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Four epochs of the history of the Universe
H ≡ ȧ

a
where a(t) is a scale factor of an isotropic

homogeneous spatially flat universe (a
Friedmann-Lemâitre-Robertson-Walker background):

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) + small perturbations

The history of the Universe in one line: four main epochs

? −→ DS=⇒FLRWRD=⇒FLRWMD=⇒DS −→ ?

Geometry

|Ḣ | << H2=⇒ H =
1

2t
=⇒ H =

2

3t
=⇒ |Ḣ | << H2

Physics

p ≈ −ρ =⇒ p = ρ/3 =⇒ p � ρ =⇒ p ≈ −ρ
Duration in terms of the number of e-folds ln(afin/ain)

> 60 ∼ 55 7.5 0.5



Principal epochs of the Universe evolution – before

1979

The history of the Universe in one line: two principal epochs

? −→ FLRWRD=⇒FLRWMD −→ ?

Geometry

H =
1

2t
=⇒ H =

2

3t

Physics
p = ρ/3 =⇒ p � ρ



Present matter content of the Universe
In terms of the critical density

ρcrit =
3H2

0

8πG
= 0.920× 10−29

(
H0

70

)2
g/cm3

Ωi = ρi

ρcrit
,

∑
i Ωi = 1

where the Hubble constant H0 = 70± 3 km/s/Mpc
(neglecting spatial curvature - less than 0.5%):

I Baryons (p,n) and leptons (e−) ≈ 5%
No primordial antimatter.

I Photons (γ) 5.0× 10−5

Tγ = (2.72548± 0.00057)K
I Neutrinos (νe , νµ, ντ ) < 0.5%

∑
i

mνi < 0.2 eV,
∑

i

mνi = 46Ων

(
H0

70

)
eV.

I Non-relativistic non-baryonic dark matter ≈ 25%
I Dark energy ≈ 70%



Dark matter
Dark matter and dark energy are seen through gravitational
interaction only – we know the structure of their effective
energy-momentum tensor.

DM - non-relativistic, gravitationally clustered.
DE - relativistic, unclustered.
Definition of their effective EMT – through equations
(conventional).
DM - through the generalized Poisson equation:

4Φ

a2
= 4πG (ρ− ρ0(t)).

Φ(r, t) is measured using the motion of ’test particles’ in it.
a) Stars in galaxies → rotation curves.
b) Galaxies → peculiar velocities.
c) Hot gas in galaxies → X-ray profiles.
d) Photons → gravitational lensing (strong and weak).



Observations: DM is non-relativistic, has a dust-like EMT –
p � ε = ρc2, p > 0, collisionless in the first approximation –
σ/m < 1 cm2/g, and has the same spatial distribution as
visible matter for scales exceeding a few Mpc.

Ground experiments: very weakly interacting with baryonic
matter, σ < 10−43 cm2 for m ∼ (50− 100) GeV.



Dark energy
Two cases where DE shows itself:
1) inflation in the early Universe – primordial DE,
2) present accelerated expansion of the Universe – present DE.

Quantitative and internally self-consistent definition of its
effective EMT - through gravitational field equations
conventionally written in the Einstein form:

1

8πG

(
Rν
µ −

1

2
δνµR

)
=
(
T ν
µ (vis) + T ν

µ (DM) + T ν
µ (DE)

)
,

G = G0 = const - the Newton gravitational constant
measured in laboratory.
In the absence of direct interaction between DM and DE:

T ν
µ (DE);ν = 0 .



Possible forms of DE
I Physical DE.

New non-gravitational field of matter. DE proper place –
in the rhs of gravity equations.

I Geometrical DE.
Modified gravity. DE proper place – in the lhs of gravity
equations.

I Λ - intermediate case.

Observations: T ν
µ (DE) is very close to Λδνµ for the concrete

solution describing our Universe;

< wDE >= −1.03± 0.03

where wDE ≡ pDE/εDE .
wDE > −1 – normal case,
wDE < −1 – phantom case,
wDE ≡ −1 – the exact cosmological constant (”vacuum
energy”).



