problem is a first (Dirichlet) type condition.

The type of outer boundary condition also depends on the astrophysical situation.
In a binary system we may assume that angular momentum is removed only by tidal
forces from the outer edge of the disc, corresponding to hout. Then, together with the
assumption that matter flows into the accretion disc only through its outer boundary,
we obtain a boundary condition of the second (Neumann) type: ∂F/∂h = Ṁout(t).
In the more general case, if we take into account the radial distribution of tidal
forces, removal of angular momentum from the disc surface through disc winds,
capture of matter at a wide range of radii in the disc, etc., it becomes necessary
to include additional terms in the original equation (1.196). If we consider the
evolution of an infinite disc, for example a protoplanetary disc or a disc around
a supermassive black hole in an active galactic nucleus, then from a mathematical
point of view, a boundary condition at infinity is equivalent to the value and the
derivative of the torque being equal to zero. However, from the point of view
of numerical modelling, we cannot operate with infinite quantities of the specific
angular momentum h. We may solve this problem in two ways. Firstly, we may limit
the region of study to some value hout, to which, during the studied time-interval,
no significant amount of matter will be able to reach, and there establish a boundary
condition of the torque F being equal to zero. Secondly, we may replace the radial
coordinate hwith another coordinate, so that the infinite value h equals a finite value
of the new coordinate, for example: 1/h, 1− e−h or arcctgh. A change of the radial
coordinate, however, complicates the original equation, and, as a consequence, place
restrictions on the steps between the nodes for the new radial coordinate.

Equation (1.196) is written with respect to two unknown but related functions:
Σ0(h, t) and F(h, t). One of these quantities can be obtained for any value of the
specific angular momentum h, and for any moment in time t , if the other quantity
is known. Earlier in this chapter we studied the cases of linear and power-law
relationships between Σ0(h) and F(h), for which analytical solutions to Eq. (1.196)
are possible. However, in the general case, the problem (1.196) has to be solved
numerically. The problem is more convenient to solve with respect to the function
F(h, t), since the boundary conditions are set relative to this function. As we show
below, using F(h, t) as the unknown function is more convenient if we find the
relationship between Σ0 and F numerically from the equations of vertical structure.
Thus we will express the surface density as a function of the radial coordinate and
the torque: Σ0(F (h, t), h).
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Note that the problem at hand is a specific case of the non-linear diffusion
equation. Most often in physics, diffusion equations in which the non-linear
diffusion coefficient is contained in the spatial derivative, are studied. As mentioned
above, however, in our case it is more convenient to consider the problem with
regard to the function F(h, t). Then, the non-linear function Σ0(F (h, t), h) stands
in the left part of Eq. (1.196). Below we will present a method of solving the
equation, in which the non-linearity is included in the time-derivative. This method
has a lot in common with the method studied in detail in the classical books
on numerical methods, e.g., Press et al. (2002), used in the solution to diffusion
equations with the non-linearity in the right part of the equation.

Let us consider the problem of evolution of an accretion disc in a binary system
in the Newtonian potential, assuming that the removal of angular momentum is due
to tidal forces from the outer edge of the disc only:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Σ0(F (h, t), h)

∂t
= 1

4π

(GM)2

h3

∂2F(h, t)

∂h2
,

F (hin, t) = Fin(t),

∂F

∂h

∣∣∣∣
out

= Ṁout(t),

F (h, 0) = F0(h),

h ∈ [hin, hout],
t ∈ [0, tfin],

(1.197)

where F0(h) is the initial condition satisfying the boundary conditions and tfin is the
time interval for which the calculation is performed.

To construct a finite difference scheme we introduce an arbitrary collection of
nodes hn:

h1 < h2 < · · · < hn < · · · < hN−1 < hN,

Δhn ≡ hn − hn−1,

n = 1 . . .N,

(1.198)

where h1 and hN correspond to the values of the specific Keplerian angular
momentum at the inner and outer radius, respectively. We will consider a solution
to the equation at the time-interval between t0, with already known values of the
desired function, and t0 + Δt , for which we need to determine these values.



