Lectures on relativistic gravity and cosmology. Lectures 1-2

Alexei A. Starobinsky

Landau Institute for Theoretical Physics RAS
Faculty of Physics, National Research University "Higher School of Economics"

Moscow, 13.02.2021

Special Theory of Relativity

Special relativity kinematics

Special relativity dynamics

The principle of relativity and the maximal velocity

Inertial reference frames (IRF): they exist and move evenly and rectilinearly with respect to each other.

The principle of relativity

All laws of nature are the same in all inertial reference frames. Hypothesis: there exists a maximal velocity. According to the principle of relativity, it should be the same in all inertial systems. A natural candidate: the light velocity in vacuum:

$$
c=2.99792458 \cdot 10^{10} \mathrm{~cm} / \mathrm{c}
$$

The principle of relativity + the maximal velocity $=$ the Special Theory of Relativity (SR).

Classification of areas in physics

Three independent fundamental dimensional physical constants: c, \hbar, G. All other physical constants can be made dimensionless.
c - relativistic physics.
\hbar - quantum physics.
G - gravitational physics.
c, \hbar - relativistic quantum physics.
c, G - relativistic gravitational physics.
$c, \hbar, G-r e l a t i v i s t i c ~ q u a n t u m ~ g r a v i t a t i o n a l ~ p h y s i c s . ~$

Interval

The space-time interval between two events:
$s_{12}=\left[c^{2}\left(t_{2}-t_{1}\right)^{2}-\left(x_{2}-x_{1}\right)^{2}-\left(y_{2}-y_{1}\right)^{2}-\left(z_{2}-z_{1}\right)^{2}\right]^{1 / 2}$
Its differential form:
$d s^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2}=g_{i k} d x^{i} d x^{k}, i, k=0,1,2,3, x^{0}=c t$
$g_{i k}$ - the metric tensor, $g_{i l} g^{k l}=\delta_{i}^{k}$.
The first conventional choice of sign: space-time signature (+---).
The Einstein rule: $a_{i} b^{i} \equiv g_{i k} a^{i} b^{k} \equiv \sum_{i=0}^{3} a_{i} b^{i}$.
For light propagation: $s_{12}=d s^{2}=0$ in all IFR.

For non-zero intervals: $d s^{2}=a(|\mathbf{V}|) \mathbf{d s} s^{\prime 2}$ due to homogeneity and isotropy of space and homogeneity of time.
Let K, K_{1}, K_{2} - three IRF, and \mathbf{V}_{1} and $\mathbf{V}_{\mathbf{2}}$ - relative velocities of K_{1} and K_{2} with respect to K. Then

$$
d s^{2}=a\left(V_{1}\right) d s_{1}^{2}=a\left(V_{2}\right) d s_{2}^{2}
$$

On the other hand,

$$
d s_{1}^{2}=a\left(V_{12}\right) d s_{2}^{2}
$$

where V_{12} is the modulus o velocity of K_{2} with respect to K_{1}. Thus,

$$
\begin{gathered}
\frac{a\left(V_{1}\right)}{a\left(V_{2}\right)}=a\left(V_{12}\right) \rightarrow a(V) \equiv \text { const }=1 \\
d s^{2}=d s^{\prime 2}, \quad s=s^{\prime}
\end{gathered}
$$

Light cone

$s_{12}^{2}>0$ - a time-like interval, inside the light cone of the event 1 (future light cone for $t_{2}>t_{1}$, past light cone for $t_{2}<t_{1}$). It is possible to find IFR where both events 1 and 2 occur in the same place. In this IFR, the time difference between these events (called the proper time difference) is $\tau=s_{12} / c$.
$s_{12}^{2}<0$ - a space-like interval, outside the light cone of the event 1 . No absolute simultaneity. Depending on the choice of an IRF, the event 2 can be in the past, in the future or simultaneous to the event 1 .