Four fundamental cosmological constants
One-to-one relation to the four epochs of the history of the
Universe.
A fundamental theory beyond each of these constants.

I Characteristic amplitude of primordial scalar (adiabatic)
perturbations.

< R2(r) >=

∫
PR(k)

k
dk , PR(k) = 2.10×10−9

(
k

k0

)ns−1

k0 = 0.05Mpc−1, ns − 1 = −0.035± 0.004

Theory of initial conditions – inflation. Its simplest
model (1980) predicted the slope of the spectrum relating
it finally to NH = ln kB Tγ

~H0
≈ 67.2:

ns − 1 = − 2

N
where N = NH −O(10) is the number of e-folds from

the end of inflation.



I Baryon to photon ratio.

nb

nγ
= 6.01× 10−10 Ωbh

2

0.0022

(
2.725

Tγ(K)

)3

, h =
H0

100
.

Theory of baryogenesis.
I Baryon to total non-relativistic matter density.

ρb

ρm
= 0.167

Ωb

0.05

0.3

Ωm
.

Theory of dark matter.
I Energy density of present dark energy.

ρDE =
εDE

c2
= 6.44× 10−30 ΩDE

0.7

(
H0

70

)2

g/cm3 ,

G 2~εDE

c7
= 1.25× 10−123 ΩDE

0.7

(
H0

70

)2

.

Theory of present dark energy.



Necessary condition for galaxy formation

√
PR

(
tΛ

teq

)2/3

& 1

It is also necessary for stars, planets and life appearance.
Thus, the four fundamental cosmological constants

A1 = 2.1×10−9, A2 = 6.01×10−10, A3 = 0.167, A4 = 1.25×10−123

should satisfy the inequality(
mp

MPl

)4(
A2

A3

)4
A

3/2
1

A4
& 1

In fact, the left-hand side is equal to 0.46, so it is satisfied
but ”just so”.



Inflation
The inflationary scenario is based on the two cornerstone
independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from the adiabatic vacuum
(no-particle) state for Fourier modes covering all observable
range of scales (and possibly somewhat beyond).

Existing analogies in other areas of physics.
1. The present dark energy.
2. Creation of electrons and positrons in an external elecric
field.



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2R(r)δlm +
2∑

a=1

g (a)(r) e(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

R describes primordial scalar perturbations, g – primordial
tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:

ns(k)− 1 ≡ d lnPR(k)

d ln k
, r(k) ≡ Pg

PR



In fact, metric perturbations hlm are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in R, g).

In particular:

R̂k = Rk i(âk−â†k)+O
(

(âk − â†k)2
)

+...+O(10−100)(âk+â†k)+, , ,

The last term is time dependent, it is affected by physical
decoherence and may become larger, but not as large as the
second term.

Remaining quantum coherence: deterministic correlation
between k and −k modes - shows itself in the appearance of
acoustic oscillations.



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



CMB temperature anisotropy multipoles
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CMB E-mode polarization multipoles
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Two observational parameters of inflation
Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1

H has been discovered (using
the multipole range ` > 40):

< R2(r) >=

∫
PR(k)

k
dk , PR(k) = (2.10± 0.03)·10−9

(
k

k0

)ns−1

k0 = 0.05 Mpc−1, ns − 1 = −0.035± 0.004

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kB Tγ

~H0
≈ 67.2. (note that (1− ns)NH ∼ 2).



Physical scales related to inflation

”Naive” estimate where I use the reduced Planck mass
M̃Pl = (8πG )−1.

I. Curvature scale

H ∼
√
PRM̃Pl ∼ 1014GeV

II. Inflaton mass scale

|minfl | ∼ H
√
|1− ns | ∼ 1013GeV

New range of mass scales significantly less than the GUT scale.



