Lectures on relativistic gravity and cosmology. Lectures 3-4

Alexei A. Starobinsky

Landau Institute for Theoretical Physics RAS
Faculty of Physics, National Research University "Higher School of Economics"

Moscow, 20.02.2021

Special relativity electrodynamics

Non-inertial reference systems

The equivalence principle

The Riemann tensor

The vacuum Einstein equations with a cosmological constant

The Schwarzschild metric

Electromagnetic interactions

New physical quantity: electric charge e. Quantized, $\pm n$ for free particles (protons, electrons, etc.), $\pm \frac{n}{3}$ for quarks.
The fine structure constant $\alpha=\frac{e^{2}}{\hbar c}$. The 2018 CODATA recommended value
$\alpha^{-1}=137.035999084(21)$.
No change in the Maxwell equations: they are already invariant under the Lorentz transformation.
The 4-vector potential: $A^{i}=(\phi, \mathbf{A})$.
The electromagnetic field tensor: $F_{i k}=A_{k, i}-A_{i, k}$. In the 3D form:

$$
\mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}-\operatorname{grad} \phi, \mathbf{H}=\operatorname{rot} \mathbf{A}
$$

$$
E_{x}=F_{01}, E_{y}=F_{02}, E_{z}=F_{03}, H_{x}=F_{32}, H_{y}=F_{13}, H_{z}=F_{21}
$$

Gauge transformations: $A_{k} \rightarrow A_{k}^{\prime}=A_{k}-\frac{\partial f}{\partial x^{k}}$.

Action and equations for a charge

Action for a point massive charge:

$$
S=-m c \int_{a}^{b} d s-\frac{e}{c} \int_{a}^{b} A_{i} d x^{i}
$$

Equations of motion:

$$
m c \frac{d u^{i}}{d s}=\frac{e}{c} F^{i k} u_{k}
$$

In the 3D form:

$$
\frac{d \mathbf{p}}{d t}=e \mathbf{E}+\frac{e}{c}[\mathbf{v} \mathbf{H}], \quad \frac{d \mathcal{E}}{d t}=e \mathbf{E} \mathbf{v}
$$

where \mathcal{E} and \mathbf{p} are the same as in the absence of electromagnetic field.

Action and equations for the field

Action or the electromagnetic field:

$$
S_{e m}=-\frac{1}{16 \pi c} \int F_{i k} F^{i k} d \Omega, \quad d \Omega=c d t d x d y d z
$$

The Maxwell equations (comma - partial derivative):

$$
\begin{gathered}
F_{i k, l}+F_{l i, k}+F_{k l, i}=0 \\
F_{, k}^{i k}=\frac{4 \pi}{c} j^{i}
\end{gathered}
$$

The electric 4-current $j^{i}=(c \rho, \mathbf{j})$.
Testing the constancy of α.

1. Laboratory measurements (2008):
$\frac{\dot{\alpha}}{\alpha}=(-1.6 \pm 2.3) \times 10^{-17}$ per year.
2. Measurements using remote quasars: $\left|\frac{\Delta \alpha}{\alpha}\right| \lesssim 10^{-5}$ for the last 10-12 billion years.

Non-inertial reference frames (NIRF)

General transformation of coordinates, 4-vectors and 4-tensors:

$$
\begin{gathered}
x^{i}=x^{i}\left(\tilde{x}^{k}\right), d x^{i}=\frac{\partial x^{i}}{\partial \tilde{x}^{k}} d \tilde{x}^{k}, A^{i}=\frac{\partial x^{i}}{\partial \tilde{x}^{k}} \tilde{A}^{k}, A_{i}=\frac{\partial \tilde{x}^{k}}{\partial x^{i}} \tilde{A}_{k} \\
A^{i k}=\frac{\partial x^{i}}{\partial \tilde{x}^{\prime}} \frac{\partial x^{k}}{\partial \tilde{x}^{m}} \tilde{A}_{l m}, A_{i k}=\frac{\partial \tilde{x}^{\prime}}{\partial x^{i}} \frac{\partial \tilde{x}^{m}}{\partial x^{k}} \tilde{A}_{l m}, A^{i}{ }_{k}=\frac{\partial x^{i}}{\partial \tilde{x}^{\prime}} \frac{\partial \tilde{x}^{m}}{\partial x^{k}} \tilde{A}_{m}^{\prime}
\end{gathered}
$$

δ_{k}^{i} - 4-tensor. The metric tensor: $d s^{2}=g_{i k} d x^{i} d x^{k}$. Properties:
$g_{i k}=g_{k i}, g_{i l} g^{k l}=\delta_{k}^{i}, g \equiv \operatorname{Det}\left(g_{i k}\right)<0, A^{i}=g^{i k} A_{k}, A_{i}=$ $g_{i k} A^{k}$.

