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Possible candidates for DE apart from Λ
In the dispute between Plato and Democritus, Plato was right
by 70%, and Democritus by 30%.

1. Physical DE: a scalar field with some interaction potential
minimally coupled to gravity. Dubbed quintessence in the case
of DE in the present Universe.
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Scalar field can mimic DE if φ̇2 � V (φ) for a time period
exceeding H−1, and then H2 ≈ 8πG

3
(ρm + V (φ)). For
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m2

φφ
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2
, this requires mφ � H . DE phantom behaviour

is not possible in this case.



2. Geometric DE: a specific form of f (R) gravity Lg = f (R)
2

in
the range of R where df /dR ≈ 2f /R .

3. Mixed DE: a scalar-tensor gravity.
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2
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2
φ,iφ

,i − V (φ) .

In the latter two cases, the effective gravitational constant
depends on R or φ. Also DE phantom behaviour is possible.



Classification of small perturbations on a spatially

flat FLRW background
The synchronous reference system is used.

ds2 = dt2 − a2(t)(δαβ + hαβ)dxαdxβ, α, β = 1, 2, 3.

The spatial dependence e ikr is assumed, k = |k|, index k for
Fourier modes is omitted for brevity.
Types of perturbations:
1) scalar (otherwise dubbed adiabatic)

hβα =
1

3
µ(t) δβα + λ(t)

(
1

3
δβα −

kαk
β

k2

)
;

2) vector

hβα = ν(t)(sαk
β + sβkα), sαk

α = 0 ;

3) tensor (gravitational waves (GW))

hβα = g(t) eβα , e
β
αk

α = eβαkβ = eαα = 0 .



Scalar perturbations
Matter: an ideal barotropic fluid, p = p(ρ), c2

s = dp
dρ

.
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Matter flow is potential: uα = − ikαVsyn

a
, Vsyn = − λ′+µ′

24πGa2(ρ+p)
.

The synchronous reference system does not fix all freedom of
coordinate transformations (gauge freedom). Thus, these
equations always have two gauge solutions:

1)λ = −µ = const, 2)λ = −k2

∫
dη

a
, µ = k2

∫
dη

a
− 3a′

a2
.



Longitudinal gauge

ds2 = (1 + 2Φ) dt2 − (1− 2Ψ) a2(t)(dx2 + dy 2 + dz2).

Valid in the linear order only. Gauge freedom is fixed
completely.

Φ = − 1

2k2
(λ′′ +

a′

a
λ′), Ψ = −1

6
(λ + µ) +

a′

2k2a
λ′ .

For an ideal barotropic fluid, and more generally, if δT β
α = 0

for α 6= β,
Φ = Ψ .

In this case we get the following equation (the generalized
Poisson equation) for the quantity δρ = δρsyn + 3(ρ+ p)a′

a
Vsyn

that represents the comoving density perturbation (the density
perturbation in the reference system where uα = 0):

−k2

a2
Φ = 4πGδρ .



Master equation for Φ
The master equation for one-component fluid (including Λ, if
non-zero):

Φ̈ + (4 + 3c2
s )HΦ̇ +

[
c2
s k

2

a2
+ 3H2

(
c2
s −

p

ρ

)]
Φ = 0 .

Another gauge-invariant quantity (dubbed curvature
perturbation) for which the master equation can be obtained:

R = −ζ =
1

6

[
λ + µ− H

Ḣ
(λ̇ + µ̇)

]
.

The characteristic feature of a gauge-invariant quantity: it is
nullified by gauge solutions.

The characteristic scale LJ = csH
−1, sometimes called the

Jeans length. Two characteristic regimes:
1) the long-wave regime a(t)/k � LJ , csk � aH , cskη � 1;
2) the short-wave regime a(t)/k � LJ , csk � aH , cskη � 1.



The long-wave regime

Early time behaviour for all scales in the case of expansion law
a(t) ∝ tq, q < 1 that happens for p > −ρ/3. Then the
solution for k = 0 can be used in the first approximation.

Modern way of finding solutions for long-wave inhomogeneous
perturbations: variation of the background solution with
respect to its parameters. Solutions without equations.

For K = 0, a = a0 f (t). a0 does not appear in ρ(t). Thus,

µ = 6R = 6
δ ln a(t)

δa0
= const, λ = 0, δρsyn = 0

is one of the solutions in the limit csk � aH (a constant λ
can be put zero using one of the gauge solutions).



Next order in k2 correction:

µ = 6R+ k2µ1(t), λ = k2λ1(t) ,

λ′1 =
2R
a2

∫
a2 dη, µ1 = −2R a′

a2

∫
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,
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(
1− H

a

∫
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)
.

For a→ 0 and η → 0, one of solutions for metric
perturbations is finite (the quasi-isotropic, or (density) growing
mode), while the other diverges (the decaying mode).

It is straightforward to check that these solutions satisfy the
master equation for Φ with k = 0 using the identities for the
background evolution:

Ḣ = −4πG (ρ + p), 1 +
p

ρ
= − 2Ḣ

3H2
, c2

s = −1− Ḧ

3HḢ
.



Vector perturbations

Matter is assumed to be an ideal barotropic fluid.

ν ′′+ 2
a′

a
ν = 0, ν ′ ∝ a−2, ν ∝

∫
dη a−2 =

∫
dt a−3, δρ = 0 .