Direct approach: comparison with simple smooth

models
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Combined BICEP2/Keck Array/Planck results
P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)
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The simplest models producing the observed scalar

slope
1. The R + R2 model (Starobinsky, 1980):

L =
f (R)

16πG
, f (R) = R +

R2

6M2

M = 2.6× 10−6

(
55

N

)
MPl ≈ 3.1× 1013 GeV

ns − 1 = − 2

N
≈ −0.036, r =

12

N2
≈ 0.004

N = ln
kf

k
= ln

Tγ
k
−O(10), HdS (N = 55) = 1.4× 1014 GeV

2. The same prediction from a scalar field model with
V (φ) = λφ4

4
at large φ and strong non-minimal coupling to

gravity ξRφ2 with ξ < 0, |ξ| � 1, including the Higgs
inflationary model (Bezrukov and Shaposhnikov, 2008).



The simplest purely geometrical inflationary model

L =
R

16πG
+

N2

288π2PR(k)
R2 + (small rad. corr.)

=
R

16πG
+ 5.1× 108 R2 + (small rad. corr.)

The quantum effect of creation of particles and field
fluctuations works twice in this model:
a) at super-Hubble scales during inflation, to generate
space-time metric fluctuations;
b) at small scales after inflation, to provide scalaron decay into
pairs of matter particles and antiparticles (AS, 1980, 1981).

Weak dependence of the time tr when the radiation dominated
stage begins:

N(k) ≈ NH + ln
a0H0

k
− 1

3
ln
MPl

M
− 1

6
ln(MPltr )



Evolution of the R + R2 model

1. During inflation (H � M):

H =
M2

6
(tf − t), |Ḣ | � H2

.

2. After inflation (H � M):

a(t) ∝ t2/3

(
1 +

2

3Mt
sinM(t − t1)

)



The most effective decay channel: into minimally coupled
scalars with m� M . Then the formula

1√−g
d

dt
(
√−gns) =

R2

576π

(Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252
(1977)) can be used for simplicity, but the full
integral-differential system of equations for the Bogoliubov
αk , βk coefficients and the average EMT was in fact solved in
AS (1981). Scalaron decay into graviton pairs is suppressed
(A. A. Starobinsky, JETP Lett. 34, 438 (1981)).

For this channel of the scalaron decay:

N(k) ≈ NH + ln
a0H0

k
− 5

6
ln
MPl

M



Possible microscopic origins of this phenomenological model.

1. Follow the purely geometrical approach and consider it as
the specific case of the fourth order gravity in 4D

L =
R

16πG
+ AR2 + BCαβγδC

αβγδ + (small rad. corr.)

for which A� 1, A� |B |. Approximate scale (dilaton)
invariance and absence of ghosts in the curvature regime
A−2 � (RR)/M4

P � B−2.

One-loop quantum-gravitational corrections are small (their
imaginary parts are just the predicted spectra of scalar and
tensor perturbations), non-local and qualitatively have the
same structure modulo logarithmic dependence on curvature.



2. Another, completely different way:

consider the R + R2 model as an approximate description of
GR + a non-minimally coupled scalar field with a large
negative coupling ξ (ξconf = 1

6
) in the gravity sector::

L =
R

16πG
− ξRφ2

2
+

1

2
φ,µφ

,µ − V (φ), ξ < 0, |ξ| � 1 .

Geometrization of the scalar:

for a generic family of solutions during inflation and even for
some period of non-linear scalar field oscillations after it, the
scalar kinetic term can be neglected, so

ξRφ = −V ′(φ) +O(|ξ|−1) .

No conformal transformation, we remain in the the physical
(Jordan) frame!



These solutions are the same as for f (R) gravity with

L =
f (R)

16πG
, f (R) = R − ξRφ2(R)

2
− V (φ(R)).

For V (φ) =
λ(φ2−φ2

0)2

4
, this just produces

f (R) = 1
16πG

(
R + R2

6M2

)
with M2 = λ/24πξ2G and

φ2 = |ξ|R/λ.

The same theorem is valid for a multi-component scalar field.

More generally, R2 inflation (with an arbitrary ns , r) serves as
an intermediate dynamical attractor for a large class of
scalar-tensor gravity models.