1 The Standard Model of Disc Accretion 93

We substitute the two functions with their corresponding grid functions and
introduce the following designations:

F(hn, t0) ⇒ Fn, F (hn, t0 + Δt) ⇒ F̃n,

Σ0(F (hn, t0) , hn) ⇒ Σn, Σ0(F (hn, t0 + Δt) , hn) ⇒ Σ̃n,

Fin(t0) ⇒ Fin, Fin(t0 + Δt) ⇒ F̃in,

Ṁout(t) ⇒ F ′
out, Ṁout(t0 + Δt) ⇒ F̃ ′

out.

(1.199)

Let us start constructing the finite difference scheme. To begin with, we write
down the difference equations for the boundary conditions. The inner boundary
condition of the first kind is written in exact form as:

F1 = Fin. (1.200)

To write down the outer boundary condition of the second kind, we expand F̃N−1
in Taylor series around the point hN :

F̃N−1 = F̃N − ΔhN
∂F

∂h

∣∣∣∣
hN

+ Δh2N

2

∂2F

∂h2

∣∣∣∣
hN

+ o(Δh2N). (1.201)

Note that in all the expressions considered here and below for the derivatives
with respect to h, we use the value of the torque at time t0 + Δt . Thus constructed
numerical scheme is called implicit. It is numerically stable. As opposed to an
explicit scheme, in which the derivativeswith respect to hwould be written using the
known value Fn at time t0, an implicit scheme guarantees that the errors introduced
in this step will not grow in the next steps.

Without going into details, we note that, in addition to the explicit and implicit
methods, there is also a mixed (Crank–Nicolson) method in which the values for
the function at t0 and t0 + Δt are both used to calculate the derivative with respect
to the spatial coordinate. In some cases, the Crank–Nicolson method gives a higher
accuracy of the solution. The node stencils used in the various methods are shown
in Fig. 1.24.

Fig. 1.24 Node stencils that are used for the n-th equation in the system (1.209) in different
schemes. We use the implicit method stencil
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Discarding the last term in (1.201), we obtain a simple expression for the
numerical value of the first derivative of F with respect to h, with accuracy up
to the first order of the expansion interval ΔhN :

∂F

∂h

∣∣∣∣
hN

= F̃N − F̃N−1

ΔhN

+ o(ΔhN). (1.202)

If we, however, in (1.201), substitute the value of the second derivative of F with
respect to h, expressed from the original equation (1.197), we may increase the
accuracy to the second order of ΔhN :

∂F

∂h

∣∣∣∣
hN

= F̃N − F̃N−1

ΔhN

+ ΔhN

2πh3N

(GM)2

∂Σ0(hN)

∂t
+ o(Δh2N), (1.203)

where the expression for the derivativeΣ0 with respect to t by analogy with (1.202)
takes the form:

∂Σ0(hN)

∂t
= Σ̃N − ΣN

Δt
+ o(Δt). (1.204)

In this way we obtain a final expression for the outer boundary condition:

F̃N − F̃N−1

ΔhN

+ ΔhN

Δt

2πh3N

(GM)2
(Σ̃N − ΣN) + o(Δh2N) + o(Δt) = F̃ ′

out. (1.205)

Now that we have equations for the values of the function at both ends of the
interval over h, we obtain the difference form of the differential equation itself
from (1.197). Let us write down the Taylor expansion for F̃n−1 and F̃n+1 around
the point hn:

F̃n−1 = F̃n − Δhn
∂F

∂h

∣∣∣∣
hn

+ Δh2n

2

∂2F

∂h2

∣∣∣∣
hn

+ o(Δh2n),

F̃n+1 = F̃n + Δhn+1
∂F

∂h

∣∣∣∣
hn

+ Δh2n+1

2

∂2F

∂h2

∣∣∣∣
hn

+ o(Δh2n+1),

(1.206)

where n = 2 . . . N − 1.
For convenience we introduce the notation Δh = max (hn), where n = 2 . . .N .

