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Mass AND radius measurements, heating
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Radius vs. mass

M [Mmpller]
0.1 1

Results of modeling.

Old (relaxed) planets.

Planets ages are usually

determined due to

stellar ages (1803.03125, 1804.02214).

Colors correspond to
different fractions
of light elements.
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Light elements contribution

1604.07558
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Results of modeling.

Different slopes

above and below

~100 Earth masses

are due to different
regimes of gas accretion.



Density and mass
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1400 Results of modeling.
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1200 Old (5 Gyrs) planets.

1100
1000
900
800
700
600
500
400
300

A — solid iron-stone
B — solid ice
C — evaporating
D — low-mass planets with large cores,
but with significant fraction of H and He
E — forbidden zone (evaporating)
F — transition to giants
G - giants
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Mass-density. Observations. Heating.
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Radius valley

(%]
o

I

typical

P
I

—
tn

=
G
e
i
=
o
=)
©
i
iy
o
=
i
o

1811.03202

uncert.

30
Orbital period [days]

0.040
0.035
0.030

0.025

Cccurrence

0.020

e

0.015
0.010

Relat

0.005

0.000

Might be related to formation and
internal structure of planets.

Many models exist to explain it.
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One explanation of the radius valley

Blue >45% Ice
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Planet structure

Hotseot Earth / Venus
Mid-oceanic
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Oceanic Continental

Atmosphere crust \\*/ crust

Crust L"P per ;

mantle &
=—_ Mantle
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Even about the Earth we do not know many details of the internal

structure. Data about other planets is very incomplete and
indirect.
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Structure of the Solar system planets
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Earth tem (10%) Venus Jupiter ki 10%) Saturn

total radius 58,232 km

total radius 6371 km total radius 60S2 km | total radius 69,911 km

crust 24 km crust 17 km molecular Hz 17,000 km molecular H2 27,000 km

mantle 2874 km mantle 2807 km  metallic H 26,000 km metallic H 12,700 km

core 3473 km core* 3228 KM rocks + ices 17,500 km rocks + lces 10,700 km
rocky core S500 km rocky core 7600 km

ATMOSPHERE ATMOSPHERE
(78%) Na (97%) coz
(21%) 0 (39%) N

FLUID "ICES"

MOLECULAR Hg + He**

CRUST — ; 2 MOLECULAR Hy
MANTLE ATMOSPHERE He GRADIENT* *  Jupiter onl
(95%) CO, 30 e v
(3%) Nz
** plus trace CH, for
Uranus and Neptune
CORE as METALLIC H
ROCK-ICE MIX "
&
ROCKY CORE
Mercur Mars
b 4 Neptune Uranus
total radius 24338 km total radius 2390 km
crust 35 km crust a2 km total radius 249,622 km total radius 25,559 km
mantle 380 km * core state for Venus mantle 1498 km  molecular Hz | 5600 km molecular Hz 5800 km
core 2024 km and Mars uncertain core* 1850 Kkm rocks + ice + fluid 19,000 km rocks + ice + fluid 19,800 km




What Solar system planets are made of?

Except Jupiter and Saturn
planets are mostly made of
elements heavier than helium.

Even icy-giants — Neptune and Uranus, -
are mainly made not of H+He.

Temestrial Jupiter SotEm Lrarns Meptne  Huipar belt  Oort doud
[a]F=" g = A

1405.3752




Structure of giant planets

—

165179 K *T{"fmmecmar H, (Y~0.23) Except Uranus giant planets might not have solid cores.

\ i - However, there cores are made of heavy elements.

\ 9 ) —
] A ——_135-145K
0300 ar | / 1bar And so often they are called made of rocks.
IIlll
Molecular H,

(Y~0.207?)

__ 7 MolecularH, _—"
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15000-21000 K
40 Mbar Mixed with hydrogen?

Ices + Rocks Mixed with rocks?

core ?

Jupiter Saturn

See 1812.07436 for a recent detailed review.

G000~6500 K 5000~5500 K
~8 Mbar 10~16 Mbar

Uranus Neptune

1405.3752 About structure and formation of Uranus and Neptune see 1909.04891, 2007.10783



Temperature and pressure

in atmospheres of giants

= P
0,007

For Jupiter direct data
are available due to
Galileo probe measurements.
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Hydrogene equation of state
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S o Still, there are important uncertainties
i even for the hydrogen equation of state.

Some regimes have been never measured
in [aboratories.

i"‘l":J metallic

LA AL AL A A

\ \ :
A AN L AN L AN LA

-2 0 2 4 6 8 10
log P [bar]

1405.3752



Hydrogen plus helium mixture

Morales, et al. (2013)
Morales, et al. (2010)

Schouten, et al (1991)
Lorenzen, et al (2011)
Loubeyre, et al (1990)

.