Inflation in the mixed Higgs-R2 Model

M. He, A. A. Starobinsky and J. Yokoyama, JCAP 1805, 064
(2018).

L =
1

16πG

(
R +

R2

6M2

)
−ξRφ

2

2
+

1

2
φ,µφ

,µ−λφ
4

4
, ξ < 0, |ξ| � 1

In the attractor regime during inflation (and even for some
period after it), we return to the f (R) = R + R2

6M2 model with

the renormalized scalaron mass M → M̃ :

1

M̃2
=

1

M2
+

24πξ2G

λ



Inflation in GR

Inflation in GR with a minimally coupled scalar field with some
potential.

In the absence of spatial curvature and other matter:

H2 =
κ2

3

(
φ̇2

2
+ V (φ)

)

Ḣ = −κ
2

2
φ̇2

φ̈ + 3Hφ̇ + V ′(φ) = 0

where κ2 = 8πG (~ = c = 1).



Reduction to the first order equation

It can be reduced to the first order Hamilton-Jacobi-like
equation for H(φ). From the equation for Ḣ , dH

dφ
= −κ2

2
φ̇.

Inserting this into the equation for H2, we get

2

3κ2

(
dH

dφ

)2

= H2 − κ2

3
V (φ)

Time dependence is determined using the relation

t = −κ
2

2

∫ (
dH

dφ

)−1

dφ

However, during oscillations of φ, H(φ) acquires non-analytic
behaviour of the type const +O(|φ− φ1|3/2) at the points
where φ̇ = 0, and then the correct matching with another
solution is needed.



Inflationary slow-roll dynamics

Slow-roll occurs if: |φ̈| � H |φ̇|, φ̇2 � V , and then |Ḣ | � H2.

Necessary conditions: |V ′| � κV , |V ′′| � κ2V . Then

H2 ≈ κ2V

3
, φ̇ ≈ − V ′

3H
, N ≡ ln

af

a
≈ κ2

∫ φ

φf

V

V ′
dφ

First obtained in A. A. Starobinsky, Sov. Astron. Lett. 4, 82
(1978) in the V = m2φ2

2
case and for a bouncing model.



Quantum generation of perturbations during

inflation
Quantization with the adiabatic vacuum initial condition (in
the tensor case, omitting the polarization tensor):

φ̂ = (2π)−3/2

∫ [
âk φk(η) e−ikr + â†k φ

∗
k e

ikr
]
d3k

where φ stands for ζ, g a correspondingly and φk satisfies the
equation

1

f
(f φk)′′ +

(
k2 − f ′′

f

)
φk = 0, η =

∫
dt

a(t)

For GW: f = a, for scalar perturbations in scalar field driven

inflation in GR: f = aφ̇
H

where, in turn, the background scalar
field satisfies the equation

φ̈ + 3Hφ̇ +
dV

dφ
= 0



How the two basic hypothesis of the inflationary paradigm
work.

I. Inflationary background: t =∞ corresponds to η = 0 and
H(η) ≡ a′

a2 is bounded and slowly decreasing in this limit, so

that f ′′

f
∼ 2

η2 . Then

η → −0 : φk(η)→ φ(k) = const, P(k) =
k3|φ2(k)|

2π2

II. Adiabatic vacuum initial condition:

η → −∞ : φk(η) =
e−ikη

f
√

2k

Combining both conditions:

φk(η) ≈ e−ikη

f
√

2k

(
1− i

kη

)
, a(η) ≈ 1

H(η)|η|



Spectral predictions of the one-field inflationary

scenario in GR
Scalar (adiabatic) perturbations:

Pζ(k) =
H4

k

4π2φ̇2
=

GH4
k

π|Ḣ |k
=

128πG 3V 3
k

3V ′2k

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk). Through this
relation, the number of e-folds from the end of inflation back
in time N(t) transforms to N(k) = ln kf

k
where

kf = a(tf )H(tf ), tf denotes the end of inflation.
The spectral slope

ns(k)− 1 ≡ d lnPζ(k)

d ln k
=

1

κ2

(
2
V ′′k
Vk
− 3

(
V ′k
Vk

)2
)

is small by modulus – confirmed by observations!



