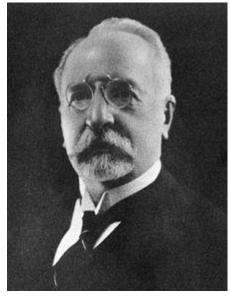


МЕЖЗВЕЗДНАЯ СРЕДА

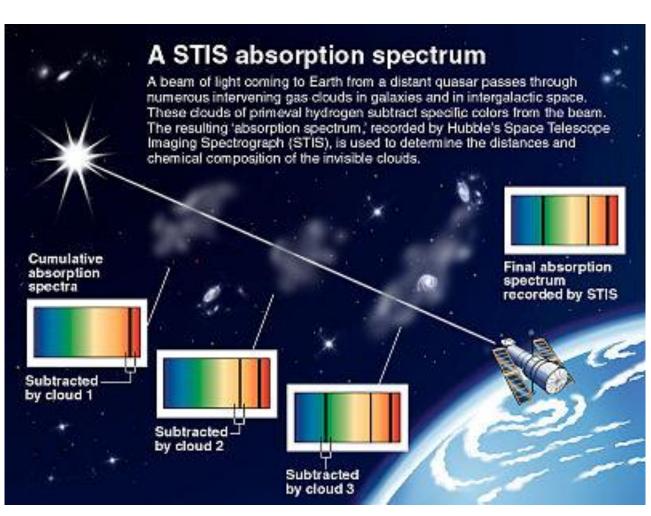
Лекции для магистров ВШЭ

МЕЖЗВЕЗДНАЯ СРЕДА

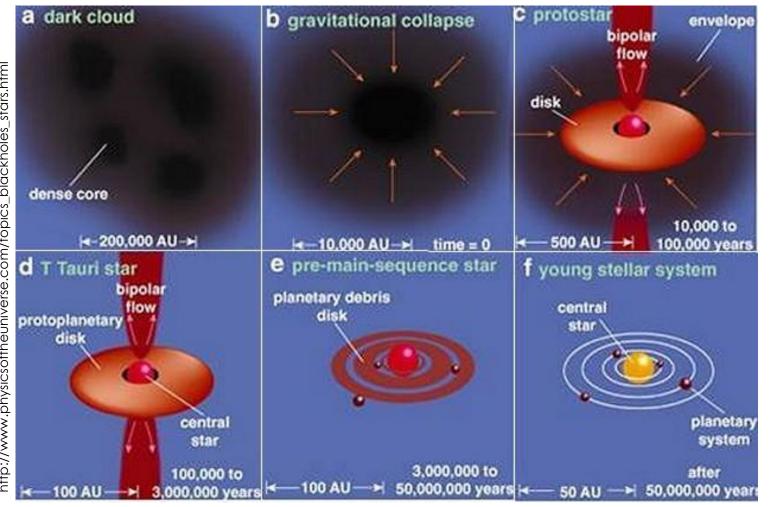
Межзвездная среда концентрируется к плоскости Галактики. Хорошо виден вклад пыли


Хорошо виден вклад пыли в поглощение света звезд.

Газ есть не только в галактическом диске, но в других частях его плотность не достигает больших значений и не начинается формирование новых звезд.



ОТКРЫТИЕ МЕЖЗВЕЗДНОЙ СРЕДЫ


В течение сотен лет считалось, что пространство между звезд совсем пусто. В 1904 году Иоганн Гартман смог получить спектр, который однозначно говорил, что свет звезды частично поглощался «по дороге», т.е.между звездами.

Иоганн Гартман

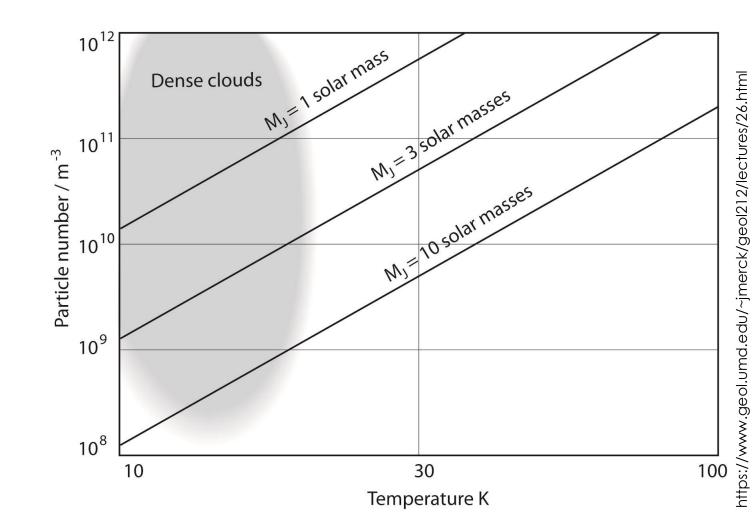
ЭТАПЫ ОБРАЗОВАНИЯ ЗВЕЗДЫ

Образование звезды начинается с постепенного сжатия плотного облака межзвездного газа и пыли.

