Solar system

SERGEI POPOV

Solar system age

The age is determined due to meteorite studies.
Chondrites are made of non-processed matter. ${ }^{26} \mathrm{Al}$ half life-time $730 \mathrm{kyrs}\left(->{ }^{26} \mathrm{Mg}\right.$). CAI - Ca-Al Inclusions. Al-Mg - short lived, U-Pb - long lived 4.567 Gyrs

No uranium in CAls -> $\mathrm{Pb}-\mathrm{Pb}$.
See details at http://www.geo.cornell.edu/geology/classes/Geo656/656notes03/656\ 03Lecture09.pdf

Short lived isotops

Nuclear Species	Daughter	Reference	Half-life (Myr)	Mass Fraction
${ }^{7} \mathrm{Be}$	${ }^{7} \mathrm{Li}$	${ }^{9} \mathrm{Be}$	53 days	$\left(8 \times 10^{-13}\right)$
${ }^{10} \mathrm{Be}$	${ }^{10} \mathrm{~B}$	${ }^{9} \mathrm{Be}$	1.5	$\left(\sim 10^{-13}\right)$
${ }^{26} \mathrm{Al}$	${ }^{26} \mathrm{Mg}$	${ }^{27} \mathrm{Al}$	0.72	3.8×10^{-9}
${ }^{36} \mathrm{Cl}$	${ }^{36} \mathrm{Ar}$	${ }^{35} \mathrm{Cl}$	0.30	8.8×10^{-10}
${ }^{41} \mathrm{Ca}$	${ }^{41} \mathrm{~K}$	${ }^{40} \mathrm{Ca}$	0.10	1.1×10^{-12}
${ }^{53} \mathrm{Mn}$	${ }^{53} \mathrm{Cr}$	${ }^{55} \mathrm{Mn}$	3.7	4.0×10^{-10}
${ }^{60} \mathrm{Fe}$	${ }^{60} \mathrm{Ni}$	${ }^{56} \mathrm{Fe}$	1.5	1.1×10^{-9}
${ }^{107} \mathrm{Pd}$	${ }^{107} \mathrm{Ag}$	${ }^{108} \mathrm{Pd}$	6.5	9.0×10^{-14}
${ }^{182} \mathrm{Hf}$	${ }^{182} \mathrm{~W}$	${ }^{180} \mathrm{Hf}$	8.9	1.0×10^{-13}

Two approaches complete each other

Origin of ${ }^{26} \mathrm{Al}$ and other short lived elements

aluminum (white), magnesium (green), silicion (blue), calcium (yellow), iron (red)

Near-by supernova or an AGB/WR star.

Cluster cannot be too rich, otherwise EUV and FUV emission of massive stars can significantly influence protoplanetary disc within 30 AU due to photoevaporation.

Number of stars in the Sun cluster

Supernova vs. evolved star

SN overproduce ${ }^{60} \mathrm{Fe}$ in comparison with ${ }^{26} \mathrm{Al}$.
Thus, the exact origin is not known, yet. It seems that Fe-60 has been formed due to a SN (on larger time scale), and Al-26 - appeared from wind of a near-by evolved star.

Distribution of small-body's orbits also put constraints on properties of the solar cluster (see 1001.5444).

Model of Al-26 "logistic" by a stellar wind. A dense envelope is continuously enriched in Al-26, and the Sun is formed from this material.

Constraints on the solar cluster

Solar System Property	Implication	Fraction
Mass of Sun	$M_{*} \geq 1 M_{\odot}$	0.12
Solar Metallicity	$Z \geq Z_{\odot}$	0.25
Single Star	(not binary)	0.30
Giant Planets	(successfully formed)	0.20
Ordered Planetary Orbits	$N \leq 10^{4}$	0.67
Supernova Enrichment	$N \geq 10^{3}$	0.50
Sedna-Producing Encounter	$10^{3} \leq N \leq 10^{4}$	0.16
Sufficient Supernova Ejecta	$d \leq 0.3 \mathrm{pc}$	0.14
Solar Nebula Survives Supernova	$d \geq 0.1 \mathrm{pc}$	0.95
Supernova Ejecta and Survival	$0.1 \mathrm{pc} \leq d \leq 0.3 \mathrm{pc}$	0.09
FUV Radiation Affects Solar Nebula	$G_{0} \geq 2000$	0.50
Solar Nebula Survives Radiation	$G_{0} \leq 10^{4}$	0.80

Supernova influence on the SoSys

Distance 0.15-0.4 pc

- heating (dust melting)
- enrichment
- blast wave
- stripping
- tilting

Difficulties in explaining all data in one framework with a single SN (in particular, difficult to explain the abundance of Al-27).

