Population synthesis
of exoplanets
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Population synthesis in astrophysics

A population synthesis is a method of a direct modeling of relatively large populations
of weakly interacting objects with non-trivial evolution.
As a rule, the evolution of the objects is followed from their birth up to the present moment.

Evolutionary and Empirical

1. Evolutionary PS.
The evolution is followed from some early stage.
Typically, an artificial population is formed
(especially, in Monte Carlo simulations)

2. Empirical PS.
It is used, for example, to study integral properties
(spectra) of unresolved populations.
A library of spectra is used to predict integral properties.
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Ingredients:
- initial condition
- evolutionary laws
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Incredients for planetary PS

. The structure and evolution of the protoplanetary gas disk

. The structure and evolution of the disk of solids (dust, pebbles, planetesimals)

. The accretion of solids leading to the growth of the planetary solid core

. The accretion of H/He leading to the growth of the planetary gaseous envelope

. Orbital migration resulting from the exchange of angular momentum T
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Initial distributions

Initial conditions for discs
around 1 solar mass stars.
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The first PS model
for exoplanets

Authors modeled formation and migration (1&lI)
of exoplanets in order to reproduce so-called
“desert” in mass-semi-major axis distribution
(masses 10-100 Earth mass, and a<3 AU).

Main ingredients:
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 Disk model;
* Accretion model;
* Migration model.
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Individual tracks

Green - rock
Red - gas
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Mordasini et al. models

Mordanisi et al. published a series of papers
(0904.2524, 0904.2542, 1101.0513, 1201.1036)
on population synthesis of exoplanets,

using an approach generally similar to the one
by Ida, Lin.

Then this studies were continued in
1206.6103, 1206.3303, 1708.00868.
A review is given in 1402.7086.

An important step is too include planet-planet interactions.
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Multi-embryo system

20 planet embryos with M=0.1M¢, .,

—
-
=
3
Q
=}
<
-
e
A

Time [Myr]

1804.01532



Mass growth
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Peebles and gas accretion
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Mass distribution

Thick line — computations;
Thin line — bias-corrected data.

Normalization made for 1My,
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It is still not absolutely clear,

if the so-called “planetary desert”
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Comparison with observations
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Metallicity effect

Solid line — all stars.
Dashed line — stars with at least one giant planet.
Dotted line — stars with at least low-mass planet.

-
&
-
]
1o}
[
U
o
QL
N
E
e
o
.

-0.6 -04 -02 0 02 04 0.6
[Fe/H]

1402.7086



Composition

Formation and evolution model
allows to estimate the bulk composition of planets.
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Another population synthesis model

Simple model
with analytical equations.

Model parameters are optimized
to fit known data.

Single and four planet cases
were studied.
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Mass- distance distribution
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Number of planets and SoSys analogues
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Shows how the fit improves -
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Role of more complicated migration models

Traps (regions of zero net torque)
can slow planet migration (type I).

Traps can be related to peculiarities

in density or/and temperature profiles.

For example, an ice line can be such

critical distance, at which planets are trapped.

Heat transition zone — is another trap.
There viscous heating (inside) is changed
by irradiation by the star (outer zone).

X-rays due to magnetospheric accretion
and cosmic rays ionize the disk.

Low ionization produces dead zones in the disk.
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Another way to form planets

780 years 1942 years | Sravitational

instability
in the outer
parts of the disc.

Allows to form
massive planets
out to few tens AU.

Might also work for
brown dwarfs and
very light stars.

Lucio Mayer & T. Quinn



https://arxiv.org/abs/1711.05948

Hypothesis by Nayakshin (2010).
It is possible to make solid planets at low orbits

Tidal downsizing
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Fragment mass
just after

fragmentation Hill radius becomes smaller

as a planet migrates towards the star.

Evolution of a fragment in a disc can result in appearance
of a low-mass planet closer to the star, or in appearance
of a belt of particles.
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Initial and final semi-major axis distribution

Initial Final, 1 Myr
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Mass and semi-major axis distribution
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Mass distribution and planet types
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Many brown dwarfs (and even low-mass stars for some parameters) can be produced via this channel.
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Role of fragment-fragment interaction
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Ejection
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Many fragments are ejected.

So, this mechanism of planet formation
can be an important contributor

to the population of free-floating
planets and brown dwarfs.



Brown — brown dwarfs;
Red — gas giants;
Blue — rocky (>50%).

System architecture

Typical systems Non-typical systems
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Another example of population synthesis
of planets formed by instability

Many uncertainties.

This picture summarizes all the models,
calculated for different assumptions and parameters.
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Population synthesis of satellites

Satellite mass distribution (7500 systems) Survived satellites (20000 systems)
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How to compare calculations with data

After calculations are made
it is necessary to compare it
with observational data.

For the case of transiting planets
a special script was written.
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Quantitative Implementation
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