Hydrogen \Eif'nne

100 200 300 400
Pressure (GPa)
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Density and pressure
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Diamond anvil cells

S Diamond cells are used to reach high pressures in laboratory experiments.
CINANN, However, it is not enough, and in many cases we have to base only on
numerical models.
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Diamond cell
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Scheme of the experiment

R lar Diamond Anvil Cell
Perforated egu a Assembly radial X-ray diffraction and laser

d'amond dlamond heating port

bots used to
vary the pressure

beveled washers
ACt as springs to apply _,4‘-:'
the force 3

Diffracted _ Focused

X-ra -
bear)rl1 X-ray beam

Diamond seats

(tungsten carbide)
. W
L]

assembled cell ~ ’

Nt

Re metal gasket DRy

cBN diamond seat
WC diamond seat O wringwasher

http://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/diamond_anvil.html




http://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/diamond_anvil.html

How to press?

1st class lever drive Pin - guide screw drive Screw piston drive

2nd class lever drive Fluid - bellows drive pull - platen drive

six basis ways of providing force in the DAC (Bassett, 1979)




How to heat the matter

Electric current (for lower temperatures)
or laser (for higher temperature).

heater wires

20NN NRNREDS

pressure medium

rhenium gasket

tungsten carbide

Neray transparent  X-oray transparent
seat mirror

LA L A L R L LN

Up to 1300K

Above 1300K
http://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/diamond_anvil.html



Comparison with conditions in the Earth

ACCESSIBLE REGIONS OF Pand T

(Modified from Mao & Hemley, Rev. Min. 37, 1998)

4 7 100 GPa~ 106 atm

L = Laser-heated DAC
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Mass-radius models for planets

Relatively simple model
based on just 8 key elements.

Good results for Solar system planets.

Mass "'MEarth

1401.4738



Mass-radius diagram for exoplanets

1401.4738
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50% H.LO o o
. 100% rock

7 100% Fe

Planet radius, of course, depends on its composition.
Light planets typically do not have extended gas envelopes.
Oppositely, giant planets might hath very thick gas envelopes.

Very often data on mass and radius
can be explained by different combinations of ingredients.

Solid and long-dashed lines (in black) are
for non-irradiated models.

Dash-dotted (red) curves correspond to
irradiated models at 0.045 AU from a Sun.



Theory vs. observations
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Evolution of giant planets
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Planet Interiors

Rock

Exoplanets can be composed of three (or four)

materials: rock (and iron), ice, and gas
Rogers and Seager 2010b; Chambers 2010

http://seagerexoplanets.mit.edu/research.htm

show grid lines
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Three main types of planets

upper mantle

Molecular L50x + solar |

H2,+ He

lower mantle
Metallic H, + He

fluid iron
core

Ices + Rocks
(distinct?) ,
5000 K Iron core
3.64 Mbar
Jupiter Neptune Earth
Gas giants lcy giants Solid planets
H/He H/He+ice+core Si, Mg, Fe, O, C

1312.3323



Kepler-1647b km (%) GJ i1214b

total radius 75,600 km y total radius 6,600 km
mean density 158 g/cc mean density 1.49 g/cc

MOLECULAR
Hs + He

WATER-RICH
INTERIOR

ROCKY CORE

CORE

20

MANTLE

MOLECULAR H, _s0

a0

METALLIC H

S0

ROCK-ICE MIX HIGH-PRESSURE
ICE

ROCKY CORE

HD 1490260b TRAPPIST-If

total radius 52,900 km total radius 18,200 km
mean density 117 g/cc mean density 3.33 g/cc




Thick atmospheres for M>4M__ ..
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Corot-27b. Dense planet

Orbital period 3.6 days.
HAT-P-20 b O Solar-like star

Kepler-39 b

KOI-889 b -
WASP-18 b
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: _— : =
1401.1122 Now the densest is KELT-1b: 23.7+/- 4 gcm. 1808.04533



Kepler-51. Crumbly planets.

Relative flux

Residual
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Residual

KOI-620.02

1401.2885

Solar type star.
Three planets with masses 2-8 M
and low densities: <0.05 g/cm3

earth

Orbital periods 45-130 days.



An extremely low-density
and temperate giant planet

Density <0.1 g/cm3 . . .

Theoretical compositions (Brugger et al., 2017):
50% Mantle + 50% Water
100% Mantle
32.5% Core + 67.5% Mantle (Earth-like)
68% Core + 32% Mantle (Mercury-like)
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Stellar insolation flux [erg.cm 2.s71]
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Inflated hot jupiter

Mass and radius measured together.
Grazing transit.
Density 0.1-0.17 g/cm3
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Superearths. Diversity of properties.