Then, we may change o(Δhn) to o(Δh) everywhere.
The second derivative of F with respect to h may be expressed from (1.206):

∂2F

∂h2

∣∣∣∣
hn

= 2
F̃n−1

Δhn+1
Δhn+Δhn+1

− F̃n + F̃n+1
Δhn

Δhn+Δhn+1

ΔhnΔhn+1
+ o(Δh2). (1.207)
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Note that when using a homogeneous grid with respect to h, that is for Δhn =
Δhn+1 = Δh, the last expression takes a simpler form:

∂2F

∂h2

∣∣∣∣
hn

= F̃n−1 − 2F̃n + F̃n+1

Δh2
. (1.208)

Substituting the values of the derivatives (1.204) and (1.207) into the differential
equation from (1.197) and replacing the boundary conditions in (1.197) by their
difference analogues (1.200) and (1.205), we obtain a finite difference scheme for
the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4πh3n

(GM)2

Σ̃n − Σn

Δt
= 2

F̃n−1
Δhn+1

Δhn+Δhn+1
− F̃n + F̃n+1

Δhn

Δhn+Δhn+1

ΔhnΔhn+1
,

F̃1 = F̃in,

F̃N − F̃N−1

ΔhN

+ ΔhN

Δt

2πh3N

(GM)2
(Σ̃N − ΣN) = F̃ ′

out,

n = 2 . . .N − 1.

(1.209)

Note that the level of accuracy in the obtained system is o(Δh2) + o(Δt).
As a result, we have reduced the solution of the differential equations with

boundary conditions (1.197) to a subsequent solution of the system of N algebraic
equations (1.209) at each time-step between t = 0 and t = tfin. This system is not
linear, since Σn and Fn are related by the non-linear expression Σn = Σ0(Fn, hn).
One way to solve this system is to use the iterative root-finding algorithm for the
value Σ̃n. For this, some approximation to the value Σ̃

(1)
n must first be chosen (the

simplest variant is the value at the present time step Σn), and the system of linear
algebraic equations is solved to find the intermediate value of Σ̃

(2)
n = Σ0(F̃

(1)
n , hn)

and then the system of linear algebraic equations is solved again. This simple
iterative algorithm can be improved at the expense of extra memory usage; see
Anderson (1965) for details.

One may think of a number of criteria to stop the integration. We will use one of
them—the condition of small changes in the value for Σ̃

(s)
n between two sequential

iterations. We formalise this criterion:

max
n=2...N

∣∣∣∣∣
Σ̃

(s+1)
n + Σ̃

(s)
n

Σ̃
(s+1)
n

∣∣∣∣∣ < ε, (1.210)

where the top index in brackets refers to the number of performed iterations and ε

is the dimensionless accuracy in the search for the value of Σ̃n.
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Note that in each iteration, the solution to the system of linear algebraic equations
may be found by the tridiagonal matrix algorithm. The details of this algorithm can
be found in textbooks on numerical methods, for example Press et al. (2002).

The described scheme (1.209) is implemented in the FREDDI7 code. FREDDI is
intended for modelling the lightcurves of X-ray novae with fast rise and exponential
decay (Lipunova and Malanchev 2017). As initial conditions, we may choose either
a quasi-stationary distribution (see Sect. 1.6.7), describing the radial structure of the
disc after the peak in luminosity of the source, or the distribution corresponding to
a dense torus far away from the central black hole.

1.7.2 Solving the Equations of Vertical Structure

In Sect. 1.5.2 we derived the equations for the vertical structure (1.93):

1

ρ

dP

dz
= − ω2

K z,

dΣ

dz
= ρ,

dQ

dz
= 3

2
ωK wrϕ,

c

3�Rρ

d(aT 4)

dz
= −Q.

To solve these equations, we have to choose suitable boundary conditions. If we
consider the surface density at a given radius as known, we have only three boundary
conditions: Σ(z = 0) = 0, Σ(z = z0) = Σ0/2, and Q(z = z0) = 0. On the
other hand, if we consider the torque at a given radius as known, we may find the
necessary number of boundary conditions to solve the system (1.211).