Minimum mass solar nebula

Zhang et al. (2017). 1705.04746 Nature Astronomy v. 1

Different variants of the MMSN

$\Sigma(r)=1700(r / 1 \mathrm{AU})^{-3 / 2} \mathrm{~g} \cdot \mathrm{~cm}^{-2}$
$\Sigma(r)=1.9125 \times 10^{-4}(r / 1 \mathrm{AU})^{-3 / 2} M_{\odot} \cdot \mathrm{AU}^{-2}$

Hayashi 1981
Normalized by the estimate
of Jupiter formation $1.55<r<7$ AU
(mass of solids = 15 Earth masses)

Desch 2007
Planets at initial positions in the NICE model

Important: nebula parameters might allow proper regime of planetary migration (0903.5077).

In the classical MMSN mass of the disc is ~ 0.01 solar mass between 2 and 30 AU .

New MMSN model

Based on the Nice model

$$
M_{\mathrm{aug}}=M_{Z} f_{p}^{-1}\left(\frac{\text { gas }}{\text { solids }}\right)
$$

Gas/solid = 67 (i.e. solids = 1.5\%)

Initial Solar System Conditions					
Planet	$\begin{gathered} M_{\mathrm{aug}}{ }^{\mathrm{a}} \\ \left(M_{\oplus}\right) \end{gathered}$	$\begin{gathered} r_{\text {in }} \\ (\mathrm{AU}) \end{gathered}$	$\begin{gathered} r_{0} \\ (\mathrm{AU}) \end{gathered}$	$\begin{gathered} r_{\text {out }} \\ (\mathrm{AU}) \end{gathered}$	$\begin{gathered} \Sigma^{\mathrm{a}} \\ \left(\mathrm{~g} \mathrm{~cm}^{-2}\right) \end{gathered}$
Jupiter..................	1747 ± 1075	$4.45{ }^{\text {b }}$	5.45	6.68	546.8
Saturn	1411 ± 470	6.68	8.18	9.70	244.5
Neptune	1032 ± 91	9.70	11.5	12.8	123.2
Uranus	843 ± 124	12.8	14.2	$15.9{ }^{\text {a }}$	77.2
Disk ${ }^{\text {c }}$...................	2353 ± 336	$15.9{ }^{\text {b }}$	22.5	30.0	31.2

Initial positions: Jupiter - 5.45 AU; Saturn - 8.18 AU; Neptune - 11.5 AU; Uranus - 14.2 AU Uranus and Neptune change places during migration!

Surface density

$$
\Sigma(r)=343\left(\frac{f_{p}}{0.5}\right)^{-1}\left(\frac{r}{10 \mathrm{AU}}\right)^{-2.168} \mathrm{~g} \mathrm{~cm}^{-2}
$$

$\rho_{\text {gas }}(r, 0)=1.93 \times 10^{-11}\left(\frac{f_{p}}{0.5}\right)^{-1}\left(\frac{r}{10 \mathrm{AU}}\right)^{-3.4537} \mathrm{~g} \mathrm{~cm}^{-3}$
Steep profile is achieved thanks to photoevaporation of the outer parts of the disc due to influence of a massive star.
Mass partly flows out to compensate losses.

Comparison with the isolation mass

Vertical lines - total amount of solids in each planet.
Planets collect almost all available solids in their feeding zones.

Long term evolution of the Solar system

On each plot the 19 curves represent intervals of 250 Myr. Each curve is based on 1001 solutions with very close initial conditions. The variation of these curves reflects the chaotic diffusion of the solutions (Laskar 2008, see arXiv: 0802.3371).

Planetesimal-driven migration

Jupiter migrates inward, other giants - outward.
Ejection of $15 \mathrm{M}_{\text {earth }}$ by Jupiter results in migration by 0.2 au . $\quad \delta r / r \approx m / M$

Nice Model

See Gomes, Icarus 2003 and Levison \& Morbidelli Nature 2003.Nimmo EART164 Spring 11

Three papers in Nature in 2005:

- Planet migration
- Late heavy bombardment
- Jupiter Troyans

Four giant planets + a disc of planetesimals with the mass $35 \mathrm{M}_{\text {Earth }}$

Planet migration in the Nice model

Tsiganis et al. 2005

Late heavy bombardment

While the gas disk is still existing not all particles can survive long enough.
Thus, the inner edge of the planetesimals disc appears at $\sim 15-16 \mathrm{AU}$.