The Lorentz transformation

The Lorentz transformation:

$$
\begin{gathered}
x=\gamma(V)\left(x^{\prime}+V t^{\prime}\right), y=y^{\prime}, z=z^{\prime}, t=\gamma(V)\left(t^{\prime}+\frac{V}{c^{2}} x^{\prime}\right) \\
\gamma(V)=\left(1-\frac{V^{2}}{c^{2}}\right)^{-1 / 2}
\end{gathered}
$$

The Lorentz group $O(1,3)$.
Compare with the Galilean transformation:

$$
x=x^{\prime}+V t^{\prime}, y=y^{\prime}, z=z^{\prime}, t=t^{\prime}
$$

4-velocity and 4-acceleration

4-velocity:

$$
\begin{gathered}
u^{i}=\frac{d x^{i}}{d s}, \quad u_{i} u^{i}=1, \quad u^{i}=(\gamma(v), \gamma(v) \mathbf{v}) \\
d s=c d \tau=c \gamma^{-1}(v) d t
\end{gathered}
$$

3-velocity transformation (IRF K^{\prime} is moving with the velocity V relative to IRF K along the x-axis):
$v_{x}=\frac{v_{x}^{\prime}+V}{1+\frac{v_{x}^{\prime} V}{c^{2}}}, \quad v_{y}=\frac{v_{y}^{\prime}}{\gamma(V)\left(1+\frac{v_{v}^{\prime} V}{c^{2}}\right)}, \quad v_{z}=\frac{v_{z}^{\prime}}{\gamma(V)\left(1+\frac{v_{x}^{\prime} V}{c^{2}}\right)}$
where $\mathbf{v}=\frac{d \mathbf{r}}{d t}, \mathbf{v}^{\prime}=\frac{d \mathbf{r}^{\prime}}{d t}$.
4-acceleration:

$$
w^{i}=\frac{d x^{i}}{d s}=\frac{d^{2} x^{i}}{d s^{2}}, \quad w^{i} u_{i}=0
$$

Action

Action for a free massive particle:

$$
S=-m c \int_{a}^{b} d s
$$

The coefficient is chosen in such a way that in the non-relativistic limit $v \ll c$, this expression would give the correct expression for the Lagrangian equal to the particle kinetic energy (up to a constant):

$$
S=\int_{t_{1}}^{t_{2}} L d t=-m c \int_{t_{1}}^{t_{2}} \frac{d t}{\gamma(v)}, L \approx=-m c^{2}+\frac{m v^{2}}{2}
$$

Equations of motion

The principle of least action (more accurately, the principle of stationary action): $\delta S=0$.
Taking into account that $d s=\sqrt{d x_{i} d x^{i}}$, we get:

$$
\begin{aligned}
\delta S= & -m c \int_{a}^{b} \frac{d x_{i} \delta d x^{i}}{d s}=-m c \int_{a}^{b} u_{i} d \delta x^{i}= \\
& -\left.m c u_{i} \delta x^{i}\right|_{a} ^{b}+m c \int_{a}^{b} \delta x^{i} \frac{d u_{i}}{d s} d s
\end{aligned}
$$

Equations of motion follow from the variation of action with respect to arbitrary virtual trajectories with the fixed end-points $\left(\delta x^{i}\right)_{a}=\left(\delta x^{i}\right)_{b}=0$:

$$
\frac{d u^{i}}{d s}=0
$$

4-momentum

4-momentum is defined as the coordinate derivative of the action estimated on real trajectories with the fixed initial point only $\left(\delta x^{i}\right)_{a}=0$:

$$
\begin{aligned}
& p_{i}=-\frac{\partial S}{\partial x^{i}}=m c u_{i}=\left(\frac{\mathcal{E}}{c},-\mathbf{p}\right) \\
& \mathcal{E}=m \gamma(v) c^{2}, \mathbf{p}=m \gamma(v) \mathbf{v}=\frac{\mathcal{E} \mathbf{v}}{c^{2}} \\
& p^{i} p_{i}=m^{2} c^{2} \rightarrow \mathcal{E}^{2}=p^{2} c^{2}+m^{2} c^{4}
\end{aligned}
$$

