Solar system

SERGEI POPOV

Solar system age

The age is determined due to meteorite studies. Chondrites are made of non-processed matter. ²⁶Al half life-time 730 kyrs (-> ²⁶Mg). CAI – Ca-Al Inclusions. Al-Mg – short lived, U-Pb – long lived. 4.567 Gyrs

Concordia Diagram

²¹² 83 Bi α 🧼 ²¹² 84**Po** 208 TI β

No uranium in CAIs -> Pb-Pb.

See details at http://www.geo.cornell.edu/geology/classes/Geo656/656notes03/656%2003Lecture09.pdf

Short lived isotops

Nuclear Species	Daughter	Reference	Half-life (Myr)	Mass Fraction
⁷ Be	$^{7}\mathrm{Li}$	⁹ Be	$53 \mathrm{~days}$	(8×10^{-13})
$^{10}\mathrm{Be}$	$^{10}\mathrm{B}$	⁹ Be	1.5	$(\sim 10^{-13})$
^{26}Al	^{26}Mg	$^{27}\mathrm{Al}$	0.72	$3.8 imes 10^{-9}$
$^{36}\mathrm{Cl}$	$^{36}\mathrm{Ar}$	$^{35}\mathrm{Cl}$	0.30	8.8×10^{-10}
^{41}Ca	$^{41}\mathrm{K}$	^{40}Ca	0.10	$1.1 imes 10^{-12}$
^{53}Mn	$^{53}\mathrm{Cr}$	$^{55}\mathrm{Mn}$	3.7	4.0×10^{-10}
$^{60}\mathrm{Fe}$	⁶⁰ Ni	$^{56}\mathrm{Fe}$	1.5	$1.1 imes 10^{-9}$
$^{107}\mathrm{Pd}$	$^{107}\mathrm{Ag}$	$^{108}\mathrm{Pd}$	6.5	$9.0 imes 10^{-14}$
$^{182}\mathrm{Hf}$	^{182}W	$^{180}\mathrm{Hf}$	8.9	$1.0 imes 10^{-13}$

Two approaches complete each other

Origin of ²⁶Al and other short lived elements

aluminum (white), magnesium (green), silicion (blue), calcium (yellow), iron (red) Near-by supernova or an AGB/WR star.

Cluster cannot be too rich, otherwise EUV and FUV emission of massive stars can significantly influence protoplanetary disc within 30 AU due to photoevaporation.

Number of stars in the Sun cluster

Supernova vs. evolved star

1501.03101

SN overproduce ⁶⁰Fe in comparison with ²⁶Al.

Thus, the exact origin is not known, yet. It seems that Fe-60 has been formed due to a SN (on larger time scale), and Al-26 – appeared from wind of a near-by evolved star.

Distribution of small-body's orbits also put constraints on properties of the solar cluster (see 1001.5444).

Model of Al-26 "logistic" by a stellar wind. A dense envelope is continuously enriched in Al-26, and the Sun is formed from this material.

Constraints on the solar cluster

Solar System Property	Implication	Fraction
Mass of Sun	$M_* \ge 1 M_{\odot}$	0.12
Solar Metallicity	$Z \ge Z_{\odot}$	0.25
Single Star	(not binary)	0.30
Giant Planets	(successfully formed)	0.20
Ordered Planetary Orbits	$N \leq 10^4$	0.67
Supernova Enrichment	$N \ge 10^3$	0.50
Sedna-Producing Encounter	$10^3 \leq N \leq 10^4$	0.16
Sufficient Supernova Ejecta	$d \leq 0.3~{ m pc}$	0.14
Solar Nebula Survives Supernova	$d \ge 0.1~{ m pc}$	0.95
Supernova Ejecta and Survival	$0.1~{\rm pc} \leq d \leq 0.3~{\rm pc}$	0.09
FUV Radiation Affects Solar Nebula	$G_0 \ge 2000$	0.50
Solar Nebula Survives Radiation	$G_0 \le 10^4$	0.80

Supernova influence on the SoSys

Distance 0.15-0.4 pc

- heating (dust melting)
- enrichment
- blast wave
- stripping
- tilting

Difficulties in explaining all data in one framework with a single SN (in particular, difficult to explain the abundance of Al-27).

Minimum mass solar nebula

0903.5077

Zhang et al. (2017). 1705.04746 Nature Astronomy v. 1

Different variants of the MMSN

In the classical MMSN mass of the disc is ~0.01 solar mass between 2 and 30 AU.

New MMSN model

Based on the Nice model

$$M_{\rm aug} = M_Z f_p^{-1} \left(\frac{\rm gas}{\rm solids}\right)$$

Gas/solid = 67 (i.e. solids = 1.5%)

INITIAL SOLAR SYSTEM CONDITIONS							
Planet	${M_{ m aug}}^{ m a}_{(M_\oplus)}$	r _{in} (AU)	<i>r</i> ₀ (AU)	r _{out} (AU)	$\frac{\Sigma^a}{(g \text{ cm}^{-2})}$		
Jupiter	1747 ± 1075	4.45 ^b	5.45	6.68	546.8		
Saturn	1411 ± 470	6.68	8.18	9.70	244.5		
Neptune	1032 ± 91	9.70	11.5	12.8	123.2		
Uranus	843 ± 124	12.8	14.2	15.9 ^a	77.2		
Disk ^c	2353 ± 336	15.9 ^b	22.5	30.0	31.2		

Initial positions: Jupiter – 5.45 AU; Saturn – 8.18 AU; Neptune – 11.5 AU; Uranus – 14.2 AU Uranus and Neptune change places during migration!

