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Abstract

One MASTER telescope is equipped with two orthogonal polarizers.
It happens sometimes that a single telescope observes a transient source.
We investgate what information about the source’s linear polarization PL

can be learned from the single Stokes’ parameter. For the case of zero
Stokes parameter, dependences of the 1σ and 2σ PL upper limits on the
Stokes parameter’s uncertainty σD are found. Different values of observed
Stokes parameter correspond to different dependences max(PL) vs. σD.
They can be calculated by the method proposed.

1 Limit on the degree of the linear polarization

When observing with only two perpendicular polaroids, just one Stokes param-
eter can be inferred. This Stokes parameter is the lower limit on the degree of
the linear polarization PL. The polarization angle cannot be defined.

Let I1, I2 be observable fluxes in two perpendicular polaroids. We derive
value

D =
I1 − I2
I1 + I2

.

If I is the total flux (the value proportional to counts) from the source, then

I1 = I PL cos2 θ I2 = I PL sin2 θ

and one Stokes parameter is

D = PL cos 2θ .

If errors σI of I1 and I2 are normally distributed, I1 = I2, then approxi-
mately

σD

D
=

1√
2

σI

I

(But see Simmons J. F. L. & Stewart B. G. 1985, A&A, 142, 100).

2 Allowed values of PL from D, zero noise

If a source with the degree of linear polarization PL is observed at some polar-
ization angle θ, the noise-free Stokes parameter is as follows:

D(θ) = PL × cos(2 θ)
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We can find the range of allowable angles that corresponds to some variation

Figure 1: Dimensionless Stokes parameter versus polarization angle. The grey
band corresponds to an observed value, Do ± σD = 0.1 ± 0.02. Three vertical
lines correspond to three values of angle, from left to right: θo − δ1, θo, and
θo + δ2 – see relations (1).

of D:
Do = PL × cos(2 θo)

Do + σD = PL × cos(2 (θo − δ1)) Do − σD = PL × cos(2 (θo + δ2)) (1)

Probability for the polarizer’s direction to occur in the corresponding range over
angles is

(δ1 + δ2) 2/π (2)

as can be seen from Fig. 1. For a set of values PL, Do, and σD, system (1)
can be solved to find θo, δ1, and δ2. Values (2) are shown by the green lines in
Figs.2–8, designated as ‘Probability’.

If Do + σD > PL, δ1 or δ2 are cut accordingly to provide cos = 1. Thus, for
values PL = 0 non-zero D cannot be obtained in the case of zero noise. This
is a shortcoming of such deterministic method. To address possible errors of
observed D, we perform simulations using the Monte-Carlo method.

3 Application of the Bayes’ theorem

Let X and Y are the continous random variables. Consider events X = x and
Y = y, where x and y are some numerical values. Consider the the Bayes’
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theorem, formulated in terms of the probability densities fX and fY ,

fX(x|Y = y) =
fY (y|X = x) fX(x)

fY (y)
(3)

Let X be all possible values of the degree of linear polarization: X = PL

and ∈ [0, 1]. Then x = P ∗

L
is the degree of the linear polarization of the source.

Let Y be all possible values of the dimesionless Stokes parameter Y = D,
which can be observed, and Y ∈ [−1, 1]. For the specific data, we derive the
dimesionless Stokes parameter Do.

According to (3), the probability that the source has the linear degree of
polarization P ∗

L
if we observe value Do is:

fPL
(P ∗

L|D = Do) =
fD(D = Do|PL = P ∗

L
)× fPL

(P ∗

L
)

fD(Do)
(4)

It is be more practical to find the following probability:

fPL
(PL ≤ P ∗

L|D = Do) =
fD(D = Do|PL ≤ P ∗

L
)× fPL

(PL ≤ P ∗

L
)

fD(Do)
(5)

It is assumed that the probability of a source to have specific P ∗

L
is uniform:

fPL
(P ∗

L) = 1 . (6)

In its turn, the probability density of observing certain Do from a source
with some polarization less than P ∗

L
is the limit of the ratio of probability dP

to measure D inside some small interval [Do − dD..Do + dD] to the size of the
interval:

fD(D = Do|PL ≤ P ∗

L) =
dP (D ∈ [Do − dD..Do + dD]

∣

∣

∣

PL ≤ P ∗

L
)

2 dD
(7)

Similarly,

fD(Do) =
dP (D ∈ [Do − dD..Do + dD])

2 dD
(8)

3.1 Monte-Carlo simulations

Performing Monte-Carlo simulations, we can derive probability density (7) as
follows. Let us generate n sources with identical P ∗

L
and different polarization

angles θ, uniformly distributed over interval [0..π]. Consequently, we obtain
diffrent values of D = PL cos 2θ, which would be observed from such sources
in the case of zero noise. To take into account the noise (experimental random
errors) we shift each D by a random value distributed as N(0, σD) (normal
distribution with zero mean and standard deviation σD) and obtainDsh. Hence
we presume that the absolute error of observed D is distributed normally.