Sizes of Planet Candidates

Totals as of November, 2013
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Sizes of superearths

Predicted sizes of different kinds of planets

Sun-like

Wikipedia

Corot-7b

Typical radii 1-4 of the Earth
l.e., between the Earth and Neptune).

Sometimes low density planets in the range Pure  Silicate Carbon  Pure
lled mini iron planets planets water carbon Pure
are calle mm"NEptunes- planets planets monoxide hydrogen

planets planets




Total Mass (M)

Superearths: mass-radius

Superearths are very numerous planets.
Only those with well-determined
mass and radius are shown.

Radius (Ry)

— "Earth-like"
— Pure iron

Inner cores can consist either of rocks
(and iron) or of ices.

Some of superearths obviously
have thick gas envelopes.
This is a challenge to formation models.
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Superearths models

Sglid: 8 = 8.6 k /B
Dashed: 8 = 8.0 kB
Dotted: v = 6.5 kD
(.01 Mg, H—He
—— 0.1 Mg Hy=He
1.0 M, H,~H

—. Earth-ike core

10
Core Maas (M)

1402.4818

For less massive planets parameters
are mainly determined by the core.

For more massive — by the outer envelope.

Heating can be also important.

Results are shown for planets
with solid earth-type cores.

Radius (Rg)
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1% H,—He
0.1% H,-He
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Earth-like

— 20% H,—He
— 15% H,-He
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— 5% H,—He

— Earth-like




Just add some water

Let us fix the planet mass and change the fraction of ice.

Core mass: 10 My

3 = 8.0 ky/ Here water is added as an ice layer above a solid (rocky) core.

0% H'C Coce Only for lower masses it is possible to distinguish
Earth-Like Caore . 0

(by radius measurements) between pure-ice cores and
pure-rock cores.

Uranus
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0.1
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Internal structure

Density PFure iron
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Under pressure

10 Mg Earth-like Core
= 5.5 ky/B
= B.0 k,/B
8.5 k,/B

Salid: 8 = 5.5 ky/B
Dashed: 8 = 6.0 ky/B
Dotted: 5 = 8.5 ky/B
001 M, H,~He
0.1 M H—He
1.0 M, H,—He
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Wikipedia

Soil and water

Radius vs. mass for different water content

1402.4818
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Stellar metallicity and planets

Parameters of planets strongly correlates with stellar metallicity
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No massive planets
around low-metallicity stars

0 HMP (n: 655)
[ LMP: (n: 127)

Period (days)

-
o
~N

Planet Mass (M)

-02 0.0
Stellar metallicity [Fe/H]

-0.4 -0.2 0.0 ; . 060 10 20 30 40 50 60 70
Stellar metallicity - [Fe/H] - (dex) Number of planets

1903.04937




icity effect

Metall
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Atmospheres




Transits and atmosphere studies

planet thermal
emission and
reflection blocked
during eclipse

starlight filters
through planet
atmosphere
during transit

v

1709.05941



Planet studies during transits

Albedo

* Integrated properties
of the surface (albedo)
* Transmission spectrum

* Emission spectrum
sz(A) Fot(A * Mapping
\ |

Transmission spectrum Emission spectrum

See areview in 1810.04175
Afpl

/

Eclipse

1804.07357



Sensitivity of the method

It is easier to detect the signal from planets
around M-dwarfs due to a smaller stellar radius.
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Planet Mass

10
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Transits and atmospheres

Transit observations in different
wavelengths allow to determine
properties of the planet atmosphere.

HD209458b

Size can be different
in different wavelengths.

=1

=4
3
g
=

In addition, light curve can look
different due to atmospheric dynamics.
Heat redistribution due to strong winds
modifies the flux from the planet.

1.4 L6
Wavelength (microns)

1302.1141
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Obscured by clouds

Cloud Free

Altitude
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Featureless spectrum of GJ 1214b

Relative transit depth (ppm)
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14
Wavelength (um)

Solar
100% H, O

100% CH,
100% H,0
100% CO,

Obscured by clouds.

Hubble space telescope spectrum shows no details.

This is interpreted as the result of the presence
of a thick cloud layer in the outer atmosphere
of the planet.



Phase dependence

Depending on the phase we observe different parts of a disc.

Results of observations correspond to: . - ( “”.““’“.’ ) |

HD 189733b — upper panel;
HD 209458b — lower panel.
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Both planets are hot jupiters.

w
o
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Note, that in the case of HD 209458b planetary disc
IS strongly non-symmetric in terms of the emitted flux.

