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Radius vs. mass

M [Mmpller]
0.1 1

Results of modeling.

Kepler—87b

Old (relaxed) planets.

Colors correspond to
different fractions
of light elements.
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Light elements contribution

1604.07558
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Results of modeling.

Different slopes

above and below

~100 Earth masses

are due to different
regimes of gas accretion.



Density and mass
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1400 Results of modeling.

1300
I Old (5 Gyrs) planets.

1100
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A —solid iron-stone

B —solid ice

C — evaporating

D — low-mass planets with large cores,

700 but with significant fraction of H and He
600 E — forbidden zone (evaporating)

500 F — transition to giants

G - giants
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Mass-density. Observations. Heating.
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Planet structure

Hotseot - Farth / Venus
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Even about the Earth we do not know many details of the internal

structure. Data about other planets is very incomplete and
indirect.
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Structure of the Solar system planets
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What Solar system planets are made of?

Except Jupiter and Saturn
planets are mostly made of
elements heavier than helium.

Even icy-giants — Neptune and Uranus, -
are mainly made not of H+He.

Temestrial Jupiter SotEm Lrarns Meptne  Huipar belt  Oort doud
[a]F=" g = A
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Structure of giant planets

165-170K f;""mmcu,a, H, ty,.u_z:;r iy Except Uranus giant planets might not have solid cores.
\—— — yasqssK However, there cores are made of heavy elements.
- W L - ") i ; _""'-H..,r -
0300 bar | / 1'bar And so often they are called made of rocks.
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Temperature and pressure

in atmospheres of giants

For Jupiter direct data
are available due to
Galileo probe measurements.

1405.3752



Hydrogene equation of state
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D o Still, there are important uncertainties
. even for the hydrogen equation of state.

Some regimes have been never measured
in [aboratories.
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Hydrogen plus helium mixture

Morales, et al. (2013)
Morales, et al. (2010)

Schouten, et al (1991)
Lorenzen, et al (2011)
Loubeyre, et al (1990)

.

Hydrogen \Eif'une

100 200 300 400
Pressure (GPa)
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Diamond anvil cells

= Diamond cells are used to reach high pressures in laboratory experiments.
ONINN, However, it is not enough, and in many cases we have to base only on
numerical models.

B hec
== limit of bee stability
a—a melting curve

N

Pressure {((GPa)

Merkel (2013) Bouchet et al. (2013)



Diamond cell

|wiy |iaue” puowelp/saisAyd™|esauiw /ASolessuiw /sdoys)IoM LOYN/NPauols|ied-auas//:duy




Scheme of the experiment

R | Diamond Anvil Cell
Perfo rated eg u ar Assembly radial X-ray diffraction and laser

dlamond dlamond heating port

bots used to
vary the pressure

beveled washers
ACt as springs to apply _,4‘-:'
the force 3

X-ra ~ :
bea,’; X-ray beam

Diamond seats

(tungsten carbide)
. ﬁr’/
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assembled cell -~ y

Nt
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cBN diamond seat
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http://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/diamond_anvil.html




http://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/diamond_anvil.html

1st class lever drive Pin - guide screw drive Screw piston drive

2nd class lever drive Fluid - bellows drive pull - platen drive

six basis ways of providing force in the DAC (Bassett, 1979)




How to heat the matter

Electric current (for lower temperatures)
or laser (for higher temperature).

heater wires

20NN NRNREDS

pressure medium

rhenium gasket

tungsten carbide

Neray transparent  X-oray transparent
seat mirror

LA L A L R L LN

Up to 1300K

Above 1300K
http://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/diamond_anvil.html



Comparison with conditions in the Earth

ACCESSIBLE REGIONS OF Pand T

(Modified from Mao & Hemley, Rev. Min. 37, 1998)
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Mass-radius models for planets

Relatively simple model
based on just 8 key elements.

Good results for Solar system planets.

Mass "'MEarth
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Mass-radius diagram for exoplanets

1401.4738
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50% H.LO o o
. 100% rock

7 100% Fe

Planet radius, of course, depends on its composition.
Light planets typically do not have extended gas envelopes.
Oppositely, giant planets might hath very thick gas envelopes.

Very often data on mass and radius
can be explained by different combinations of ingredients.

Solid and long-dashed lines (in black) are
for non-irradiated models.

Dash-dotted (red) curves correspond to
irradiated models at 0.045 AU from a Sun.