Transformation of the 4-volume differential:

$$
J=\frac{\partial\left(x^{0}, x^{1}, x^{2}, x^{3}\right)}{\partial\left(\tilde{x}^{0}, \tilde{x}^{1}, \tilde{x}^{2}, \tilde{x}^{3}\right)}=\frac{1}{\sqrt{-g}}, d \tilde{\Omega} \rightarrow \frac{1}{J} d \Omega=\sqrt{-g} d \Omega
$$

An important particular case: transformation to an uniformly rotating reference system:

$$
\begin{gathered}
x=\tilde{x} \cos \Omega t-\tilde{y} \sin \Omega t, y=\tilde{x} \sin \Omega t+\tilde{y} \cos \Omega t, z=\tilde{z} \\
d s^{2}=\left[c^{2}-\Omega^{2}\left(\tilde{x}^{2}+\tilde{y}^{2}\right)\right] d t^{2}-d \tilde{x}^{2}-d \tilde{y}^{2}-d \tilde{z}^{2} \\
+2 \Omega \tilde{y} d \tilde{x} d t-2 \Omega \tilde{x} d \tilde{y} d t
\end{gathered}
$$

Light cylinder: $\tilde{x}^{2}+\tilde{y}^{2}=\frac{c^{2}}{\Omega^{2}}$. The reference system may not be realized by rigid physical bodies beyond it.

Covariant partial derivative

Semicolon - covariant partial derivative. $\frac{\partial a}{\partial x^{\prime}} \equiv a_{, i}=a_{; i}$, but $A_{, k}^{i}$ is not a 4-tensor and $d A^{i}=A^{i}\left(x^{k}+d x^{k}\right)-A^{i}\left(x^{k}\right)$ is not a 4 -vector. To determine the difference of two 4 -vectors, they should be first placed into one point of space-time by using the vector parallel transport operation. The change of a 4 -vector A^{i} after its parallel transport from x^{\prime} to $x^{\prime}+d x^{\prime}$ is given by:

$$
\delta A^{i}=-\Gamma_{k \mid}^{i} A^{k} d x^{\prime}
$$

where $\Gamma_{k l}^{i}$ are the Christoffel symbols (or, the affine connection). By considering the transport of the scalar product, $\delta\left(A_{i} B^{i}\right)=0$, we get $\delta A_{i}=\Gamma_{i j}^{k} A_{k} d x^{\prime}$.

The total covariant change in A^{i} and A_{i} :

$$
\begin{aligned}
& D A^{i}=d A^{i}-\delta A^{i}=\left(\frac{\partial A^{i}}{\partial x^{\prime}}+\Gamma_{k l}^{i} A^{k}\right) d x^{\prime} \\
& D A_{i}=d A_{i}-\delta A_{i}=\left(\frac{\partial A_{i}}{\partial x^{\prime}}-\Gamma_{i l}^{k} A_{k}\right) d x^{\prime} \\
& A_{; I}^{i}=\frac{\partial A^{i}}{\partial x^{\prime}}+\Gamma_{k l}^{i} A^{k}, A_{i ; l}=\frac{\partial A_{i}}{\partial x^{\prime}}-\Gamma_{i l}^{k} A_{k}
\end{aligned}
$$

The assumptions:

1) $g_{i k ;}=0-$ no nonmetricity;
2) $\Gamma_{k l}^{i}=\Gamma_{l k}^{i}-$ no torsion.

Then the Christoffel symbols coincide with the Levi-Civita connection. Let us define $\Gamma_{i, k l}=g_{i m} \Gamma_{k l}^{m}$ (here comma does not mean derivative).

Relation of the Levi-Civita connection to metric

From $g_{i k ; l}=0$:
$\frac{\partial g_{i k}}{\partial x^{\prime}}=\Gamma_{k, i l}+\Gamma_{i, k l}, \frac{\partial g_{i l}}{\partial x^{k}}=\Gamma_{i, k l}+\Gamma_{l, i k},-\frac{\partial g_{k l}}{\partial x^{i}}=-\Gamma_{l, k i}-\Gamma_{k, i l}$

$$
\begin{gathered}
\Gamma_{i, k l}=\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial x^{\prime}}+\frac{\partial g_{i l}}{\partial x^{k}}-\frac{\partial g_{k l}}{\partial x^{i}}\right) \\
\Gamma_{k l}^{i}=\frac{1}{2} g^{i m}\left(\frac{\partial g_{m k}}{\partial x^{\prime}}+\frac{\partial g_{m l}}{\partial x^{k}}-\frac{\partial g_{k l}}{\partial x^{m}}\right)
\end{gathered}
$$

