

Planet detection methods

SERGEI POPOV

1805.08391

Planets, brown dwarfs stars

Brown dwarfs: (12-13)<M<(75-80) Jupiter masses

1411.5517

Exoplanet catalogues

Catalog	Mass criteria	Confidence criteria	Numł	per of planets [†]				
Exoplanet Encyclopaedia	$M_p - 1\sigma < 60M_{Jup}$	Submitted paper, conference talk	3741	awan lana ba awa	Everineate	Mothodology	Eventonets	California
NASA Exoplanet Archive	$M_p < 30 M_{Jup}$	Accepted, refereed paper	3704	exoplanets.org	Data Explorer	and FAQ	Links	Planet Survey
Open Exoplanet Catalog	None listed	Open-source	3504		Tat	le 2	925 Planets	with good orbits listed excelance Orbit
[†] : as of February 27th, 201	8.						25 Trelation	se. r Planets ng microlensing and
http://exoplanets.org					🧬 Plo	ts 2	950 Total Plane	Confirmed ets
				a and the second		8 2	337 Unco	nfirmed Kepler idates
http://exoplanet.eu/o	catalog				Sea	rch 5	287 Total	Planets ted planets + Kepler ates
				The Exoplanet Data Explorer is an interactiv Orbit Database. The Exoplanet Orbit Datab parameters of excelanets orbiting normal s	e table and plotter f ase is a carefully co ars from the peer n	or exploring and d instructed compila eviewed literature.	isplaying data t tion of quality, and updates t	from the Exoplanet spectroscopic orbital he Catalog of nearby
http://exoplanetarchi	ve.ipac.caltech.e	<u>edu/index.html</u>		exoplanets. A detailed description of the Exoplanet Orbit.	Database and Explor	ars is nublished ha	re and is availab	ale on astro ph
				in addition to the Exoplanet Data Exoper, v a quick and convenient download here. A list	ve have also provided of all archived CSVs	i the entire Exopla is available <u>here</u> .	net Orbit Datab	ase in CSV format for
http://www.openexo	planetcatalogue	com						

See also http://www.astronet.ru/db/msg/1391325 (in Russian)

1803.11158 1808.10236

Confirmed Exoplanet Statistics				
Discovery Method	Number of Planets			
Astrometry	1			
Imaging	50			
Radial Velocity	810			
Transit	3191			
Transit timing variations	21			
Eclipse timing variations	16			
Microlensing	96			
Pulsar timing variations	7			
Pulsation timing variations	2			
Orbital brightness modulations	6			
Disk Kinematics	1			
Transiting Exoplanets	3214			

Transiting Exoplanets	3214
All Exoplanets	4201

NASA Exoplanet Archive

All Exoplanets	4201
Confirmed Planets with Kepler Light Curves for Stellar Host	2362
Confirmed Planets Discovered by Kepler	2342
Kepler Project Candidates Yet To Be Confirmed	2418
Confirmed Planets with K2 Light Curves for Stellar Host	431
Confirmed Planets Discovered by K2	410
K2 Candidates Yet To Be Confirmed	889
Confirmed Planets Discovered by TESS ¹	67
TESS Project Candidates Integrated into Archive (2020-08-20 13:00:02) ²	2174
Current date TESS Project Candidates at ExoFOP	2174
TESS Project Candidates Yet To Be Confirmed ³	1317

Exoplanet mass and Radius	Exo	planet	Mass	and	Radius
---------------------------	-----	--------	------	-----	--------

Confirmed Planets with mass	970
Confirmed Planets with m sin i	818
Confirmed Planets with radius	3214

Counts by	Mass
-----------	------

M ≤ 3 M_Earth	38
3 < M ≤ 10 M_Earth	140
10 < M ≤ 30 M_Earth	97
30 < M ≤ 100 M_Earth	94
100 < M ≤ 300 M_Earth	222
300 M_Earth < M	379

Counts by Radius				
R ≤ 1.25 R_Earth	408			
1.25 < R ≤ 2 R_Earth	851			
2 < R ≤ 6 R_Earth	1329			
6 < R ≤ 15 R_Earth	460			
15 R_Earth < R	166			

https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html, 28/08/2020

Radial velocities

Michel Mayor and Didier Queloz 1995

0 0

We see just the bright star. We measure that its radial velocity periodically changes.