Theory vs. observations
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Evolution of giant planets
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Three main ingredients: gas, ice, rock

Planet Interiors

Gas

Exoplanets can be composed of three (or four)

materials: rock (and iron), ice, and gas
Rogers and Seager 2010b; Chambers 2010

Ternary Diagram
10.0 +/- 0.5 M, ,
2.0 +-0.1 R,

250

200

150

100

050
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Three main types of planets

upper mantle

Molecular L50x + solar |

H2,+ He

lower mantle
Metallic H, + He

fluid iron
core

Ices + Rocks
(distinct?) ,
5000 K Iron core
3.64 Mbar
Jupiter Neptune Earth
Gas giants lcy giants Solid planets
H/He H/He+ice+core Si, Mg, Fe, O, C
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Thick atmospheres for M>4M__ ..
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Corot-27b. Dense planet

Orbital period 3.6 days.
Solar-like star

HAT-P-20b

Kepler-39 b

KOI-889 b “-
WASP-18 b
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Kepler-51. Crumbly planets.
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Residual

KOI-620.02

1401.2885

Solar type star.
Three planets with masses 2-8 M
and low densities: <0.05 g/cm3

earth

Orbital periods 45-130 days.



Superearths. Diversity of properties.

Sizes of Planet Candidates

Totals as of November, 2013
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Sizes of superearths

Predicted sizes of different kinds of planets

Sun-like

Wikipedia

Corot-7b

Typical radii 1-4 of the Earth
l.e., between the Earth and Neptune).

Sometimes low density planets in the range Pure  Silicate Carbon  Pure
lled mini-N iron planets planets water carbon Pure
are callea mini- eptunes. planets planets monoxide hydrogen

planets planets




Total Mass I::."v{rl_:::l

Superearths: mass-radius

Superearths are very numerous planets.
Only those with well-determined
mass and radius are shown.

Radius (R,)

— "Earth-like"
_ Pure iron

Inner cores can consist either of rocks
(and iron) or of ices.

Some of superearths obviously
have thick gas envelopes.
This is a challenge to formation models.
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Superearths models

Sglid: 8 = 5.6 k/B
Dashed: 8 = 8.0 kB
Dotted: & = 6.5 ky,/D
0,01 Mg, H—He
—— 0.1 My Hy=He
1.0 M, H,-Fe

—. Earthike core

1]

Core Maas (M )

1402.4818

For less massive planets parameters
are mainly determined by the core.

For more massive — by the outer envelope.

Heating can be also important.

Results are shown for planets
with solid earth-type cores.
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Just add water
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Core mass: 10 M,
3]

10% H0 Core
Earth-Like Core

Uranus

0.1
H,-He Mass (Mg

1402.4818

Let us fix the planet mass and change the fraction of ice.
Here water is added as an ice layer above a solid (rocky) core.
Only for lower masses it is possible to distinguish

(by radius measurements) between pure-ice cores and
pure-rock cores.



Internal structure

Density PFure iron
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Under pressure

10 Mg Earth—like Core
5.5 ky/B
6.0 k,/B
8.5 k,/B

Salid: 8 = 5.5 ky/B
Dashed: 8 = 6.0 ky/B
Dotted: s = 8.5 ky/B
001 M, H,~He
0.1 M H,—He
1.0 M, H,—He
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Wikipedia

Soil and water

Radius vs. mass for different water content
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Atmospheres




Transits and atmosphere studies

planet thermal
emission and
reflection blocked
during eclipse

starlight filters
through planet
atmosphere
during transit

v

1709.05941



Planet studies during transits

Albedo * Integrated properties

of the surface (albedo)
* Transmission spectrum

* Emission spectrum
R’pl(A) fpl y Mapplng
A

Transmission spectrum Emission spectrum

Afpl

/

Eclipse

1804.07357



Sensitivity of the method

It is easier to detect the signal from planets
around M-dwarfs due to a smaller stellar radius.
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Transits and atmospheres
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HD209458b
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1302.1141

Transit observations in different
wavelengths allow to determine
properties of the planet atmosphere.

Size can be different
in different wavelengths.

In addition, light curve can look
different due to atmospheric dynamics.
Heat redistribution due to strong winds
modifies the flux from the planet.

exoplanat

transit (primary eclipsa) — .-~
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Featureless spectrum of GJ 1214b

Relative transit depth (ppm)
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Solar
100% H,O

100% CH,
100% H,0
100% CO,

Obscured by clouds.

Hubble space telescope spectrum shows no details.

This is interpreted as the result of the presence
of a thick cloud layer in the outer atmosphere
of the planet.



