

Young planetary systems

SERGEI POPOV

Planets and discs

putative protoplanets to reproduce disk substructures:

4 kinematic planetary signatures

Modeling and imaging planet formation

Planet-disc interaction

More details with different techniques

Different structures in different light

TW Hya disk

Protoplanetary discs

Dusty discs

Disc is visible edge-on.

HST observations

Disc structure

Discs and stars

Optically thin disc.
Allows to determine dust mass.

$$M_{\mathrm{dust}} = \frac{F_{\mathrm{v}}d^2}{\kappa_{\mathrm{v}}B_{\mathrm{v}}(T_{\mathrm{dust}})},$$

See 1807.09631 about different methods of dust mass determination

$$M_{\rm dust} \propto M_{\rm star}^{1.8}$$
.

Dust in the disc

Observations in different wavelengths allow to probe different parts of the disc and determine dust mass and distribution.

Regions of 80% of emission in each band

80% of dust

Disc mass: gas + dust

1807.09631

Gas mass determined by CO observations (ALMA).

Disc mass vs. star mass

Disc and planet mass correlations with the stellar mass

Young discs

Older discs

Population modeling of protoplanetary discs

Discs with and without massive planets have different relations Luminosity vs. size.

VLT/SPHERE

0.5-2.3 micrometers

Structures in discs

Different discs

Disc evolution

Different wavelengths – different dust

SPHERE – micron grains ALMA – larger grains

ALMA gallery of discs

1812.04040, see also the rest of papers in the serie up to 1812.04049

Disc around Elias 2-27

Spiral structure around Elias 2-27 Obtained by ALMA

The star has mass $\sim 0.5 \, M_{solar}$, but a very massive disc (>0.1 M_{solar}) around.

It is important that at distance >10 AU the disc is transparent for 1.3 mm emission. So, the spiral patter is related to the matter also in the disc midplane.

Gallery of spirals

Another gallery

All disks observed with the SPHERE, GPI, and HiCIAO

Spirals: model and observations

MWC 758

Left: model

Right: VLA+ALMA+SPHERE

Disc mapping for TW Hydra

Residual map in CS line

CS map

TW Hydra

N₂H⁺ visible only if CO is frozen out

HCO+ as a tracer of the water snowline

Water destroys HCO+ in warm gas. ALMA observations allow to probe existence of HCO+.

Different isotopes can be used (HCO+, H¹³CO+, HC¹⁸O+). Protostars observations are presented.

HCO+ is expected to be abundant only in the region where water is frozen out and gaseous CO is available for its formation.

Large size of the snowline is due to accretion bursts in protostellar envelopes.

Protoplanetary disc of HL Tau

140 pc Massive disc Jet Age <1-2 Myrs

Where stars are born

https://public.nrao.edu/AlmaExtras/

More details on the disc of HL Tau

Modeling of the HL Tau disc

Three planets with masses from 0.2 up to 0.55 Jupiter mass

Observations

Modeling

More rings from ALMA

Modeling ring structure. Planets

One planet at 99 au.

- A) Observations
- B) Model. Constant alpha
- C) Model. Varying alpha.

PDS 70: two planets in a disc

PDS 70. The second planet

VLT observations

MUSE (Multi Unit Spectroscopic Explorer)