Measure: - Period - Mass

First light planets

The problem is to measure small velocity variations for relatively long time.

Quality and stability of the spectrograph is more important than the telescope size.

This planet discovered by HARPS. Situated just near the zone of habilability.

1108.3447

Proxima Centauri b

1.3 Earth masses0.05 AU11 days

Habitability zone

1609.03449

Radial velocities: data and measurements

Role of a star

Necessity for simultaneous record of the stellar and calibration spectra

It is necessary to take the stellar and the laboratory spectra simultaneously, as the shift due to stellar velocity is very small and so the device cannot be stabilized to such level. Any external mechanical influence can shift the detector so that the position of the line cannot be determined with precision high enough to detect the signal from the planet presence.

Molecular iodine cell

 I_2 cell became the first effective tool to provide lines for RV measurements.

Velocity vs. phase for different orbits

Planet mass

$$f(m) = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{K_1^3 P (1 - e^2)^{3/2}}{2\pi G} \approx \frac{M_2^3 \sin^3 i}{M_1^2}$$

Thus, it is necessary to know the stellar mass (M_1)

$$\langle \sin i \rangle = \frac{\int_0^{\pi} p(i) \sin i \, di}{\int_0^{\pi} p(i) \, di} = \frac{\pi}{4} = 0.79$$

For the mass function <sin³ i> is important:

$$\frac{\int_0^{\pi} p(i)\sin^3 i\,di}{\int_0^{\pi} p(i)\,di} = 0.5 \int_0^{\pi} \sin^4 i\,di = \frac{3\pi}{16} = 0.59$$

Stellar noise

Phenomenon	RV amplitude (m s ^{-1})	Time scales
Solar-like oscillations	0.2–0.5	\sim 5–15 min
Stellar activity (e.g., spots)	1–200	\sim 2–50 days
Granulation/Convection pattern	\sim few	\sim 3–30 years

Proposals of special space mission

The nominal spacecraft design is based upon the Kepler spacecraft by Ball Aerospace, with a 1.4-m primary, with the starlight coupled into single-mode fibers illuminating three highresolution, compact and diffraction-limited spectrometer "arms", one covering the near-UV (200-380nm), visible(380-900 nm) and near-infrared (NIR; 900-2500 nm) respectively with a spectral resolution of greater than 150,000 in the visible and nearinfrared arms.

1803.03960

Planet transits

The first transit measurement. HD 209458

The first measurements of a transit was made from the ground for a planet discovered by RV, and so known orbital parameters.

Kepler and CoRoT

Rate of discovery

1411.5517

Transiting planets in the sky

Very small planets

Kepler-37b The first discovered exoplanet with size smaller than Mercury

Transit probability

Transit conditions

Transit depth

Limb darkening

Limb darkening can be taken into account in a more precise manner

$$\frac{I(\mu)}{I_0} = 1 - \sum_{n=1}^4 u_n (1 - \mu^{n/2}).$$

Transit duration

$$\frac{t_{\rm tr}}{P} \simeq \frac{R_*}{a} \frac{\sqrt{(1+R_{\rm p}/R_*)^2 - b^2}}{\pi} \frac{1+e\sin\omega}{1-e^2}.$$

System parameters

$$T \simeq 3h \left(\frac{P}{4d}\right)^{1/3} \left(\frac{\rho_*}{\rho_\odot}\right)^{-1/3}$$

Stellar density estimate

$$\frac{dv_{\rm r}}{dt} = \frac{2\pi K}{P} = \frac{GM_{\rm p}}{a^2} = g_{\rm p}\frac{R_{\rm p}^2}{a^2} = g_{\rm p}\frac{R_{\rm p}^2}{R_{*}^2}\frac{R_{\rm p}^2}{a^2},$$

K – stellar velocity

$$g_{\rm p} = \frac{2\pi K}{P} \left(\frac{R_*}{R_{\rm p}}\right)^2 \left(\frac{a}{R_*}\right)^2$$