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844
(1979)):

Pg (k) =
16GH2

k

π
; ng (k) ≡ d lnPg (k)

d ln k
= − 1

κ2

(
V ′k
Vk

)2

The consistency relation:

r(k) ≡ Pg

Pζ
=

16|Ḣk |
H2

k

= 8|ng (k)|

Tensor perturbations are always suppressed by at least the
factor ∼ 8/N(k) compared to scalar ones. For the present
Hubble scale, N(kH) = (50− 60). Typically, |ng | ≤ |ns − 1|,
so r ≤ 8(1− ns) ∼ 0.3 – confirmed by observations!



Duration of inflation

Duration of inflation was finite inside our past light cone. In
terms of e-folds, difference in its total duration in different
points of space can be seen by the naked eye from a smoothed
CMB temperature anisotropy map.

∆N formalism: ∆ζ(r) = ∆Ntot(r) where

Ntot = ln
(

a(tfin)
a(tin)

)
= Ntot(r) (AS, 1982,1985).

For ` . 50, neglecting the Silk and Doppler effects, as well as
the ISW effect due the presence of dark energy,

∆T (θ, φ)

Tγ
= −1

5
∆ζ(rLSS , θ, φ) = −1

5
∆Ntot(rLSS , θ, φ)

For ∆T
T
∼ 10−5, ∆N ∼ 5× 10−5, and for H ∼ 1014 GeV,

∆t ∼ 5tPl !



Inverse reconstruction of inflationary models in GR
In the slow-roll approximation:

V 3

V ′2
= CPζ(k(t(φ))), C =

12π2

κ6

Changing variables for φ to N(φ) and integrating, we get:

1

V (N)
= − κ4

12π2

∫
dN

Pζ(N)

κφ =

∫
dN

√
d lnV

dN

Here, N � 1 stands both for ln(kf /k) at the present time
and the number of e-folds back in time from the end of
inflation. First derived in H. M. Hodges and G. R. Blumenthal,
Phys. Rev. D 42, 3329 (1990).

The two-parameter family of isospectral slow-roll inflationary
models, but the second parameter shifts the field φ only.



Minimal ”scale-free” reconstruction
Minimal inflationary model reconstruction avoiding
introduction of any new physical scale both during and after
inflation and producing the best fit to the Planck data.

Assumption: the numerical coincidence between 2/NH ∼ 0.04
and 1− ns is not accidental but happens for all 1� N . 60:
Pζ = P0N

2. Then:

V = V0
N

N + N0
= V0 tanh2 κφ

2
√
N0

r =
8N0

N(N + N0)

r ∼ 0.003 for N0 ∼ 1. From the upper limit on r :

N0 <
0.07N2

8− 0.07N

N0 < 57 for N = 57.



Another example: Pζ = P0N
3/2.

V (φ) = V0
φ2 + 2φφ0

(φ + φ0)2

Not bounded from below (of course, in the region where the
slow-roll approximation is not valid anymore). Crosses zero
linearly.

More generally, the two ”aesthetic” assumptions – ”no-scale”
scalar power spectrum and V ∝ φ2n, n = 1, 2... at the
minimum of the potential – lead to
Pζ = P0N

n+1, ns − 1 = −n+1
N

unambiguously. From this, only
n = 1 is permitted by observations. Still an additional
parameter appears due to tensor power spectrum – no
preferred one-parameter model (if the V (φ) ∝ φ2 model is
excluded).



Inflation in f (R) gravity
Purely geometrical realization of inflation.
The simplest model of modified gravity (geometrical primordial
dark energy) considered as a phenomenological macroscopic
theory in the fully non-linear and non-perturbative regime.

S =
1

16πG

∫
f (R)
√−g d4x + Sm

f (R) = R + F (R), R ≡ Rµ
µ

Here f ′′(R) is not identically zero. Usual matter described by
the action Sm is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f (R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) ms ≈ const. Metric variation is
assumed everywhere. Palatini variation leads to a different
theory with a different number of degrees of freedom.



