next up previous
Next: Далеко ли падает яблоко Up: No Title Previous: Как рождаются нейтронные звезды

Зачем нужны разные нейтронные звезды?

Так или иначе образовавшаяся нетронная звезда начинает жить, эволюционировать. Изменяется ее период (он может и уменьшаться, и увеличиваться), изменяется магнитное поле. При этом звезда проходит различные стадии, проявляя себя как тот или иной астрофизический объект. Если бы мы знали, какими нейтронные звезды рождаются, то могли бы предсказать, какие объекты из них получатся в будущем. Но реально все выглядит по-другому. Открываются какие-то астрономические источники, и для их объяснение приходится придумывать эволюцию и начальные параметры нейтронных звезд. Для этого и нужны разные нейтронные звезды.

Напомним читателям, что астрономия принципиально отличается от других естественных наук тем, что не может проводить эксперименты с объектами своих исследований. Звезду нельзя запихнуть в пробирку! Астрономы могут только ``подсматривать`` за природой. Это делает астрономию более интересной, но доставляет также и множество трудностей. При этом многое приходится домысливать, что порождает как правило несколько сценариев объяснения одного и того же явления.

Для нашей истории это важно вот почему. Мы конечно же наблюдаем те нейтронные звезды, которые легче всего увидеть. И даже здесь можно придумывать разные варианты. Но видим мы лишь малую (около 1/1000000) часть нейтронных звезд: около 100 из в Галактике. И объяснять невидимые объекты можно самыми разнообразными способами. А как раз начальные параметры в основном и будут определять наблюдательные проявления нейтронных звезд.

Чтобы рассмотреть различные идеи о начальных параметрах, поговорим, например, о ``ненаблюдаемых`` нейтронных звездах в остатках сверхновых. Естественно предположить, что в подавляющем большинстве остатков должны наблюдаться радиопульсары, поскольку звезд в ``нейтроннообразующем интервале масс`` примерно в 10 раз больше, чем звезд в ``чернодырнообразующем интервале``. Однако, из примерно 200 остатков только около 30 имеют вблизи себя пульсары. Причем, как показали многочисленные исследования, большая часть таких ассоциаций должна быть просто случайным совпадением. И лишь около 7 пар пульсар- остаток сверхновой реальны. Рассмотрим вначале самые естественные объяснения этого факта.

Во-первых, пучок излучения пульсара может просто проскальзывать мимо наблюдателей. т.е. мимо Земли. Действительно, мы можем видеть лишь около трети пульсаров из-за этого эффекта. Во-вторых, за счет больших скоростей (а скорости пульсаров порядка сотен км/с) нейтронные звезды могут успеть убежать далеко от остатка породившей их сверхновой. Но эти два явления, которые безусловно существуют, не могут объяснить более чем 20-кратного дефицита пульсаров. Требуется предположение о том, что не все нейтронные звезды в своей молодости оказываются пульсарами, или что эта стадия у некоторых из них оказывается чрезвычайно короткой (самые старые остатки сверхновых имеют возраст порядка лет).

Это можно сделать тремя способами:

1. Большие начальные периоды (больше 2 секунд).

2. Маленькие начальные магнитные поля (меньше Гс).

3. Очень большие начальные магнитные поля (больше Гс).

Первая гипотеза, в частности, связывается со следующей интересной идеей, выдвинутой Спруитом и Финней. Поскольку для объяснения больших скоростей пульсаров требуется асимметричный взрыв сверхновой (заметим, однако, что этот факт оспаривается, хотя и является сейчас общепринятым), то разумно предположить, что действие его на нейтронную звезду будет не симметричным, и тогда взрыв ``подкрутит`` нейтронную звезду. Стало быть, короткопериодические нейтронные звезды будут иметь большие скорости и наблюдаться как радиопульсары, а долгопериодические будут иметь маленькие скорости (что хорошо для эволюции двойных) и не будут давать радиоимпульсов, поскольку причина у больших скоростей и коротких периодов одна и та же.

Вторая гипотеза (которую частично разделяет и автор данной статьи) имеет то преимущество, что не требует дополнительной гипотезы о распаде магнитного поля нейтронной звезды для объяснения маленьких магнитных полей рентгеновских барстеров и некоторых рентгеновских источников, демонстрирующих квазипериодические осцилляции. Кроме этого, гипотеза легко объясняет тот факт, что спутник ROSAT не наблюдает большого числа одиночных аккрецирующих нейтронных звезд (об этих объектах см. статьи автора в журналах "Земля и Вселенная" N3, 1994, стр. 22 и "Звездочет" N7, 1996, стр. 15-17 и N4, 1996, стр. 6-7). Радиопульсар не возникает из-за слишком слабого магнитного поля (звезда оказалась бы в правой нижней части рисунка 1 или 2, где нет пульсаров).

Третья гипотеза была предложена Томпсоном и Дунканом для объяснения источников повторяющихся гамма-всплесков (о гамма-всплесках см. статью В.М. Липунова в Соросовском образовательном журнале N5, 1998). Теперь она также применяется к одиночным нейтронным звездам с большими периодами. Примером такого источника является объект RX J0720.4-3125 с периодом 8.39 секунды. Альтернативой объяснения свойств этого объекта, предложенной Денисом Коненковым и автором данной статьи (и чуть позже независимо Вангом в США), является как раз затухание магнитного поля нейтронной звезды в процессе ее эволюции. Наблюдения рентгеновских пульсаров подтверждают, что нейтронные звезды могут иметь большие магнитные поля, более Гс. Темп замедления нейтронных звезд в этих двойных системах показывает, что они обладают мощными магнитосферами. В рамках этой гипотезы пульсар может возникнуть, но очень быстро замедлится из-за больших потерь на излучение. Косвенно данную гипотезу поддерживают открытия компактных рентгеновских источников в остатках сверхновых, хотя иногда эти источники могут быть связаны не с молодыми, а со старыми нейтронными звездами, как это видимо происходит в остатке сверхновой RCW103.

Как видно, каждая из гипотез объясняет сразу несколько явлений, и выбор между ними чрезвычайно затруднителен. В идеале необходимо каким-то образом получить непосредственную информацию о свойствах нейтронных звезд сразу после рождения. Сделать это можно, по всей видимости, только с помощью детекторов гравитационных волн, которые донесут до нас первый крик новорожденной нейтронной звезды.



Sergei B. Popov
Mon Nov 2 12:28:04 MSK 1998