Useful relations:

$$
\begin{gathered}
d g=g g^{i k} d g_{i k}=-g g_{i k} d g^{i k}, \Gamma_{i k}^{k}=\frac{\partial \ln \sqrt{-g}}{\partial x^{i}} \\
A_{; i}^{i}=\frac{1}{\sqrt{-g}} \frac{\partial\left(\sqrt{-g} A^{i}\right)}{\partial x^{i}}, \phi_{; i}^{; i}=\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{-g} g^{i k} \frac{\partial \phi}{\partial x^{k}}\right)
\end{gathered}
$$

The equivalence principle

The gravitational constant (the 2018 CODATA recommended value) $G=6.67430(15) \times 10^{-8} \mathrm{~cm}^{3} \mathrm{~g}^{-1} \mathrm{~s}^{-2}$.
Relativistic effects in gravity becomes important when $\frac{|\Delta \varphi|}{c^{2}}$ is not small compared to unity where φ is the Newtonian gravitational potential. Further in my lectures: $c=1$.
Two forms of the equivalence principle.

1. The weak equivalence principle (WEP): $m_{i}=m_{g, p a s s}$.

 Tested with the accuracy 10^{-14} by now (the MICROSCOPE mission, arXiv:1712.01176).2. The strong equivalence principle (SEP): $m_{g, \text { pass }}=m_{g, \text { act }}$. Tested with the accuracy 3×10^{-6} by now (in the triple stellar system PSR J0337+1715: a neutron star (radio pulsar) and two white dwarfs, arXiv:1807.02059).

Action and equations of motion for a massive

particle

WEP: locally motion in the gravitational field is indistinguishable from that in a NIRF. But now we don't assume that the interval $d s$ can be globally transformed to its form in the Minkowski space-time. Locally, it is always possible. Moreover, locally all the Christoffel symbols can be made zero using the local coordinate transformation $\tilde{x}^{i}=x^{i}+\frac{1}{2}\left(\Gamma_{k l}^{i}\right)_{0} x^{k} x^{\prime}$ - the local IRF.
The action has the same form as in Special Relativity:

$$
S=-m c \int_{a}^{b} d s
$$

Equations of motion:

$$
\frac{D u^{i}}{d s} \equiv \frac{d u^{i}}{d s}+\Gamma_{k l}^{i} u^{k} u^{s}=0
$$

The Hamilton-Jacobi equation has the same form, too:

$$
g^{i k} \frac{\partial S}{\partial x^{i}} \frac{\partial S}{\partial x^{k}}=m^{2} c^{2}
$$

The limit $m=0$ gives the eikonal equation in GR for the motion of light in the geometric optics approximation:

$$
g^{i k} \frac{\partial \psi}{\partial x^{i}} \frac{\partial \psi}{\partial x^{k}}=0
$$

Transition to the non-relativitic Newton gravity:

$$
\begin{aligned}
L= & -m c^{2}+\frac{m v^{2}}{2}-m \varphi \rightarrow d s=\left(1-\frac{v^{2}}{2}+\varphi\right) d t \rightarrow \\
& \rightarrow d s^{2}=(1+2 \varphi) d t^{2}-d \mathbf{r}^{2} \rightarrow g_{00}=1+2 \varphi
\end{aligned}
$$

The Riemann tensor

The new effect appearing in curved space-time: a 4-vector changes after its parallel transport along a closed loop
$\Delta A_{k}=\frac{1}{2} R^{i}{ }_{k l m} A_{i} \Delta f^{\prime m}$.
An equivalent way to introduce the Riemann tensor (the second conventional choice of sign):

$$
\begin{gathered}
A_{i ; k ; l}-A_{i ; l ; k}=A_{m} R_{i k l}^{m} \\
R_{k l m}^{i}=\frac{\partial \Gamma_{k m}^{i}}{\partial x^{\prime}}-\frac{\partial \Gamma_{k l}^{i}}{\partial x^{m}}+\Gamma_{n l}^{i} \Gamma_{k m}^{n}-\Gamma_{n m}^{i} \Gamma_{k l}^{n}
\end{gathered}
$$

Properties of the Riemann tensor:

1. $R_{i k l m}=-R_{k i l m}=-R_{i k m l}=R_{l m i k}$.
2. $R_{i k l m}+R_{i m k l}+R_{i l m k}=0$.
3. $R_{i k l ; m}^{n}+R_{i m k ; l}^{n}+R_{i l m ; k}^{n}=0$ - the Bianchi identity.