Halpha image

Properties of (invisible) planets

Name	M_*	r_{gap}	$_{ m width}$	$M_{p,am4}$	$M_{p,am3}$	$M_{p,am2}$	Uncertainty
	(M_{-})	(211)	(4)	(M-)	(M-)	(M-)	$(log_{ro}(M_r))$
	(M_{\odot})	(au)	(Δ)	(M_{Jup})	(M_{Jup})	(M_{Jup})	$(log_{10}(M_p))$
(1)	(2)	(3)	(4)	(11)	(12)	(13)	(14)
AS 209	0.83	9	0.42	1.00, 0.81, 0.37	2.05, 1.66, 0.76	4.18, 3.38, 1.56	$+0.13 +0.14 +0.28 \\ -0.16, -0.17, -0.29$
AS 209	0.83	99	0.31	0.32, 0.18, -	$0.65, \ 0.37, \ -$	$1.32,\ 0.75,\ -$	$^{+0.14}_{-0.17}$, $^{+0.21}_{-0.50}$, $^{-}$
Elias 24	0.78	57	0.32	$0.41,\ 0.19$ $-$	$0.84,\ 0.40,\ -$	$1.72,\ 0.81,\ -$	$^{+0.16}_{-0.14}$, $^{+0.22}_{-0.16}$, $^{-}$
Elias 27	0.49	69	0.18	0.03, 0.02, -	$0.06,\ 0.05,\ -$	$0.12,\ 0.10,\ -$	$^{+0.16}_{-0.14}$, $^{+0.21}_{-0.50}$, $^{-}$
GW Lup*	0.46	74	0.15	0.01, -, -	0.03, -, -	0.06, -, -	$^{+0.14}_{-0.17}$, -, -
HD 142666	1.58	16	0.20	0.15, 0.12, 0.09	$0.30,\ 0.25,\ 0.19$	0.62, 0.50, 0.38	$^{+0.13}_{-0.16}$, $^{+0.14}_{-0.17}$, $^{+0.28}_{-0.29}$
HD 143006	1.78	22	0.62	$9.75,\ 2.35,\ -$	19.91, 4.80, -	40.64, 9.81, -	$^{+0.16}_{-0.14}$, $^{+0.21}_{-0.50}$, $^{-}$
HD 143006	1.78	51	0.22	$0.16,\ 0.14$ $-$	$0.33,\ 0.28,\ -$	$0.67,\ 0.57,\ -$	$^{+0.16}_{-0.14}$, $^{+0.21}_{-0.50}$, $^{-}$
HD 163296	2.04	10	0.24	0.35,0.28,0.19	$0.71,\ 0.58,\ 0.39$	1.46, 1.18, 0.79	+0.13 $+0.14$ $+0.28$ -0.16 , -0.17 , -0.29
HD 163296	2.04	48	0.34	$1.07,\ 0.54,\ -$	2.18, 1.10, -	$4.45,\ 2.24,\ -$	$^{+0.16}_{-0.14}$, $^{+0.21}_{-0.50}$, $^{-}$
HD 163296	2.04	86	0.17	0.07, 0.08, -	$0.14,\ 0.16,\ -$	$0.29,\ 0.34,\ -$	$^{+0.16}_{-0.14}$, $^{+0.21}_{-0.50}$, $^{-}$
SR 4	0.68	11	0.45	1.06, 0.86, 0.38	$2.16,\ 1.75,\ 0.77$	4.41, 3.57, 1.57	+0.13 $+0.14$ $+0.28$ -0.16 , -0.17 , -0.29
DoAr 25*	0.95	98	0.15	(-, 0.10, -)	(0.10, -, -)	$(-\;,\;0.95,\;-)$	-, -, -
DoAr 25	0.95	125	0.08	(0.03, -, -)	- , -, -	- , -, -	-, -, -
Elias 20	0.48	2 5	0.13	-, -, -	(0.05, 0.05, 0.05)	- , -, -	-, -, -
IM Lup	0.89	117	0.13	$(0.09 \; , \; -, \; -)$	(0.09, -, -)	-, - , -	-, -, -
RU Lup	0.63	29	0.14	(0.07, -, -)	(-, 0.07, 0.07)	-,-	-, -, -
Sz 114	0.17	39	0.12	(0.02, 0.02, -)	_, _, _	-, - , -	-, -, -
Sz 129	0.83	41	0.08	(-, 0.03 , -)	(0.03, -, -)	-, - , -	-, -, -

Three values of planet mass for each alpha correspond to different models of dust size.

Disc structure with spirals, etc.

Modeling of kinematic structures (CO maps)

Kinematic detection of a planet HD 97048

Gap + disturbance in the gas flow

Disc structure and emission zones

Structure and processes

Planet and gas velocity in the disc HD 163296

Where planets grow?

To become giant planets have to grow fast as they need also to accrete gas within the lifetime of the gaseous disc.

Fast growth is possible in the region of ice dust.

However, often we see giant planets out of region of ices.
This means – migration.

Protoplanetary and debris discs. Evolution

Photoevaporation

Gas is lost from the disc mainly due to X-ray and UV emission of the central star on the time scale ~few Myrs.

Evolution of the dust mass in discs

Protoplanetary discs

Debris discs

Debris discs

Failed future plans

A major breakthrough could be achieved with the launch of *Spica* in 2032. This was a joint project by ESA and JAXA.