We vary value P ∗

L
from 0 to 1 at equal steps, each time generating n points,

and count the number of the following events:
Ntot — total number of points.
NA — when PL ≤ P ∗

L
.

NB — when |Dsh −Do| ≤ dD.
nB(PL) — when |Dsh −Do| ≤ dD for each value PL.
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Figure 2: Do = 0.4, σD = 0.025, dD = 0.025.

NBA — when |Dsh −Do| ≤ dD and PL ≤ P ∗

L
at the same time.

Value dD can be chosen arbitrarily but it should be of order of σD.
The simulation consists of 501 steps over PL with parameters n = 2000,

dD = σD or dD = 0.5× σD. The total numer of events is Ntot = 1002000.
We understand that

P (PL ≤ P ∗

L) ≡ P ∗

L = NA/Ntot ∼ P (A) (9)

fD(Do) = NB/Ntot ∼ P (B) (10)

fD(D = Do|PL ≤ P ∗

L) = NBA/NA ∼ P (B|A) (11)

Furthermore, the probability that a source with PL gives observed D in the
interval [Do − dD...Do + dD] is

P (PL, Do, σD, dD) = nB/n . (12)

Evidently, the last function depends on the value of dD. This function, des-
ignated as ’Probability’, is shown by black curves in Figs. 2-8 and is to be
compared with the result obtained by (2) shown by the green lines.

Thus, the value, which we seek,

fPL
(PL ≤ P ∗

L|D = Do)

can be found as

P (A|B) =
P (B|A) × P (A)

P (B)
=

NBA

NB

. (13)

The last value should be normalized by the maximum value, giving
fPL

(PL ≤ 1|D = Do) = 1 at the extreme case. The result is shown in Figs. 2-9
in the correspondingly named panels. It can be also calculated as the cumulative
sum of (2) (green lines), also normalized by its maximum value.
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Figure 3: Do = 0.4, σD = 0.005, dD = 0.005.

Figure 4: Do = 0, σD = 0.005, dD = 0.005.

Figure 5: Do = 0, σD = 0.005, dD = 0.0025.
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Figure 6: Previous results for the probability calculated by (2). Values σD are
shown for the corresponding curves. The 2%-curve agrees with the green curves
in Figs. 7 and 8 (the left upper panel). Figure is from Gorbovskoy et al. (2012)

3.2 Comparison to previous results

In Gorbovskoy et al (2012) a result using formula (2) for Do = 0 was reported,
which we reproduce here. Fig. 6 shows the probability of the degree of linear
polarization to be greater than the value on the horizontal axis. The case of
observed Do = 0 is considered (zero Stokes’ parameter). Different curves are
plotted for different σD. In Figs. 7 and 8 we show that those results are con-
sistent with the present ones (the green curves in panels for P (P > PL|Dobs)).

4 Upper limits on PL for different σD and dif-

ferent confidence levels

The practical interest is to provide a limit on PL-value of a source basing on
the observed Do.

In Fig. 10, results for Do = 0 using (2) are presented. We calculate the same
dependences via Monte-Carlo simulations described above (Fig. 11).

The upper limits can be calculated for other values of Do. An example,
corresponding to the case of GRB140801, is plotted in Fig. 9.
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Figure 7: Do = 0, σD = 0.02, ∆D = 0.02.
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Figure 8: Do = 0, σD = 0.02, ∆D = 0.01.
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Figure 9: Do = 0.024, σD = 0.025, ∆D = 0.025. 1-σ upper limit on PL is
∼ 24% and 2-σ upper limit on PL is ∼ 81%. These are slightly higher than the
limits for Do = 0 and σD = 0.025, ∼ 21% and ∼ 80%, which can be found from
Fig. 11. The case of GRB140801.
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Figure 10: For observed Do = 0, the value on the vertical axis represents the
upper limit on then degree of linear polarization versus σD ≡ σrel. Three curves
correspond to different confidence levels, designated for each curve.
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Figure 11: Results of Monte-Carlo simulations for Do = 0, dD = σD (black)
and dD = 0.5 σD (red). The value on the vertical axis represents the upper
limit on then degree of linear polarization versus σD. Two curves correspond
to different confidence levels, designated for each curve.
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