Как правило, звезды образуются скоплениями и группами.

Весь процесс занимает от НЕСКОЛЬКИХ МИЛЛИОНОВ ДО НЕСКОЛЬКИХ ДЕСЯТКОВ МИЛЛИОНОВ ЛЕТ.

В настоящее время мы наблюдаем объекты на всех стадиях образования звезд и планетных систем.


http://www.physicsoftheuniverse.com/topics_blackholes_stars.html

МАССА ДЖИНСА

Для начала гравитационного сжатия, приводящего к образованию звезды, облако газа и пыли должно быть достаточно плотным и холодным.

Для данной температуры и плотности существует критическая масса – масса Джинса.

$$M_J = \left(\frac{5kT}{Gm}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2}$$

РУКАВА И ЗВЕЗДООБРАЗОВАНИЕ

Hot O and B

H II regions

· stars with

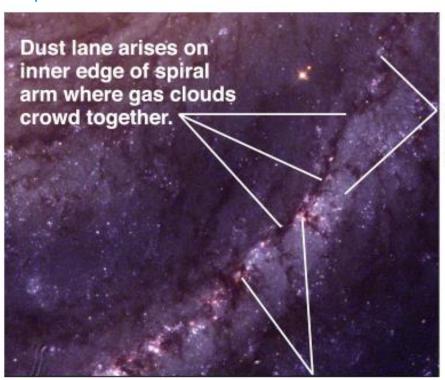
OB

association

Slow motion of

spiral arm

Regions of


star formation

http://frigg.physastro.mnsu.edu

Fast motion of . interstellar gas and

dust - this material

is compressed within the spiral arm

Young blue stars are found on outer edge of spiral arm.

where newly forming blue stars are ionizing gas clouds.

Ionization nebulae arise

ФАЗЫ МЕЖЗВЕЗДНОЙ СРЕДЫ

Component	Fractional volume	Scale height (pc)	Temperature (K)	Density (particles/cm ³)	State of hydrogen	Primary observational techniques
Molecular clouds	< 1%	80	10–20	10 ² –10 ⁶	molecular	Radio and infrared molecular emission and absorption lines
Cold neutral medium (CNM)	1–5%	100–300	50–100	20–50	neutral atomic	H I 21 cm line absorption
Warm neutral medium (WNM)	10–20%	300-400	6000-10000	0.2-0.5	neutral atomic	H I 21 cm line emission
Warm ionized medium (WIM)	20–50%	1000	8000	0.2-0.5	ionized	Hα emission and pulsar dispersion
H II regions	< 1%	70	8000	10 ² –10 ⁴	ionized	Hα emission and pulsar dispersion
Coronal gas Hot ionized medium (HIM)	30–70%	1000–3000	10 ⁶ –10 ⁷	10 ⁻⁴ –10 ⁻²	ionized (metals also highly ionized)	X-ray emission; absorption lines of highly ionized metals, primarily in the ultraviolet

<u>arxiv:1803.02277</u> Межзвездная среда: от молекул до звездообразования

<u>arxiv:1412.5182</u> Физические процессы в межзвездной среде

<u>arxiv:1206.4090</u> Межзвездное поглощение и межзвездная поляризация

<u>arxiv:1104.2949</u> Межзвездная пыль

<u>arxiv:2004.06113</u> Жизненный цикл молекулярного облака

$$2 \underbrace{F_{x} + F_{p}}_{20} = 0 \left(\frac{1}{5} - \frac{1}{5} \right)$$

$$2 \underbrace{N_{3}^{3} E_{T}}_{2} = \frac{3}{5} \underbrace{E_{x}^{2}}_{20} \times \frac{M}{10} = \frac{1}{5} \underbrace{E_{y}^{2}}_{20} \times \frac{1}{5} \underbrace{E_{y}^{2}}$$