In the non-relativistic limit: $\mathcal{E}=m c^{2}+\frac{m v^{2}}{2}$. For the $v=0$, the correct form of the famous Einstein formula follows:

$$
\mathcal{E}=m c^{2}
$$

The massless limit: photons, gravitons.

$$
\mathcal{E}=|\mathbf{p}| c=\hbar \omega=h \nu
$$

Relativistic Hamilton-Jacobi equation

$$
\frac{\partial S}{\partial x_{i}} \frac{\partial S}{\partial x^{i}}=g^{i k} \frac{\partial S}{\partial x^{i}} \frac{\partial S}{\partial x^{k}}=m^{2} c^{2}
$$

Transition to the non-relativistic Hamilton-Jacobi equation: introduce the new action $S^{\prime}=S+m c^{2} t$. For $c \rightarrow \infty$:

$$
\frac{\partial S^{\prime}}{\partial t}+\frac{1}{2 m}\left[\left(\frac{\partial S^{\prime}}{\partial x}\right)^{2}+\left(\frac{\partial S^{\prime}}{\partial y}\right)^{2}+\left(\frac{\partial S^{\prime}}{\partial z}\right)^{2}\right]=0
$$

The massless limit: light in the geometric optics approximation. The eikonal equation:

$$
\frac{\partial \psi}{\partial x_{i}} \frac{\partial \psi}{\partial x^{i}}=0, \quad k_{i}=\frac{p_{i}}{\hbar}=-\frac{\partial \psi}{\partial x^{i}}
$$

Particle interactions

$$
\left(\sum_{n} \mathcal{E}_{n}\right)^{2}-\left(\sum_{n} \mathbf{p}_{n}\right)^{2} c^{2}=\operatorname{inv}
$$

A proton with an energy $\mathcal{E} \gg m_{p} c^{2}$ is moving through thermal radiation with the characteristic photon energy $\varepsilon_{\gamma} \sim k T_{\gamma} \ll \mathcal{E}$.
For which energy the process $p+\gamma \rightarrow p+\pi_{0}\left(n+\pi_{+}\right)$ becomes possible ($T_{\gamma}=2.725 \mathrm{~K}$)?

$$
\begin{gathered}
\left(\mathcal{E}+\varepsilon_{\gamma}\right)^{2}-\left(p c-\varepsilon_{\gamma}\right)^{2}=\left(m_{p}+m_{\pi}\right)^{2} c^{4} \\
\mathcal{E}=\frac{2 m_{p} m_{\pi}+m_{\pi}^{2}}{4 \varepsilon_{\gamma}} c^{4} \sim 10^{20} \mathrm{eV}
\end{gathered}
$$

The Greisen-Zatsepin-Kuzmin effect (1966) resulting in the cutoff (GZK cutoff) in the spectrum of high-energy cosmic rays - observed (2007)!

Testing the Lorentz invariance

1. Strong interaction: particles with up to $10^{21} \mathrm{eV}$ in high-energy cosmic rays.
2. Electromagnetic and weak interactions.
arXiv:1807.06504 - photons and neutrino events from the blazar TXS 0506+056 ($\varepsilon_{\nu} \approx 290 \mathrm{TeV}$).
Photons: $\mathcal{E}_{3} \gtrsim 10^{20} \mathrm{GeV}, \mathcal{E}_{4} \gtrsim 10^{11} \mathrm{GeV}$ (corrections $\frac{p^{3} c^{3}}{\mathcal{E}_{3}}$ and $\frac{p^{4} c^{4}}{\mathcal{E}_{4}^{2}}$ in the dispersion relation for $\left.\mathcal{E}^{2}(p)\right)$.
Neutrinos: $\mathcal{E}_{3} \gtrsim 10^{19} \mathrm{GeV}, \mathcal{E}_{4} \gtrsim 10^{11} \mathrm{GeV}$.
3. Gravitational interaction.

GW170817 + GRB 170817A event. Distance: $40 \pm 10 \mathrm{Mpc}$. X-ray signal: 1.7 s after the peak of the GR one.

$$
\left|\frac{v_{G W}}{c}-1\right|<3 \times 10^{-15}
$$

