Internal structure and atmospheres of planets

SERGEI POPOV

Sizes and masses

Radius vs. mass

Results of modeling.
Old (relaxed) planets.
Planets ages are usually
determined due to
stellar ages (1803.03125, 1804.02214).
Colors correspond to different fractions
of light elements.

Light elements contribution

Results of modeling.
Different slopes
above and below
~100 Earth masses are due to different regimes of gas accretion.

Density and mass

Results of modeling.
Old (5 Gyrs) planets.
A - solid iron-stone
B - solid ice
C - evaporating
D - low-mass planets with large cores,
but with significant fraction of H and He
E - forbidden zone (evaporating)
F - transition to giants
G - giants

Mass-density. Observations. Heating.

Planet structure

Even about the Earth we do not know many details of the internal structure. Data about other planets is very incomplete and indirect.

Structure of the Solar system planets

What Solar system planets are made of?

Except Jupiter and Saturn planets are mostly made of elements heavier than helium.

Even icy-giants - Neptune and Uranus, are mainly made not of $\mathrm{H}+\mathrm{He}$.
1405.3752

Structure of giant planets

See 1812.07436 for a recent detailed review.

Except Uranus giant planets might not have solid cores. However, there cores are made of heavy elements.
And so often they are called made of rocks.

Temperature and pressure in atmospheres of giants

For Jupiter direct data
are available due to
Galileo probe measurements.

Hydrogene equation of state

Still, there are important uncertainties
even for the hydrogen equation of state.
Some regimes have been never measured in laboratories.

Hydrogen plus helium mixture

Density and pressure

Diamond anvil cells

Diamond cells are used to reach high pressures in laboratory experiments.
However, it is not enough, and in many cases we have to base only on
numerical models.

Merkel (2013)
Bouchet et al. (2013)

Diamond cell

Scheme of the experiment

Diamond Anvil Cell
Assembly
y indolx-rya

How to press?

1st class lever drive

2nd class lever drive

Pin - guide screw drive

Fluid - bellows drive

Screw piston drive

pull - platen drive

cutlet face

How to heat the matter

Up to 1300 K

Electric current (for lower temperatures) or laser (for higher temperature).

Above 1300K

Comparison with conditions in the Earth

http://mini.physics.sunysb.edu/~pstephens/downloadable/ehm_dac.pdf

Mass-radius models for planets

Relatively simple model
based on just 8 key elements.
Good results for Solar system planets.

Mass-radius diagram for exoplanets

Planet radius, of course, depends on its composition.
Light planets typically do not have extended gas envelopes.

Oppositely, giant planets might hath very thick gas envelopes.
Very often data on mass and radius
can be explained by different combinations of ingredients.
Solid and long-dashed lines (in black) are for non-irradiated models.
Dash-dotted (red) curves correspond to irradiated models at 0.045 AU from a Sun.

Theory vs. observations

1405.3752

Evolution of giant planets

Three main ingredients: gas, ice, rock

Ternary Diagram

$$
\begin{aligned}
& 10.0+/-0.5 M_{\oplus} \\
& 2.0+/-0.1 R_{\oplus}
\end{aligned}
$$

Exoplanets can be composed of three (or four) materials: rock (and iron), ice, and gas

Three main types of planets

Thick atmospheres for $\mathrm{M}>4 \mathrm{M}_{\text {Earth }}$

Corot-27b. Dense planet

Orbital period 3.6 days.

Solar-like star

Kepler-51. Crumbly planets.

Solar type star.
Three planets with masses $2-8 \mathrm{M}_{\text {earth }}$ and low densities: $<0.05 \mathrm{~g} / \mathrm{cm}^{3}$

Orbital periods 45-130 days.

Inflated hot jupiter

Mass and radius measured together.
Grazing transit.
Density $0.1-0.17 \mathrm{~g} / \mathrm{cm} 3$

Superearths. Diversity of properties.

Sizes of superearths

Typical radii 1-4 of the Earth
I.e., between the Earth and Neptune).

Sometimes low density planets in the range are called mini-Neptunes.
Predicted sizes of different kinds of planets

Superearths: mass-radius

Superearths are very numerous planets. Only those with well-determined mass and radius are shown.

Inner cores can consist either of rocks (and iron) or of ices.

Some of superearths obviously
have thick gas envelopes.
This is a challenge to formation models.

1402.4818

Superearths models

For less massive planets parameters are mainly determined by the core. For more massive - by the outer envelope.

Heating can be also important.
Results are shown for planets with solid earth-type cores.

1402.4818

Just add water

Let us fix the planet mass and change the fraction of ice.
Here water is added as an ice layer above a solid (rocky) core.
Only for lower masses it is possible to distinguish (by radius measurements) between pure-ice cores and pure-rock cores.