Phase dependence

Depending on the phase we observe different parts of a disc.

Results of observations correspond to: s von ( ““.““*'.’ ) |

1.005

HD 189733b — upper panel; o
HD 209458b — lower panel. '

Ralative Flux
L [ []
o o o
w© 5] 0
on =] o

Both planets are hot jupiters.

Note, that in the case of HD 209458b planetary disc
IS strongly non-symmetric in terms of the emitted flux.

Relative Flux

0.z 0.2
Orbital Phasa
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Scanning planetary discs

=2 HD189733b

\Md AN

. a0’ -pran 0«30 +60° +90
INGRESS s ™, == == = = S
" ! — Uniformly bright disk
Uniformly bright ellipse

—— MNon-uniformly bright disk

1202.3829



Dynamics of outer layers of hot jupiters

meridional
winds

stellar
radiation

convective

1405.3752

day

night

zonal
winds

Planet has internal and external heat sources.

This results in violent winds and convection
in the outer gas envelope.



Wind on HD 209458

HD209458: CO in Transmission Wind velocity can be directly (!) measured.
The planet is a VERY hot Jupiter.

Wind velocity is ~ 2 km/s
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Modeling winds on hot jupiters

1407.4150
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General property:

Strong equatorial wind from the West to the East.




Modeling of HD209458 b

bstellar (0° longitude)
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Exomoons: how to form

Regular satellites
Are formed together with planets
from the circumplanetary disc

- Irreqular satellites
- Capture of collision




Glant ring system

(@ /‘

Path of star behind rings :
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" ! o || Secondary
System of 37 rings extending up to 0.6 AU around a stellar companion.

The star is young (16 Myrs), and so, probably, the system of rings is
just forming. Satellites might regulate the shape of the ring system.
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Which planets might have detectable satellites?

To be large respect to the host-planet
the satellite might be irregular.

Systems with many planets
are more favorable.

http://www.freemars.org/jeff/planets/Luna/Luna.htm

Larger planets have larger moons.

Hot jupiters (and neptunes) can
loose planets during migration.

http://minerva.union.edu/parkashv/hotjupiters.html




Modeling satellite formation
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Satellite capture in three-body interaction

h AU from N 0.8 AU from
Kstar [ Va CIM/SE K star

Mars Mars
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Results of modeling of a satellite capture. The body initially had a companion which was lost during three-body interaction.
This scenario requires a massive planet. Such interactions can happen in the habitable zone.
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How to find an exomoon

Potentially, all methods for exoplanets discovery can work.

However, presently methods related to transits seems to be
more favorable:

1.TTV
2. TDV

3. Orbital plane changes.

1405.1455



Joint transits
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ow strong is the effect?

KOI 189.01

T T T T
Detrended Kepler data
== no moon
— Earth-sized moon, Ganymede-wide orbit

100.0 ' e ' Detrended Kepier data
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An example: Jupiter with satellites over the Sun

Jupiter

1503.03251
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Other ways to see a moon

Event 1. Event 2

companion’s shadow on the planet companion transiting
in front of the planet

Event 5:
companion's shadow on the planet
during transit

Event 3. Event 4:
companion eclipsed by the planet companion occulted by the planet

1806.10032



A planet with a moon ...but without a star?

MOA-2011-BLG—262

Microlensing. N . &< A MM
Two solutions are possible: _ B

1. 0'12Msun+18MEarth rrlI}lll__?z‘?x:%[[}I1I11_;|]31L|G—262Lb Properties g
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New measurements and a candidate
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Semimajor axis: 20 planet radii.
Jupiter-like planet.

Planet orbit: 0.8 AU



Tidal heating

Mars-like moo Earth-like o i i
Satellites can be heated by tides.
- ;

Effect can be so strong,
that a satellite with an atmosphere
can experience the greenhouse effect.

1408.6164



Planetary magnetospheres

It is argued that magnetic shield
can be important for life.
Magnetosheat ™. A satellite can “"use” the planetary field.

Incoming

However, if the satellite is too close
to the planet — then tides can heat it up.

S | If it is too far — it can be out of the magnetosphere.

E'.
{
qu'otating ’
Magnetoplasma

[1B101QUSBIA]

f
Wind /
............ ’/I."
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"/'

Magnetopause
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Can JWST see exomoons?  © = .

e we ¢
i

A satellite might be large (as the Earth)
and warm (also as the Earth, at least).

—
@

Potentially, such satellites can appear
around massive planets far from the star,
where it is easier to see them.

A satellite can be heated by tides.
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