Position of the disc of planetesimals determines the rate of planet migration. Thus, the time of 1:2 resonance crossing depends on the position of the disc's edge.

Revisiting the timeline of the LHB

asteroids (thin black curve), comets (thin green curve), leftover planetesimals (thick cyan curve).

1. If HSE indicate the amount of accreted matter, then earlier results are confirmed: cataclysmic LHB 3.95 Gyr ago
2. If HSE were transported to the core (in the cases of Moon and Mars), then all the data can be explained by an accretion tail.

HSE - highly siderophile elements: transition metals which tend to sink into the core
because they dissolve readily in iron.

Dynamics

LHB lasted for ~100 Myr

Time of 1:2 MMR crossing \rightarrow

Gomes et al. 2005

Nice model

Solar system secular evolution: resonance crossing

After evolution in the gas disc Jupiter and Saturn are in 3:2 resonance. At this stage eccentricities and inclinations are low.
It is non-trivial to explain present-day eccentricities and inclinations. It was proposed that it can be potentially solved if these planets crossed resonances and interacted with ice giants on eccentric orbits. But strong interaction of an ice giant with Saturn is a better option.

Morbidelli et al. 2009

Further studies

Role of initial resonance conditions for all four giants.

1004.5414

Modifications of the original Nice model

Initial (resonant) conditions in the Nice II model. + a disc which is now more massive 50			
Planet	$\langle a\rangle$	$\langle e\rangle$	Earth
	(AU)		(deg)
Jupiter	5.42	0.0044	0.016
Saturn	7.32	0.017	0.016
Ice I	9.61	0.053	0.044
Ice II	11.67	0.011	0.029

Interaction between disc particles (stirring) and eccentricity of planets are important factors for planets-disc interaction.
Internal ice giant might have larger eccentricity after evolution in the gas disc.
Interaction of this planet with the disc of planetesimals can result in the instability in the planetary system.

Jumping Jupiter

1807.06647

More problems (and solutions?)

Problem: light Mars
Solution: cut planetesimal disc at 1 AU
How: Jupiter!

Grandtack

Year 0 Jupiter forms

Year 70,000: Jupiter migrates inwards

Proposed by Walsh et al. (2011).

See a simple introduction at https://planetplanet.net/2013/08/02/the-grand-tack/

Grand tack

Phases of the Grand tack

Jupiter and Saturn form earlier than terrestrial planets.
Thus, it is possible to influence the disc of planetesimals (embryos for terrestrial planets) with giants, if they can migrate closer to the region of solid planets formation.

Grand Tack

Results of calculation of planet migration from the original paper Walsh et al. (2011)

Small bodies

Evolution of orbits of small bodies
from the original paper Walsh et al. (2011).

Asteroids

1201.5177

Sequence of events

http://perso.astrophy.u-bordeaux.fr/SRaymond/movies_grandtack.html

Disc of planetesimals: truncation

Water on Earth from C-type asteroids

Mass distribution

Asteroids and Grand Tack: details

1701.02775

Asteroids in the jumping Jupiter model

Trojans of Jupiter in the jumping model

Red symbols and line - modeling, black - observations.

Detailed comparison (Grand Tack)

$\sim 1.6 \times 10^{-3} \mathrm{M}_{\oplus}$

Slightly larger than the observed value, but reasonable considering uncertainties.

Moon formation and Grand Tack

https://www.hou.usra.edu/meetings/lpsc2014/pdf/2274.pdf

Mars and Venus in Grand Tack

https://www.hou.usra.edu/meetings/lpsc2014/pdf/2274.pdf

New calculations

Slightly different model, but consistent with the Grand Tack and Nice.

Literature

- Solar system formation
- Radioisotopes dating
- MMSN
- Nice model
- Grand Tack
- Dynamical evolution (review)
1501.03101 The formation of the solar system S. Pfalzner et al.
1005.4147 The Early Solar System M. Busso
0903.5077 Minimum mass solar model Crida

Nature 435, 459 (2005) Tsiganis, K. et al.
1409.6340 The Grand Tack model: a critical review

Sean N. Raymond, Alessandro Morbidelli
1406.2697 Lunar and Terrestrial Planet Formation in the Grand Tack Scenario Seth A. Jacobson et al.
1807.06647 Dynamical evolution of the aerly Solar System
D. Nesvorny