Desch 2007

$$\Sigma(r) = 343 \left(\frac{f_p}{0.5}\right)^{-1} \left(\frac{r}{10 \text{ AU}}\right)^{-2.168} \text{ g cm}^{-2}$$

$$\rho_{\rm gas}(r,0) = 1.93 \times 10^{-11} \left(\frac{f_p}{0.5}\right)^{-1} \left(\frac{r}{10 \text{ AU}}\right)^{-3.4537} \text{ g cm}^{-3}.$$

Steep profile is achieved thanks to photoevaporation of the outer parts of the disc due to influence of a massive star. Mass partly flows out to compensate losses.

Comparison with the isolation mass

Vertical lines – total amount of solids in each planet.

Planets collect almost all available solids in their feeding zones.

Desch 2007

Long term evolution of the Solar system

On each plot the 19 curves represent intervals of 250 Myr. Each curve is based on 1001 solutions with very close initial conditions. The variation of these curves reflects the chaotic diffusion of the solutions (Laskar 2008, see arXiv: 0802.3371).

Planetesimal-driven migration

Jupiter migrates inward, other giants – outward. Ejection of 15 M_{earth} by Jupiter results in migration by 0.2 au. $\delta r/r \approx m/M$

Nice Model

Three papers in Nature in 2005:

- Planet migration
- Late heavy bombardment
- Jupiter Troyans

Four giant planets + a disc of planetesimals with the mass 35 M_{Earth}

Planet migration in the Nice model

Tsiganis et al. 2005

Late heavy bombardment

While the gas disk is still existing not all particles can survive long enough. Thus, the inner edge of the planetesimals disc appears at ~15-16 AU. Position of the disc of planetesimals determines the rate of planet migration. Thus, the time of 1:2 resonance crossing depends on the position of the disc's edge.

Gomes et al. 2005

Revisiting the timeline of the LHB

asteroids (thin black curve), comets (thin green curve), kilometer kilometer HSE constraint HSE constraint leftover planetesimals (thick cyan curve). Instability 4.5 Myr ago square square 1. If HSE indicate the amount of accreted matter, then earlier results are confirmed: per per 5 5 cataclysmic LHB 3.95 Gyr ago Number of craters(D>1km) ŝ craters(D> 2. If HSE were transported to the core (in the cases of Moon and Mars), 0.01 5 then all the data can be explained by ъ an accretion tail. Number HSE - highly siderophile elements: transition metals which tend ۳ <u>|</u> 3 ت ₽₃ to sink into the core 3.5 4.5 3.5 4.5 because they dissolve readily in iron. age of surface (G_Y) age of surface (G_Y)

Gomes et al. 2005

Nice model

Solar system secular evolution: resonance crossing

After evolution in the gas disc Jupiter and Saturn are in 3:2 resonance. At this stage eccentricities and inclinations are low.

- It is non-trivial to explain present-day eccentricities and inclinations.
- It was proposed that it can be potentially solved
- if these planets crossed resonances
- and interacted with ice giants on eccentric orbits.
- But strong interaction of an ice giant with Saturn is a better option.

Further studies

Modifications of the original Nice model

Jumping Jupiter

More problems (and solutions?)

Problem: light Mars Solution: cut planetesimal disc at 1 AU How: Jupiter!

Grand tack

Proposed by Walsh et al. (2011).

Explains why Mars is small (truncation of planetesimals disc).

See a simple introduction at https://planetplanet.net/2013/08/02/the-grand-tack/

Grand tack

https://planetplanet.net/2013/08/02/the-grand-tack

see movies at http://perso.astrophy.u-bordeaux.fr/SRaymond/movies grandtack.html

Phases of the Grand tack

Jupiter and Saturn form earlier than terrestrial planets.

Thus, it is possible to influence the disc of planetesimals (embryos for terrestrial planets) with giants, if they can migrate closer to the region of solid planets formation.

Grand Tack

Results of calculation of planet migration from the original paper Walsh et al. (2011)

Small bodies

Evolution of orbits of small bodies from the original paper Walsh et al. (2011).

Asteroids

Sequence of events

Disc of planetesimals: truncation

Mass distribution

http://perso.astrophy.u-bordeaux.fr/SRaymond/movies_grandtack.html

Asteroids and Grand Tack: details

Asteroids in the jumping Jupiter model

Inclination

Solid line – secular resonances. Dashed lines – Mars crossing.

The orbital distribution of main belt asteroids with diameters D>30 km for a>2 au and D>5 km for a<2 au in the case of Hungarians.

Trojans of Jupiter in the jumping model

Red symbols and line – modeling, black – observations.

1807.06647

Detailed comparison (Grand Tack)

Moon formation and Grand Tack

https://www.hou.usra.edu/meetings/lpsc2014/pdf/2274.pdf

Mars and Venus in Grand Tack

https://www.hou.usra.edu/meetings/lpsc2014/pdf/2274.pdf

New calculations

Slightly different model, but consistent with the Grand Tack and Nice.

Literature

Solar system formation 1501.03101 The formation of the solar system S. Pfalzner et al. • Radioisotopes dating 1005.4147 The Early Solar System M. Busso • MMSN 0903.5077 Minimum mass solar model Crida Nice model Nature 435, 459 (2005) Tsiganis, K. et al. • Grand Tack 1409.6340 The Grand Tack model: a critical review Sean N. Raymond, Alessandro Morbidelli 1406.2697 Lunar and Terrestrial Planet Formation in the Grand Tack Scenario Seth A. Jacobson et al. 1807.06647 Dynamical evolution of the aerly Solar System Dynamical evolution • (review) D. Nesvorny