Relative Flux
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Orbital Phase
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Phase light curves

Eclipse Eclipse

Bright cloud Global winds
reflect light produce non-symmetric
temperature distribution

Relative Flux
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Scanning planetary discs

=2 HD189733b
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Modeling of planets atmospheres

Convection
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Dynamics of outer layers of hot jupiters

meridional
winds

stellar
radiation

convective

1405.3752

day

night

zonal
wirnds

Planet has internal and external heat sources.

This results in violent winds and convection
in the outer gas envelope.



Shift of the hottest point from the noon point

Full Phase Curve

Primary Transit Superrotating winds predicted on Secondary Edipse
tidally locked hot Jupiters, affecting

heat redistribution from the dayside.
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starlight
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warmer cooler

terminator terminator Integrated dayside spectrum

Terminator-integrated spectrum | mMost hot Jupiters show evidence for plsals Loty
affected by asymmetry. an Eastward shifted hotspot.
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Nightside condensation of iron
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Wind on HD 209458

HD209458: CO in Transmission Wind velocity can be directly (!) measured.
The planet is a VERY hot Jupiter.

Wind velocity is ~ 2 km/s
(line is blueshifted by 2 km/s)
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Modeling winds on hot jupiters
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General property:

Strong equatorial wind from the West to the East.




Modeling of HD209458 b
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Atmospheric Remote-sensing Infrared Exoplanet Large-survey

~1-meter telescope. ~2030 launch. ~1000 exoplanets to study.



Exomoons: how to form

Regular satellites
Are formed together with planets
from the circumplanetary disc

~ Irreqular satellites
- Capture of collision




Glant ring system
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Path of star behind rings
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System of 37 rings extending up to 0.6 AU around a stellar companion.

The star is young (16 Myrs), and so, probably, the system of rings is
just forming. Satellites might regulate the shape of the ring system.
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Which planets might have detectable satellites?

To be large respect to the host-planet
the satellite might be irregular.

Systems with many planets
are more favorable.

http://www.freemars.org/jeff/planets/Luna/Luna.htm

Larger planets have larger moons.

Hot jupiters (and neptunes) can
loose planets during migration.

Stability of exomoon orbits
was studied in 2105.12040.

http://minerva.union.edu/parkashv/hotjupiters.html




Modeling satellite formation
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Satellite capture in three-body interaction
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Results of modeling of a satellite capture. The body initially had a companion which was lost during three-body interaction.
This scenario requires a massive planet. Such interactions can happen in the habitable zone.

1408.6164



Detailed modeling of Jupiter satellites

: : M  meridional circulation inside Hill sphere
magnetospheric truncation

/ ula
circumplanetary H/He nebuie

R vy

o
ub Keplerian azimutha) flow

central planet with mass M, OUtward radia figy,

dust dynamics equilibrium: aerodynamic drag = energy gain from radial wind

solid sub-disk supersolar metallicity satellitesimal formation
® ®© ¢ o o

Qe 51
Se ~ 0.1 mm dust settling gravitational collapse satellite growth

2005.08330

gradual accumulation of icy dust
In a vertically-fed decretion disk



Jupiter family formation

satellite embryos
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How to find an exomoon

Potentially, all methods for exoplanets discovery can work.

However, presently methods related to transits seems to be
more favorable:

1. TTV (see 2004.02259)
2. TDV (see 2004.02259)

3. TRV (radius variation, see 2004.02259)

Planet / .

orbit A center of mass 4. Orbital plane changes.
Planet
orbit B

1405.1455



TTV and exomoons

Earth-Moan system
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Joint transits
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ow strong is the effect?
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An example: Jupiter with satellites over the Sun

Jupiter
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Other ways to see a moon

Event 1. Event 2

companion’s shadow on the planet companion transiting
in front of the planet

Event 5:
companion's shadow on the planet
during transit

Event 3. Event 4:
companion eclipsed by the planet companion occulted by the planet

1806.10032



A planet with a moon ...but without a star?

MOA-2011-BLG—-262
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A candidate?

Kepler-1625BI
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Confirmation of the candidate

Transit 2 Transit 4

Light Curve Detrending and Fitting
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Tidal heating

Mars-like moo Earth-like moo i i
Satellites can be heated by tides.
- ;

Effect can be so strong,
that a satellite with an atmosphere
can experience the greenhouse effect.

1408.6164



Planetary magnetospheres

It is argued that magnetic shield
can be important for life.
Magnetosheat s A satellite can “use’” the planetary field.

Incoming

However, if the satellite is too close
to the planet — then tides can heat it up.

St If it is too far — it can be out of the magnetosphere.
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Can JWST see exomoons? =+ .

e ¢
Tl

A satellite might be large (as the Earth)
and warm (also as the Earth, at least).

-
@

Potentially, such satellites can appear
around massive planets far from the star,
where it is easier to see them.

A satellite can be heated by tides.
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