By analogy with the arguments in Sect. 1.5.2, we obtain the boundary condition
for the pressure at the photosphere:

P(z = z0) = 2

3

ω2
Kz0

�R
. (1.211)

If we assume that energy is released only in layers below the photosphere, the
flux at the photosphere is determined by Eq. (1.73):

Q(z = z0) = 3

8π

FωK

r2
. (1.212)

7http://xray.sai.msu.ru/~malanchev/freddi/.

http://xray.sai.msu.ru/~malanchev/freddi/
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Due to symmetry, the flux is equal to zero in the plane of the disc:

Q(z = 0) = 0. (1.213)

We consider the emitted spectrum to be that of a blackbody, so we may take the
temperature in the photosphere to be equal to the effective temperature:

T (z = z0) =
(

Q(z = z0)

σSB

)1/4

. (1.214)

The boundary condition Σ = 0 may be set at the surface of the disc as well as
in its symmetric plane. It turns out that in the symmetry plane there are only two
boundary conditions, on the flux Q (1.186) and on the surface density. However,
if we set Σ equal to zero at the disc surface and integrate the system towards the
central plane, we can find the boundary values of all four unknown functions: the
pressure P (1.211), the surface density Σ , the flux Q (1.213), and the temperature
T (1.214). Thus, in what follows, we shall consider integration along the direction
from the disc surface towards its symmetry plane.

While all four boundary conditions at the photosphere are known, we still do not
know the disc half-thickness z0. For convenience in integrating the system (1.211)
from the photosphere to the symmetry plane, we rewrite it with aspect to the
alternative vertical parameter ẑ ≡ z0 − z:

1

ρ

dP

dẑ
= ω2

K (z0 − ẑ), (1.215)

dΣ

dẑ
= ρ, (1.216)

dQ

dẑ
= −3

2
ωK wrϕ, (1.217)

c

3�Rρ

d(aT 4)

dẑ
= Q, (1.218)

P(ẑ = 0) = 2

3

ω2
Kz0

�R
, (1.219)

Σ̂(ẑ = 0) = 0, (1.220)

Q(ẑ = 0) = 3

8π

FωK

r2
, (1.221)

Q(ẑ = z0) = 0, (1.222)

T (ẑ = 0) =
(

Q(ẑ = 0)

σSB

)1/4

, (1.223)

where Σ̂(ẑ) = Σ0/2 − Σ(ẑ) is calculated in the direction from the disc surface.
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This system consists of four equations, five boundary conditions and one
unknown—z0. We need to choose a value of z0 such that when integrating the
system (1.223) from ẑ = 0 to ẑ = z0, the boundary condition Q(ẑ = z0) = 0
is fulfilled. As an initial approximation, we can use values obtained analytically
(see Sect. 1.5.3), and then search for z0 using any method of root-finding.

1.7.2.1 Irradiation of the Accretion Disc

In X-ray binaries the outer parts of the disc with photospheric temperature of the
order of 104 K may be irradiated by photons from the inner parts of the disc, direct
or scattered in the corona, with temperatures of the order of 107 K. The surface of
a neutron star may serve as an additional source of hard photons. The surface of
protoplanetary discs, with temperatures of the order of 102 K, is irradiated by ultra
violet radiation from a newly formed star.

Let us consider the case with irradiation by hard radiation incident on the disc
surface at an angle arccos ζ . If the disc is illuminated by a point source located in
its centre, and if the disc itself can be considered as thin, we may use the relation

ζ = dz0
dr

− z0

r
. (1.224)

Then the illuminating flux incident on the disc surface at radius r equals
ζLx/(4πr2). If the source of the hard radiation is the disc itself, then the radiation
pattern is not isotropic. Assuming that the central source is point-like, the flux may
be written as ζLx/(4πr2) × Ψ (θ). The function Ψ (θ) is shown in Fig. 1.23, and θ

is the angle measured from the vertical axis.
A detailed calculation of the effect of irradiation on the vertical structure of the

disc is rather complicated, and was presented, e.g., in the work by Mescheryakov
et al. (2011b). In a first approximation, we may limit ourselves to changing the
boundary condition on the flux originating from the surface of the disc:

Q(ẑ = 0) = 3

8π

FωK

r2
+ ζ

Lx

4πr2
Ψ (θ).