Internal structure

Without an envelope

With an envelope

Under pressure

Interiors might have high pressure and density

Soil and water

Radius vs. mass for different water content

1402.4818

Stellar metallicity and planets

Parameters of planets strongly correlates with stellar metallicity

No massive planets around low-metallicity stars

Atmospheres

Transits and atmosphere studies

1709.05941

Planet studies during transits

- Integrated properties of the surface (albedo)
- Transmission spectrum
- Emission spectrum
- Mapping

See a review in 1810.04175

Sensitivity of the method

It is easier to detect the signal from planets around M-dwarfs due to a smaller stellar radius.

Transits and atmospheres

Transit observations in different wavelengths allow to determine properties of the planet atmosphere.

Size can be different
in different wavelengths.
In addition, light curve can look different due to atmospheric dynamics. Heat redistribution due to strong winds modifies the flux from the planet.

Featureless spectrum of GJ 1214b

1401.0022

Phase dependence

Depending on the phase we observe different parts of a disc.
Results of observations correspond to:
HD 189733b - upper panel;
HD 209458b - lower panel.
Both planets are hot jupiters.
Note, that in the case of HD 209458b planetary disc is strongly non-symmetric in terms of the emitted flux.

Phase light curves

Bright cloud
reflect light

Scanning planetary discs

1202.3829

Modeling of planets atmospheres

Dynamics of outer layers of hot jupiters

Planet has internal and external heat sources.
This results in violent winds and convection in the outer gas envelope.

Wind on HD 209458

Modeling winds on hot jupiters

General property:

Strong equatorial wind from the West to the East.

Modeling of HD209458 b

1405.3752

Exomoons: how to form

Regular satellites

Are formed together with planets from the circumplanetary disc

Irregular satellites
Capture oŕ collision

Giant ring system

System of 37 rings extending up to 0.6 AU around a stellar companion.
The star is young (16 Myrs), and so, probably, the system of rings is just forming. Satellites might regulate the shape of the ring system.

Which planets might have detectable satellites?

To be large respect to the host-planet the satellite might be irregular.

Systems with many planets are more favorable.

Larger planets have larger moons.
Hot jupiters (and neptunes) can loose planets during migration.

Modeling satellite formation

[^0]1408.6164

Satellite capture in three-body interaction

Results of modeling of a satellite capture. The body initially had a companion which was lost during three-body interaction. This scenario requires a massive planet. Such interactions can happen in the habitable zone.

How to find an exomoon

Potentially, all methods for exoplanets discovery can work.
However, presently methods related to transits seems to be more favorable:

1. TTV
2. TDV
3. Orbital plane changes.

Joint transits

1405.1455

How strong is the effect?

1408.6164

An example: Jupiter with satellites over the Sun

Other ways to see a moon

1806.10032

A planet with a moon ...but without a star?

Microlensing.
Two solutions are possible:

1. $0.12 \mathrm{M}_{\text {sun }}+18 \mathrm{M}_{\text {Earth }}$
2. $4 \mathrm{M}_{\text {Jup }}+0.5 \mathrm{M}_{\text {Earth }}$

Uncertainty is related to unknown distance

New measurements and a candidate

Confirmation of the candidate

Tidal heating

Satellites can be heated by tides.
Effect can be so strong, that a satellite with an atmosphere can experience the greenhouse effect.

Planetary magnetospheres

It is argued that magnetic shield can be important for life.
A satellite can "use" the planetary field.
However, if the satellite is too close
3 to the planet - then tides can heat it up.
If it is too far - it can be out of the magnetosphere.

Can JWST see exomoons?

A satellite might be large (as the Earth) and warm (also as the Earth, at least).

Potentially, such satellites can appear around massive planets far from the star, where it is easier to see them.
A satellite can be heated by tides.

Literature

- arxiv:1604.06092 Exoplanetary Atmospheres - Chemistry, Formation Conditions, and Habitability
- arxiv:1507.03966 Observations of Exoplanet Atmospheres
- arxiv:1401.4738 Planetary internal structures
- arxiv:1312.3323 The Structure of Exoplanets
- arxiv:1501.05685 Exoplanetary Geophysics -- An Emerging Discipline
- arxiv:1701.00493 Illusion and Reality in the Atmospheres of Exoplanets
- arxiv:1411.1740 Seismology of Giant Planets
- arxiv:1709.05941 Exoplanet Atmosphere Measurements from Transmission Spectroscopy
- arxiv:1810.04175 How to characterize the atmosphere of a transiting exoplanet
- arXiv:1904.03190 Exoplanetary atmospheres

[^0]: A massive planet: $10 \mathrm{M}_{\text {jupiter }}$

