

Young planetary systems

SERGEI POPOV

Protoplanetary discs

https://online.science.psu.edu/astro140_sp201314wd001/node/7717

http://news.softpedia.com/news/Exoplanets-Can-Form-Spiral-in-Stellar-Protoplanetary-Disks-228792.shtml

Dusty discs

Disc is visible edge-on.

Discs and stars

Optically thin disc. Allows to determine dust mass.

$$M_{\rm dust} = \frac{F_{\rm v} d^2}{\kappa_{\rm v} B_{\rm v}(T_{\rm dust})},$$

See 1807.09631 about different methods of dust mass determination

 $M_{\rm dust} \propto M_{\rm star}^{1.8}$.

Dust in the disc

Observations in different wavelengths allow to probe different parts of the disc and determine dust mass and distribution.

Disc mass: gas + dust

VLT/SPHERE

PDI images are sensitive to micron-sized dust grains at the disc surface

0.5-2.3 micrometers

Different discs

Disc evolution

Different wavelengths – different dust

Disc around Elias 2-27

Spiral structure around Elias 2-27 Obtained by ALMA

The star has mass ~0.5 M_{solar} , but a very massive disc (>0.1 M_{solar}) around.

It is important that at distance >10 AU the disc is transparent for 1.3 mm emission. So, the spiral patter is related to the matter also in the disc midplane.

Perez et al. 2016 (1610.05139), taken from the review 1703.08560

Gallery of spirals

Spirals: model and observations

MWC 758 Left: model Right: VLA+ALMA+SPHERE

TW Hydra

 N_2H^+ visible only if CO is frozen out

Protoplanetary disc of HL Tau

http://www.eso.org/public/images/eso1436a/

Where stars are born

More details on the disc of HL Tau

Modeling of the HL Tau disc

Three planets with masses from 0.2 up to 0.55 Jupiter mass

Observations

Modeling

Evolution of the dust mass in discs

Panic et al. 2013, taken from the review 1703.08560

Debris discs

See a review in 1802.04313, 1804.08636

Two debris disc examples

taken from the review 1703.08560

HD107146. ALMA observations

Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys.

Fomalhaut b

115 AU from the star

Is Fomalhaut b a real planet?

A planet or not a planet? This is the question!

Result of a recent collision?

The object is situated in the region where collisions are very probable.

Two bodies with ~100 km size might be enough.

Beta Pictoris

Composite image obtained by two instruments

taken from the review 1703.08560

Beta Pictoris

Young Kuiper belt-like debris disc

HD 115600 110 pc 15 Myrs 1.4 solar mass star

Gemini planet imager

Size of the disc 48 AU

Disc around planetary mass object

OTS44 is one of only four free-floating planets known to have a disc. Mass ~12 M_{jupiter}

IR excess seen by Spitzer and Herschel

ALMA observations

M_{dus}t ~0.07-0.7 M_{Earth}

A brown dwarf is a pair of planets

2MASS J11193254-1137466 2MASS J1119-1137 2MASS J1119-1137 2016 Nov 25 2017 Mar 18 Age ~10 Myr 20-30 pc M ~ 3-5 M_{jupiter} Orbital period ~50-150 yrs V J 0.2" 3-5 AU 0.2" Κ WISEA J1147-2040 Н K Κ 0.2"

Protoplanetary discs in a binary system

Statistics of circumstellar discs in binaries

17 binary systems100-1400 AUALMA observations

Secondary discs in two cases are brighter than discs around primaries.

Green triangles – primaries; Squares – secondaries (dark blue – detected, light blue – non-detected); black dots – single stars from other studies of the Tauris; grey dods – single non-detections.

Direct imaging of planets

Recent survey with direct imaging resulted in an estimate that ~few percent of star have a planet 0.5-14 Mjup at 20-300 AU.

HR8799 system and several brown dwarfs were found

HR 8799

Young star 1RXS J160929.1-210524

Gemini North

HR 8799

Planet in a triple system

Young planet ~16 Myr. Observed by VLT Orbit might be unstable.

Circumplanetary discs (mock simulations)

3 Jupiter masses

5 hours of observations Better visible at shorter wavelengths Gap opening is important Planet temperature 4000K (age ~1 Myr) Size of a circumplanetary disc is about ½ of the Hill sphere. Thus, it can be hardly resolved by ALMA, but can be detected.

Dependence on the planet mass

Literature

arxiv:1507.04758 Observations of Solids in Protoplanetary Disks

arxiv:1703.08560 Circumstellar discs: What will be next?

arXiv: 1804.08636, 1802.04313 Debris discs

arxiv:1602.06523 Resolved observations of transition disks

arxiv:1607.08239 The International Deep Planet Survey II: The frequency of directly imaged giant exoplanets with stellar mass

arXiv:1801.07721 Population synthesis of protostellar discs