In order to explain the observed optical lightcurves from X-ray novae, the
effective thickness of the disc for radiation interception in formula (1.224) needs to
be twice as large as z0 (Suleimanov et al. 2008). It is assumed in their calculations
that the lower layers of the disc atmosphere above the photosphere are opaque
to soft X-rays from the central parts of the disc. Furthermore, it was shown by
Mescheryakov et al. (2011a), from modelling lightcurves of the illuminated stellar
companion in the burster GS 1826-238, a low-mass X-ray binary with a neutron star,
that the effective thickness of the disc for interception of X-rays is approximately
twice as large as z0.
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Fig. 1.25 Lightcurve of the
X-ray nova A 0620-00 in the
photometric B-band. Data
from Duerbeck and Walter
(1976), Lloyd et al. (1977)
are shown with filled circles.
The solid line shows our
modelling of the lightcurve
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1.7.3 Example Numerical Modelling of a FRED Lightcurve
of an X-Ray Nova

Let us now turn to the numerical modelling of an outburst of X-ray nova A 0620-
00. The following parameters of the binary system are used: mass of the compact
object (a black hole) 6.6M�, mass of the optical companion 0.5M�, orbital period
0.323 days, inclination of the orbital plane to the line of sight 53.5◦, and distance to
the system 1.1 kpc. These parameters are observational results from analyses of the
lightcurves of the system in quiescence (Cantrell et al. 2010; Gou et al. 2010).

In Figs. 1.25 and 1.26, lightcurves of the source after the peak of the outburst in
1975 in soft X-rays and in the B-band are shown. The lightcurve of this outburst is an
example of a FRED-type lightcurve,8 in which a fast rise in luminosity is followed
by a quasi-exponential decay.

An interesting feature in most FRED-type lightcurves is the existence of a
secondary peak. The nature of this secondary peak is currently not understood.

To reproduce the secondary peak, it has been suggested that a significant amount
of matter was supplied to the disc by the donor star on the 43rd day after the
peak. Within the framework of this model, this matter instantaneously increases
the surface density of the disc in its outer parts, which leads to a jump in optical
luminosity (Fig. 1.25).

Due to the increase in surface density in the outer regions of the disc, a gradual
increase of the accretion rate takes place in the central regions of the disc. This leads
to an increase in temperature and thereby X-ray luminosity of the disc. In this way,
a local maximum shows up in the lightcurve (Fig. 1.26).

The maximal accretion rate Ṁmax ≈ 0.2 ṀEdd, and the α-parameter, ≈ 0.3,
are determined from the part of the X-ray lightcurve before the secondary peak.

8Fast-rise exponential-decay.
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Fig. 1.26 Lightcurve of the X-ray nova A 0620-00 at 3–6 keV. The vertical bars show data with
errors from Ariel 5 (Kaluzienski et al. 1977), and the solid line shows the model lightcurve

From the part of the optical lightcurve before the secondary peak, we estimate the
effective thickness of the disc for X-ray radiation interception, which turns out to be
≈ 2 z0 (Malanchev and Shakura 2015).

To model the lightcurve of an X-ray nova, one has to keep in mind that in general
the disc is not physically uniform, but has a hot inner part with ionized matter
(zones A, B and C; see Sect. 1.5) and a colder outer part with lower accretion rate.
When the disc cools down to temperatures at which hydrogen recombines, the α-
parameter decreases by approximately an order of magnitude (Smak 1984). In a
first approximation, we may assume that accretion in the cold outer parts ceases.
The boundary between the hot and cold parts gradually moves towards the centre
following the hydrogen recombination front.

The open code FREDDI is provided by the authors to model FRED-type light-
curves of X-ray novae. This code calculates the disc evolution for a fully ionized
disc, as well as for a disc with a cold front propagating inwards. Using this code, the
outburst of the X-ray nova 4U1543-47 in 2002, hosting a black hole, was modelled
by Lipunova and Malanchev (2017).

Using FREDDI, estimates of α can be derived, which are more accurate
than (1.149):

α ≈ 0.21

(
Rhot

R�

)25/16 (
texp

30d

)−5/4 (
Ṁmax

1018 g/s

)−3/8

m
5/16
x , (1.225)

for the Kramers opacity, and

α ≈ 0.20

(
Rhot

R�

)12/7 (
texp

30d

)−9/7 (
Ṁmax

1018 g/s

)−3/7

m
2/7
x (1.226)
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for the OPAL approximation (Lipunova and Malanchev 2017). Here, Rhot is the
radius of the hot zone of the disc at the peak of an outburst. Power indexes in the
above expressions are obtained when substituting the thickness of the disk in (1.149)
by its analytic expression from (1.104) or (1.110). The numerical factors in the
expressions for α are found by fitting FREDDI results; their accuracy is around
5%.
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