Planet density

$$\rho_{\rm p} = \frac{3g_{\rm p}}{4\pi GR_{\rm p}} = \frac{3g_{\rm p}}{4\pi GR_{\ast}} \left(\frac{R_{\ast}}{R_{\rm p}}\right)$$

$$R_* = \theta d = \theta / \hat{\pi}:$$

$$\rho_{\rm p} = \frac{3g_{\rm p}\hat{\pi}}{4\pi G\theta} \left(\frac{R_*}{R_{\rm p}}\right)$$

Ground based searches with small cameras

Space surveys vs. ground based

Hot jupiters are rare, but easy to detect from Earth. Space surveys (here – Kepler) show mostly different types of planets.

CoRoT

December 2006 – November 2012 27-cm telescope

https://exoplanetarchive.ipac.caltech.edu/docs/datasethelp/ETSS_CoRoT.html

Kepler

2009-2013 + K2-mission 0.95 m telescope

Orbital elements

Orbital parameters

Transits and transit-like events

Spectral lines and planet/star mass ratio

$$\dot{v}_{\rm r} \simeq \frac{GM_*}{a^2} = \frac{2\pi K}{P} \frac{M_*}{M_{\rm p}}.$$

Observations of spectral line in the planet atmosphere can allow to measure important parameters of the system!

Measurements of the radial acceleration (due to observations of spectral lines in the planet atmosphere) allow to measure stellar mass.

$$\frac{T}{P} = \frac{1}{\pi} \sin^{-1} \frac{R_*}{a}$$

$$\delta v_{\rm r} \simeq \frac{P}{\pi} \frac{R_*}{a} \frac{2\pi K}{P} \frac{M_*}{M_{\rm p}}.$$

If narrow spectral lines in the planet atmosphere can be observed during transit then it is possible to derive M_{star}/M_{planet}

Rossiter–McLaughlin effect

$$A_{\rm RM} \simeq \frac{2}{3} D v \sin i_{\star} \sqrt{1 - b^2}$$

$$D = (R_{\rm p}/R_{\star})^2$$

Transit timing variations (TTV)

1706.09849

Transit duration variations (TDV)

- Torque due to the rotational oblateness of the star;
- Eccentricity variations due to a resonant interaction;
- 1706.09849 Inclination changes due to secular precession of the orbital plane.

Calculations of transits in 3 body systems

Microlensing

Exoplanet detection via microlensing

- Sensitive to low mass planets (down to 0.1 M_{earth})
- Sensitive to wide orbits (1-4 AU)
- Sensitive to free-floating planets

See a review in Bennet 0902.1761

Gravitational microlensing - 1

Probability of microlensing is small. For stars it is $\sim 10^{-5} - 10^{-6}$ per year. For planets it is lower, as $\theta_{\rm E} \sim M^{1/2}$ and $M_{\rm planet}/M_{\rm star} \sim 10^{-4}$

$$\tau = \int dD_L \pi (D_L \theta_{\rm E})^2 n(D_L) \sim \frac{4\pi G M n}{c^2} D^2 = \frac{4\pi G \rho}{c^2} D^2 \sim \frac{G M_{\rm tot}}{D c^2} \sim \frac{v^2}{c^2}$$

Gravitational microlensing - 2

$$\begin{aligned} &(\theta_I - \theta_S)D_S = \alpha(D_S - D_L) \\ &\theta_I(\theta_I - \theta_S) = \frac{4GM\pi_{\rm rel}}{c^2 {\rm AU}} \equiv \theta_{\rm E}^2. \\ &u_{\pm} = \frac{u \pm \sqrt{u^2 + 4}}{2}; \qquad u \equiv \frac{\theta_S}{\theta_{\rm E}} \qquad u_{\pm} \equiv \frac{\theta_{I,\pm}}{\theta_{\rm E}}. \end{aligned}$$

$$A = \frac{u^2 + 2}{u\sqrt{u^2 + 4}} = (1 - Q^{-2})^{-1/2}; \qquad Q \equiv 1 + \frac{u^2}{2}$$