 $\frac{1 \cdot Pequo}{\lambda < 1 \cdot m} = 1 - \left(\frac{\omega p}{\omega}\right)^2 \quad \omega_{R} = \sqrt{\frac{\pi e^2 n}{me}} = 5,64.10 \text{ Me}$ $\frac{1 \cdot \left(\omega - l - h x\right)}{k} \quad k = 2 \cdot \frac{\pi}{\lambda} \quad c^2 k^2 = \varepsilon \omega^2 = \omega^2 - \omega_{R}^2 \quad h = \sqrt{\varepsilon}$ $U_{p}L = U/k = C/\sqrt{\xi} = C/n \times C$ $U_{q} = \frac{1}{\sqrt{\chi}} = Cn < C$ $t(\omega) = \int \frac{ds}{s} = \frac{\ell}{c} \frac{ds}{s} + \frac{1}{2c} \int \left(\frac{\omega s}{\omega} \right)^2 ds$ $St(\omega) = \frac{1}{2\omega} \int \frac{\omega_0^2}{\omega^2} ds = \frac{2\pi e^2}{m_e c} \omega^2 \int \frac{ds}{s} =$ 5t, = 4,6 prisec (4,2-A2) DM LDAJ = 4K ne=0,03 cm-3 RM ~ Me.B11 ds

KA(V) CLL. 2. Lk, on, 40 a) horn. nanho hoxpech. NA~ 1ca-3 2v = 5.10-22 NH l= (kn == 3,1.10²) cm 7, kure ~ 1,5 Bog. $B \rightarrow B \rightarrow G 12 \overline{A}$ 1. WONG. (GONDY) $T_{X} = 2 \cdot 10^{-22} \left(\frac{hv}{13,69B} \right) \left(\frac{3}{13,69B} \right)$ $E > 10 \times 9B$ 8.) hozh. zagom 11. £>10K3B Komnt. pacc. Lii E7511 mg

08/2m. oxnang. / (4,7) 202/cm3/c
08/2m. hezp. (4,7) 202/cm3/c Hazrel 1. Your J. (poroub) mes? = hV - Zi 2. Yang Consider. ANK Mec? 3. Koom kynn. 4. MEG. Mgs Dosonomy. + Komni. BE=hv (hv (1-cusb) To = ne of c \ \frac{hv}{me2} U_V dV

Dxx. 1. free-free (rgmm)

Aft ~ ne \(\tau \) \(\tau \ 2. Persons. hv=3, $+\frac{neo^2}{2}$ 3, $>>\frac{meo^2}{2}$ TZLOSK

Arec ~ Ne Ni Zi Te

3. DRYXPOT. Ya. $T = 10^6 + 10^8 \text{K}$ 4. ODJAN ROMA. $\frac{\Delta V}{V} = \frac{S}{E} = \frac{\sqrt{ET}}{meC^2}$ AZ. ~ S 5. Uzn. & numex. 6. hong sa yzger.

 $\Lambda(\neg,T) = \nu^2 \lambda(T)$ nevi-1/2 MYCL= CoTe W6 n= 10: WD TN 100K Pes

HIT
$$N_{ye} = \frac{4}{3} \frac{1}{10} \frac{1}{10$$

 $\frac{7}{5}O_{+}C_{+}^{2}U_{m} = \frac{dE}{dL}$ $= \frac{dE}{dL}$ $= \frac{dE}{dL}$ $= \frac{dE}{dL}$ $= \frac{dE}{dL}$

 $P(t) = A \exp \int i(\omega t + kr) f$ $S_s = \omega t$ $S_s = \omega t$ $S_s = \omega t$ P= KX $C_5^2 = \frac{\sqrt{P}}{\sqrt{P}} = \sqrt{\frac{P}{1}}$ JMy JB > 0 - Korranc Sog grazm. K= 4/3 X=1 Woreph.

$$E_{rot} = \frac{75^2}{2}$$

$$J = TS \sim mRV$$

$$V^2 = \frac{6m}{2^2}$$

$$\frac{4}{3}\pi R^3 \frac{R^2}{8\pi}$$

$$(4)$$

$$\mathcal{L}_{B} = \frac{\frac{4}{3}\pi^{2}\frac{B^{2}}{8\pi}}{6\pi^{2}/R} \sim \left(\frac{\Phi}{\Phi}\right)^{2}$$

$$P \sim B P^{2}$$

P~ M

W = - ENZ R - REA 2 O, (ax (M)) A ST $t_{4} = \left(\frac{1}{50}\right)^{3} + \left(\frac{1}{50}\right)^{3/2} + \left$ H_2 ghas $4 \cdot 10^{-12}$ ope L_2 ghas $4 \cdot 10^{-12}$ ope L_3 L_4 L_5 $L_$ H2 ghas. 7-10 dpz

Teff (Ro) = 400 $=\frac{6m^2}{4\pi p^3oT}=8.10^7S\left(\frac{M}{Mo}\right)$