Since ν = const is a gauge solution, vector perturbations
decay with time and diverge at t → 0 if p = αρ with
α ≤ 1, cs ≤ 1. Time behaviour of ν corresponds to the
conservation of the angular momentum.



Tensor perturbations

g ′′ + 2
a′

a
g ′ + k2g = 0, δρ = δuα = 0 .

The same equation as for a massless scalar field. The
long-wave (super-Hubble, kη � 1) behaviour:

g = g1 + g2

∫
dη a−2 .

Constant (quasi-isotropic) and decaying modes. The
existence of the constant mode follows from the possibility of
arbitrary rescaling of spatial coordinates x , y , z in an arbitrary
background FLRW solution keeping the total spatial volume
fixed.

The short-wave (sub-Hubble) behaviour: g ∝ a−1 exp(ikη).
GW moving with the light velocity and with the amplitude
decreasing due to the Universe expansion (redshift). No
instability.



Quasi-isotropic initial conditions in the early

Universe

From 8 arbitrary functions of k, or r in the coordinate
representation, in the initial conditions for perturbations at the
singularity a→ 0, t → 0, three (one for scalar and two for
tensor perturbations) remains finite and do not destroy
isotropy and homogeneity of the early Universe, while the
other five (one for scalar, two for vector and two for tensor
perturbations) diverge and destroy isotropy and homogeneity.

Thus, if we are sure that the Universe was isotropic and
homogeneous at sufficiently early time in the past, the latter
five functions describing decaying modes of perturbations
should be zero (or very small).



Why we are sure:

1) for L & 10 Mpc - from the observed CMB temperature
isotropy at recombination (z ≈ 1100);
2) for L & 100 pc - from the BBN (z = (109 − 1010)).

The theory - viable models of the inflationary scenario of the
early Universe - explains the absence of decaying modes of
perturbations for L & 1 cm - practically, for all scales.
According to this theory, the Universe was (approximately)
isotropic and homogeneous from the very early time in the
past.

From the remaining 3 functions Φ(r), g1,2(r), only the first one
is responsible for the observed distribution of visible matter in
the Universe. Properties of all these 3 functions are predicted
by any concrete viable inflationary model of the early Universe.





Linear gravitational instability in the matter

dominated Universe
The matter dominated stage began at 1 + z = Ωm

Ωrad
≈ 3540 for

H0 = 70 km/s/Mpc and Ωm = 0.3, where
Ωrad = Ωγ + Ων ≈ 1.68 Ωγ.

1.68 = 1 + 3 · 7

8
·
(

4

11

)4/3

= 1 + 3 · 0.227 .

.
The growing mode in the case of dust (cs = 0)

a(t) ∝ t2/3, ρ =
1

6πGt2
,

Φ = −3

5
R = const, V = Φt, δ ≡ δρ

ρ
= −3k2t2Φ

2a2
∝ t2/3 ,

where V is the velocity potential in the longitudinal gauge.



The typical value of R and Φ is ∼ 10−5 at all cosmological
scales as follows from CMB temperature anisotropy and
polarization. In the absence of CDM, growth of δ beyond this
value would began after recombination at z = zrec ≈ 1100
only, when baryons and photons decouple. Thus, this would
not be sufficient for formation of galaxies, stars, planets, etc.
by the present time.
Indeed, if cs is not very small, then for L� LJ , kcs � aH ,

Φ ∝
√
ρ + p

cs
exp(±ik

∫
cs dη), δ ∝ k2Φ

Ga2ρ
∼ t

a2
.

Sound velocity for adiabatic perturbations (acoustic waves) in
the photon-baryon plasma:
ρ = ρb + ργ, p = 1

3
ργ, ρb = mpnb,

dnb
nb

= −dV
V
, dργ

ργ
= −4

3
dV
V
,

c2
s =

dp

dρ
=

dργ
3(dρb + dργ)

=
1

3
(

1 + 3
4
ρb
ργ

) .



Generalization to the presence of unclustered

component
Cold matter (baryons + CDM) with ρ = ρm(t) ∝ a−3 and
unclustered component (Λ, dark energy, hot dark matter,
radiation) for which L� LJ (or free streaming length in case
of free particles).
Linear quasi-Newtonian hydrodynamics:

4Φ

a2
= 4πGρmδ, δ̇ +

div u

a
= 0, u = −∇V

a
, (au)· = −∇Φ .

Potential flow: measuring of vr determines V and u.
Observations confirm the absence of rotational peculiar
velocities of galaxies for L & 10 Mpc.

δ̈ + 2H δ̇ − 4πGρmδ = 0 .

Home task.
Let the unclustered component has p = 0, so ρm = Ωm

6πGt2 ,
Ωm = const during the matter dominated stage. Find δ(t).



Another application: slow growth of density perturbations in
CDM at all scales during the radiation dominated stage when
ρm � ρrad , a(t) ∝ t1/2.

δ ∝ ln t .

Inversion of the equation for δ gives the reconstruction of
H(z) from δ(z):

H2

H2
0

=
3Ωma

3
0
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dδ
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)−2 ∫ a

0

aδ
dδ
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da =
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(
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dz

)−2 ∫ ∞
z

δ

∣∣∣∣dδdz
∣∣∣∣ dz

1 + z
=

=
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(
dδ
dz

)2
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dδ
dz

)2 − 3Ωm(1 + z)2

(
dδ
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)−2 ∫ z

0

δ

∣∣∣∣dδdz
∣∣∣∣ dz

1 + z
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