
Семинар по Солнечной системе

01.12.2020

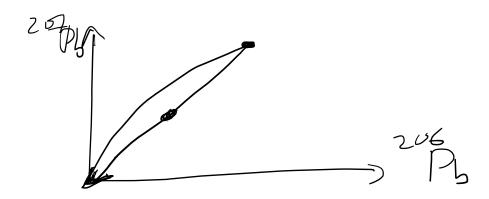
real age

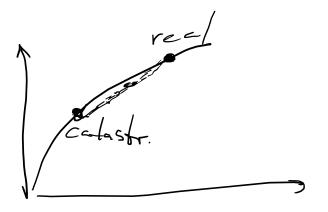
1287

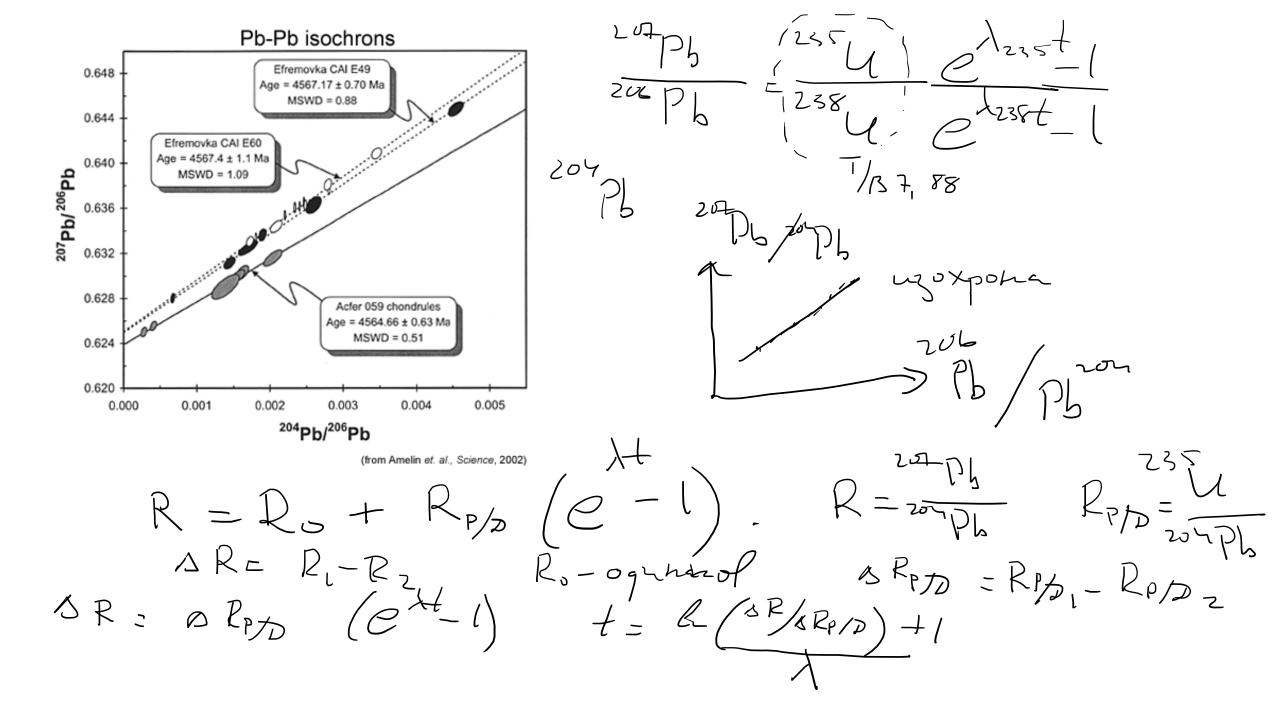
1288

1287

1287

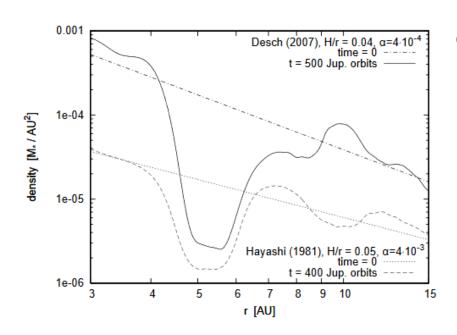

1287


1287


1287

1287

1287



1005. 4147 $N_{\infty} = N_{\infty} + L_{\infty}$ Mprow

1661,5744 Solar System Property Implication Fraction Mass of Sun 0.12 $M_* \ge 1 M_{\odot}$ Solar Metallicity 0.25 $Z \geq Z_{\odot}$ Single Star (not binary) 0.30Giant Planets (successfully formed) 0.20Ordered Planetary Orbits $N \le 10^{4}$ 0.67Supernova Enrichment $N \ge 10^{3}$ 0.50 $10^3 \le N \le 10^4$ Sedna-Producing Encounter 0.16Sufficient Supernova Ejecta $d \leq 0.3 \text{ pc}$ 0.14Solar Nebula Survives Supernova d > 0.1 pc0.95Supernova Ejecta and Survival $0.1 \text{ pc} \le d \le 0.3 \text{ pc}$ 0.09FUV Radiation Affects Solar Nebula $G_0 > 2000$ 0.50Solar Nebula Survives Radiation $G_0 \le 10^4$ 0.80Fe60 = d~0.1:0.3pc Seess. Y.P. < Luv >* (IMF) Fu = fu ~ < Luv>x = 20,8 人= イル> = 至当 $=9 \int u \frac{N_0 < \angle uv >_{x}}{\sqrt{6\pi} R_0^2} \left(\frac{N_0}{N_0}\right)^{1-2d} \qquad R = R_0 \left(\frac{N_0}{N_0}\right)^{d}$ $= \frac{9 \int u N_0 < \angle uv >_{x}}{\sqrt{6\pi} R_0^2} \left(\frac{N_0}{N_0}\right)^{1-2d} \qquad R = R_0 \left(\frac{N_0}{N_0}\right)^{d}$ $= \frac{1}{\sqrt{6\pi} R_0^2} \left(\frac{N_0}{N_0}\right)^{1-2d} \qquad R = R_0 \left(\frac{N_0}{N_0}\right)^{d}$ $= \frac{1}{\sqrt{6\pi} R_0^2} \left(\frac{N_0}{N_0}\right)^{1-2d} \qquad R = R_0 \left(\frac{N_0}{N_0}\right)^{d}$ $= \frac{1}{\sqrt{6\pi} R_0^2} \left(\frac{N_0}{N_0}\right)^{1-2d} \qquad R = R_0 \left(\frac{N_0}{N_0}\right)^{d}$ $r_3 - \frac{6M_{\infty}}{a_s} = \frac{6M_{\star} < r_3}{k_{-1}} = 1000e \left(\frac{T}{1000K}\right)$ N~ 3000 => Tuv ~ 10 144 r

New MMSN model

Based on the Nice model

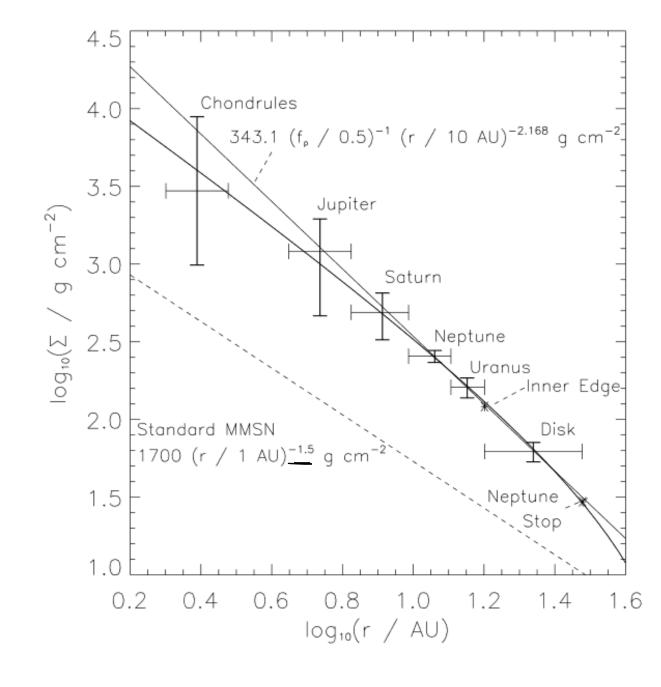
$$M_{\text{aug}} = M_Z f_p^{-1} \left(\frac{\text{gas}}{\text{solids}} \right)$$

Gas/solid = 67 (i.e. solids = 1.5%)

INITIAL SOLAR SYSTEM CONDITIONS

Planet	$\longrightarrow M_{\mathrm{aug}}^{\mathrm{a}}$ (M_{\oplus})	r _{in} (AU)	(AU)	r _{out} (AU)	Σ^{a} (g cm ⁻²)
Jupiter	1747 ± 1075	4.45 ^b	5.45	6.68	546.8
Saturn	1411 ± 470	6.68	8.18	9.70	244.5
Neptune	1032 ± 91	9.70	11.5	12.8	123.2
Uranus	843 ± 124	12.8	14.2	15.9 ^a	77.2
Disk ^c	2353 ± 336	15.9 ^b	22.5	30.0	31.2

Initial positions: Jupiter – 5.45 AU; Saturn – 8.18 AU; Neptune – 11.5 AU; Uranus – 14.2 AU Uranus and Neptune change places during migration!


Surface density

$$\Sigma(r) = 343 \left(\frac{f_p}{0.5}\right)^{-1} \left(\frac{r}{10 \text{ AU}}\right)^{-2.168} \text{ g cm}^{-2}$$

$$\rho_{\text{gas}}(r,0) = 1.93 \times 10^{-11} \left(\frac{f_p}{0.5}\right)^{-1} \left(\frac{r}{10 \text{ AU}}\right)^{-3.4537} \text{ g cm}^{-3}.$$

Steep profile is achieved thanks to photoevaporation of the outer parts of the disc due to influence of a massive star.

Mass partly flows out to compensate losses.