 $A \pm 1$

2

 $u_{\pm} \partial u_{\pm}$

 $A_{\pm} = \pm$

Light curves for point lenses

Finite size lense

Fig. 3.4 Magnification as a function of time in microlensing events for an impact parameters $u_0 = 10^{-n}$ with $n \in \{-1.5, -1, -0.5, 0\}$. The angular source size is $0.1\theta_E$. Note that when the impact parameter is greater than the source radius, the magnification is higher than the corresponding Paczynski curve (*dashed*). When the impact parameter is smaller than the source radius (source passing right behind the lens), the magnification saturates

Light curves form different trajectories

Binary lense

s – separation of components in units of the Einstein radius θ_{E} .

Cold Neptune

Solar system – like system

Jupiter and Saturn analogues. Distances are slightly smaller consistent with smaller mass of the host star.

Dips due to planets

A terrestrial-mass planet in a binary. The planet orbits a red dwarf (1 AU), which orbits another star (15 AU)

Comparison of three methods

1505.06869

Discoveries by different methods

RV = red circles, transit = blue diamonds, imaging = magenta hex., gravlens = black stars, psr time = cyan squares.

Planets in the Solar System are green triangles.

http://exoplanets.org/plots

Microlensing wins in distance!

Extragalactic planets

Free-floating planets detected due to microlensing in X-rays: observations of FeKα from QSOs with Chandra.

Timing

Observations of a periodic process (radio pulsar, binary system, pulsating star) allows to identify a perturber binary MINOR DIP stars at maximum ECLIPSING BINARY VARIABLE - At Minor Minimum 80% of the stars in our galaxy are binary stars Darker star eclipses brighter star MINIMUM MINIMUM

Planets around a radio pulsar

Wolszczan, Frail 1992

PSR B1257+12 Millisecond pulsar

Time delay
$$A \simeq rac{a \sin i}{c} rac{m_p}{M_\star}$$
, $au(t) = -rac{1}{c} \int_0^t v_{
m rad}(t') {
m d}t' \qquad v_{
m rad}(t')$

Three light planets

$$v_{\rm rad}(t) = -c \frac{{
m d} au}{{
m d}t}$$

See 1708.00896, details in 1404.5649

Time delays for KIC 7917485

Direct imaging

Now it is possible to see self-luminous planets (10^{-5} in flux) at >~1 arcsec. For comparison: Solar system analogue at 10 pc gives for Jupiter 10^{-9} in flux and 0.5 arcsec.

Distant planet

Telescope properties

Instrument	Telescope	Wavelength	Ang. resol.	Coronagraph	
		(µm)	(mas)		
ACS	HST	0.2–1.1	20-100	-100 Lyot	
STIS	HST	0.2-0.8	20-60	Lyot	
NAOS-CONICA	VLT	1.1–3.5	30–90 Lyot/FQPM		
VISIR	VLT	8.5-20	200-500	-	
SINFONI-SPIFFI	VLT	1.1–2.45	28-62	-	
SPHERE	VLT	0.95-2.32	24-62	Lyot/APLC/FQPM	
PUEO	CFHT	0.75-2.5	4–140	Lyot	
CIAO	SUBARU	1.1–2.5	30–70	Lyot	
OSIRIS	Keck I	1.0-2.4	20-100	-	
AO-NIRC2	Keck II	0.9–5.0	20-100	Lyot	
ALTAIR-NIRI	Gemini N.	1.1-2.5	30–70	Lyot	
GPI	Gemini S.	0.9–2.4	24-62	Lyot/APLC	
PALM-3000 PHARO	Hale 200"	1.1–2.5	60–140	Lyot/FQPM	
PALM-3000 Project1640	Hale 200"	1.06-1.76	43–71	APLC	
AO–IRCAL	Shane 120"	1.1–2.5	100–150	-	

 Θ =(a/d)(1+e) = = 1 arcsec (a/AU)(d/pc)⁻¹ (1+e)

GPIES survey (300 stars)