Background FRW equations in f (R) gravity

ds2 = dt2 − a2(t)
(
dx2 + dy 2 + dz2

)
H ≡ ȧ

a
, R = 6(Ḣ + 2H2)

The trace equation (4th order)

3

a3

d

dt

(
a3df

′(R)

dt

)
− Rf ′(R) + 2f (R) = 8πG (ρm − 3pm)

The 0-0 equation (3d order)

3H
df ′(R)

dt
− 3(Ḣ + H2)f ′(R) +

f (R)

2
= 8πGρm



Reduction to the first order equation

In the absence of spatial curvature and ρm = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR

dH
=

(R − 6H2)f ′(R)− f (R)

H(R − 12H2)f ′′(R)

See, e.g. H. Motohashi amd A. A. Starobinsky, Eur. Phys. J.
C 77, 538 (2017), but in the special case of the R + R2

gravity this was found and used already in the original AS
(1980) paper.



Analogues of large-field (chaotic) inflation: F (R) ≈ R2A(R)
for R →∞ with A(R) being a slowly varying function of R ,
namely

|A′(R)| � A(R)

R
, |A′′(R)| � A(R)

R2
.

Analogues of small-field (new) inflation, R ≈ R1:

F ′(R1) =
2F (R1)

R1
, F ′′(R1) ≈ 2F (R1)

R2
1

.

Thus, all inflationary models in f (R) gravity are close to the
simplest one over some range of R .



Perturbation spectra in slow-roll f (R) inflationary

models

Let f (R) = R2 A(R). In the slow-roll approximation
|R̈ | � H |Ṙ |:

PR(k) =
κ2Ak

64π2A′2k R
2
k

, Pg (k) =
κ2

12Akπ2
, κ2 = 8πG

N(k) = −3

2

∫ Rk

Rf

dR
A

A′R2

where the index k means that the quantity is taken at the
moment t = tk of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(tk)H(tk).



Smooth reconstruction of inflation in f (R) gravity

f (R) = R2 A(R)

A = const − κ2

96π2

∫
dN

PR(N)

lnR = const +

∫
dN

√
−2 d lnA

3 dN

The additional assumptions that PR ∝ Nβ and that the
resulting f (R) can be analytically continued to the region of
small R without introducing a new scale, and it has the linear
(Einstein) behaviour there, leads to β = 2 and the R + R2

inflationary model with r = 12
N2 = 3(ns − 1)2 unambiguously.



Conclusions

I At present, cosmology requires the introduction of four
fundamental constants to describe observational data,
additional to those known from laboratory physics.

I One new fundamental cosmological parameter ns − 1 has
been measured recently, but the theory had been able to
predict it more than 30 years before the discovery.

I Regarding the present dark energy:
a) still no statistically significant deviation from an exact
cosmological constant;
b) one constant is sufficient to describe its properties;
c) no more than one new ”coincidence problem”.

I Regarding the primordial dark energy driving inflation in
the early Universe:
a number of inflationary models having only one free
parameter can explain all existing observational data.



I The typical inflationary predictions that |ns − 1| is small
and of the order of N−1

H , and that r does not exceed
∼ 8(1− ns) are confirmed. Typical consequences
following without assuming additional small parameters:
H55 ∼ 1014 GeV, minfl ∼ 1013 GeV.

I Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f (R)) gravity can do it as well.

I From the scalar power spectrum Pζ(k), it is possible to
reconstruct an inflationary model both in the Einstein and
f (R) gravity up to one arbitrary physical constant of
integration.



I In the Einstein gravity, the simplest inflationary models
permitted by observational data are two-parametric, no
preferred quantitative prediction for r , apart from its
parametric dependence on ns − 1, namely, ∼ (ns − 1)2 or
larger.

I In the f (R) gravity, the simplest model is one-parametric
and has the preferred value r = 12

N2 = 3(ns − 1)2.

I Thus, it has sense to search for primordial GW from
inflation at the level r > 10−3!
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