The Ricci tensor and the gravitational field action

The Ricci tensor is defined as (the third conventional choice of sign):

$$
\begin{gathered}
R_{k}^{i}=R_{i m k}^{m} \\
R_{i k}=R_{k i}, \quad R_{i ; k}^{k}=\frac{1}{2} R_{, i}
\end{gathered}
$$

The action for the gravitational field:

$$
S_{g}=-\frac{1}{16 \pi G} \int(R+2 \Lambda) \sqrt{-g} d \Omega
$$

The action can be represented in a not generally covariant form containing squares of the first derivatives of the metric tensor using the identity

$$
\sqrt{-g} R=\sqrt{-g} g^{i k}\left(\Gamma_{i l}^{m} \Gamma_{k m}^{\prime}-\Gamma_{i k}^{\prime} \Gamma_{l m}^{m}\right)+\frac{\partial\left(\sqrt{-g} w^{i}\right)}{\partial x^{i}}
$$

The vacuum Einstein equations with a

 cosmological constant$$
\delta S_{g} / \delta g^{i k}=0
$$

The useful relation $\delta \sqrt{-g}=-\frac{1}{2 \sqrt{-g}} \delta g=-\frac{1}{2} \sqrt{-g} g_{i k} \delta g^{i k}$.
$(-16 \pi G) \delta S_{g}=$
$\int\left(R_{i k}-\frac{1}{2} g_{i k}(R+2 \Lambda)\right) \delta g^{i k} \sqrt{-g} d \Omega+\int g^{i k} \delta R_{i k} \sqrt{-g} d \Omega$
It can be shown that the last term in the integrand is the total derivative:

$$
\sqrt{-g} g^{i k} \delta R_{i k}=\frac{\partial}{\partial x^{\prime}}\left(\sqrt{-g} v^{\prime}\right)
$$

In the local IRF where all $\Gamma_{k l}^{i}=0, v^{\prime}=g^{i k} \delta \Gamma_{i k}^{\prime}-g^{i l} \delta \Gamma_{i k}^{k}$.
The vacuum Einstein equations with a cosmological constant

$$
R_{i k}-\frac{1}{2} g_{i k} R=g_{i k} \Lambda
$$

The differentiation $(; k)$ gives $0=0$ due to the Bianchi identity.

Spherically symmetric vacuum gravitational field

 The most general spherically symmetric space-time metric:$$
d s^{2}=A(t, r) d t^{2}+B(t, r) d t d r-C(t, r) d r^{2}-D(t, r)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Remaining freedom of coordinate transformations:

$$
r=f_{1}(\tilde{r}, \tilde{t}), t=f_{2}(\tilde{r}, \tilde{t})
$$

$$
d s^{2}=e^{\nu} d t^{2}-e^{\lambda} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

$$
\begin{gathered}
\Gamma_{11}^{1}=\frac{\lambda^{\prime}}{2}, \Gamma_{10}^{0}=\frac{\nu^{\prime}}{2}, \Gamma_{00}^{1}=\frac{\nu^{\prime}}{2} e^{\nu-\lambda} \\
\Gamma_{00}^{0}=\frac{\dot{\nu}}{2}, \Gamma_{10}^{1}=\frac{\dot{\lambda}}{2}, \Gamma_{11}^{0}=\frac{\dot{\lambda}}{2} e^{\lambda-\nu} \\
\Gamma_{12}^{2}=\Gamma_{13}^{3}=\frac{1}{r}, \Gamma_{22}^{1}=-r e^{-\lambda}, \Gamma_{33}^{1}=-r e^{-\lambda} \sin ^{2} \theta \\
\Gamma_{23}^{3}=\cot \theta, \Gamma_{33}^{2}=-\sin \theta \cos \theta
\end{gathered}
$$

$$
\begin{gathered}
\Lambda=0, R_{1}^{1}-\frac{1}{2} R=-e^{-\lambda}\left(\frac{\nu^{\prime}}{r}+\frac{1}{r^{2}}\right)+\frac{1}{r^{2}}=0 \\
R_{0}^{0}-\frac{1}{2} R=-e^{-\lambda}\left(-\frac{\lambda^{\prime}}{r}+\frac{1}{r^{2}}\right)+\frac{1}{r^{2}}=0, R_{0}^{1}=-e^{-\lambda} \frac{\dot{\lambda}}{r}=0
\end{gathered}
$$

From the last equation: $\lambda=\lambda(r)$. The difference of the second and third equations gives $\lambda+\nu=f(t) . f(t)$ can be made zero by using the remaining possible transformation of time $t=f_{3}(\tilde{t})$. Thus, spherically symmetric vacuum gravitational field appears to be static (for the range of r for which it has sense). Then integration of the second equation gives $e^{-\lambda}=e^{\nu}=1-\frac{r_{g}}{r}, r_{g}=2 G M$.
The Schwarzschild metric describing the outer region of a non-rotating black hole:

$$
d s^{2}=\left(1-\frac{r_{g}}{r}\right) d t^{2}-\frac{d r^{2}}{1-\frac{r_{g}}{r}}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Space-time remains regular at $r=r_{g}$.