Direct imaging: present and future

Ground optical interferometers

Instrument	Interf.	Baseline	Bands	Ang. res.	Spec. res.	Aperture
		(m)		(mas)		
AMBER	VLTI	16-200	J,H,K	0.6–14	35-15,000	3
MIDI	VLTI	16-200	Ν	4-80	20-220	2
PIONIER	VLTI	16-200	H,K	1.5-45	15	4
V2	Keck I	85	H,K,L	2–5	25-1800	2
Nuller	Keck I	85	Ν	10–16	40	2
Mask	Keck	1–10	J to L	13-400	None	2
Classic	CHARA	34-330	H,K	0.5–7	None	2
FLUOR	CHARA	34-330	Κ	0.7–7	None	2
MIRC	CHARA	34–330	J,H	0.4–5	40-400	4
BLINC	MMT	4	Ν	250	None	2
LMIRCAM	LBTI	14–23	L,M	27–72	None	2
NOMIC	LBTI	14–23	Ν	72–200	None	2

Better resolution, but smaller aperture

Coronagraphs

Imaging vs. other methods

Notice, how much better planets are visible in IR. Especially Jupiter at 20-30 micrometers.

Reflected flux

$$F_{\rm p,Vis} = A(\lambda, t)\phi(t)\frac{R_{\rm p}^2}{4a^2}B(\lambda, T_{\rm eff})R_{\star}^2$$

(A – albedo, a – semimajor axis, ϕ - phase)

Young planets are hotter

Planet light identification

IR light

55 Cnc e Mass: 7-8 Earth mass Semi-major axis: 0.016 AU Orbital period: 0.74 days

Temperature 2000-2600K

Astrometric detection

 $4\pi^2 \ \frac{\bar{a}_1^3}{P^2} = G \ \frac{M_P^3}{(M_* + M_P)^2},$

It is easier to detect massive long period planets on eccentric orbits.

Astrometry allows to determine $M_{planet}^3/(M_{star}+M_{planet})^2$

Data on 570 stars with planets are shown. Solar system data is scaled for a star at 10 pc.

1505.06869, see a review in astro-ph/0507115

A former candidate

Came out to be a brown dwarf with 28 M_{iup} .

Now waiting for Gaia data.

Fig. 15.— The barycentric orbit of the L1.5 dwarf DENIS-P J082303.1-491201 caused by a 28 Jupiter mass companion in a 246 day orbit discovered through ground-based astrometry with an optical camera on an 8 m telescope (*Sahlmann et al.*, 2013a).

Few other candidates have been mentioned by Muterspaugh et al. (2010)

Fomalhaut B candidate

Fomalhaut is a binary system (may be even triple). Fomalhaut B (TW PsA) is a red dwarf (K4Ve) on a wide (light year) orbit.

Astrometry of Fomalhaut B suggests a substellar component due to measured acceleration.

Direct search puts a limit $M<2 M_{iup}$.

But situation is still uncertain.

```
Can be searched for with JWST and WFIRST.
```


Astrometry in radio!

Saturn mass planet at ~0.3 AU from M9-dwarf.

VLBA observations.

Gaia and astrometric microlensing

The Astrophysical Journal, Volume 534, Issue 1, pp. 213-226

Planetary statistics

Literature

arxiv:1505.06869 Exoplanet Detection Techniques arxiv:1504.04017 The Next Great Exoplanet Hunt arxiv:1410.4199 The Occurrence and Architecture of Exoplanetary Systems

ås Springer arXiv:1708.00896 Timing by Stellar Pulsations as an Exoplanet Discovery Method arxiv:1706.09849 Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets arxiv:1705.05791 Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life arxiv:1704.07832 Mapping Exoplanets arxiv:1701.05205 Characterizing Exoplanets for Habitability arxiv:1411.1173 Astrometric exoplanet detection with Gaia arxiv:1001.2010 Transits and Occultations arxiv:0904.0965 Astrometric detection of earthlike planets arXiv:0904.1100 Exoplanet search with astrometry arxiv:0902.1761 Detection of extrasolar planets by gravitational microlensing ApJ (2000) Dominik, Sahu Astrometric microlensing arXiv:1810.02691 Microlensing searches for exoplanets

Valerio Bozza Mini Mancin

Methods

of Detecting

Exoplanets

Exoplanetary Science