Now ALMA give an important contribution.

In near future – WFIRST (Roman Telescope).

Space Infrared Telescope for Cosmology and Astrophysics (SPICA) 2.5-meter telescope in L2.

Range from 12 up to 230 micrometers.

In 2020 the mission was stopped due to financial constraints.

Two debris disc examples

Hundreds of debris discs are known.

HD107146. ALMA observations

Debris disc sizes are renormalized with luminosity $\sqrt{L_*}$ to co-align snow lines.

Fomalhaut b

115 AU from the star

Is Fomalhaut b a real planet?

A planet or not a planet? This is the question!

Result of a recent collision?

The object is situated in the region where collisions are very probable.

Two bodies with ~100 km size might be enough.

Collision is almost proved

Collision around an A-star

Age 5-10 Myrs. Wide binary (~10 000 AU).

VLT observations. XSHOOTER spectrograph.

Compact (<0.3 AU) debris-like disc without volatile materials (hydrogen, helium – only in absorption) while Ca, Mg, Si, Fe are seen in emission.

May be a result of collision of rocky planets.

CO observations confirm a giant impact

HD 172555, age 23 Myr

ALMA observations

CO is confined to a ring of radius ~7.5 au and width ~3.3 au.

Beta Pictoris

Composite image obtained by two instruments

Beta Pictoris

Age ~10 Myr Distance ~ 9 AU

Young Kuiper belt-like debris disc

HD 115600

110 pc

15 Myrs

1.4 solar mass star

Gemini planet imager

Size of the disc 48 AU

Disc around planetary mass object

OTS44 is one of only four free-floating planets known to have a disc.

Mass ~12 M_{jupiter}

IR excess seen by Spitzer and Herschel

ALMA observations

M_{dust} ~0.07-0.7 M_{Earth}

A brown dwarf is a pair of planets

2MASS J11193254-1137466

Age ~10 Myr 20-30 pc

M ~ 3-5 M_{jupiter} Orbital period ~50-150 yrs 3-5 AU

Protoplanetary discs in a binary system

HK Tau 161 pc

1-4 Myr

386 AU binary

ALMA observations

Statistics of circumstellar discs in binaries

17 binary systems 100-1400 AU ALMA observations

Secondary discs in two cases are brighter than discs around primaries.

Green triangles – primaries;
Squares – secondaries
(dark blue – detected,
light blue – non-detected);
black dots – single stars
from other studies of the Tauris;
grey dods – single non-detections.

A circumbinary protoplanetary discin a polar configuration

Circumbinary discs are often inclined

Circumstellar and circumbinary discs

Direct imaging of planets

Recent survey with direct imaging resulted in an estimate that "few percent of star have a planet 0.5-14 Mjup at 20-300 AU.

HR8799 system and several brown dwarfs were found

HR 8799

Keck II Structure similar to the Solar system, but if expanded by factor 2

Obtaining spectra and atmospheric data

Young star 1RXS J160929.1-210524

Gemini North

HR 8799

Planet in a triple system

Young planet ~16 Myr.
Observed by VLT
Orbit might be unstable.

Circumplanetary discs (mock simulations)

3 Jupiter masses 5 hours of observations Better visible at shorter wavelengths Gap opening is important Planet temperature 4000K (age ~1 Myr) Size of a circumplanetary disc is about ½ of the Hill sphere. Thus, it can be hardly resolved by ALMA, but can be detected. Presently, only upper limits are available (2003.08658).

Dependence on the planet mass

Disc around a planet

ALMA observations.

Planet SR 12 c – 11 Mjup
a~980 AU

SR 12 AB – T Tau binary

Literature

- arxiv:1507.04758 Observations of Solids in Protoplanetary Disks
- arxiv:1703.08560 Circumstellar discs: What will be next?
- arXiv: 1804.08636, 1802.04313, 2110.04319 Debris discs
- arxiv:1602.06523 Resolved observations of transition disks
- arxiv:1607.08239 The International Deep Planet Survey II:
 - The frequency of directly imaged giant exoplanets with stellar mass
- arXiv:1801.07721 Population synthesis of protostellar discs
- arXiv:2001.05007 Observations of Protoplanetary Disk Structures
- arXiv: 2009.04345 Visualising the Kinematics of Planet Formation
- arXiv: 2203.09528 Kinematic structures in disks