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General properties of the Einstein equations

Gravitational field far away from bodies

Gravitational waves

Emission of gravitational waves



Number of equations and their structure

Rik −
1

2
gikR = gikΛ + 8πGTik .

10 equations.

1. Due to the Bianchi identity Rk
i ;k = 0, covariant

differentiation with summation gives T k
i ;k = 0.

The equations for gravitational field already contain dynamical
equations for matter in themselves.
2. No second time derivatives in (0− 0) and (0−α) equations
(α = 1, 2, 3).
3. No second time derivatives of g00 and g0α in all equations.

Number of ’physically different’ variables in gik : 10− 4 = 6.
The synchronous reference system: g00 = 1, g0α = 0.
For a barotropic fluid or gas: Tik = (ρ+ p) uiuk − pgik , 4 more
variables: ρ, ui . The equations of state p = p(ρ) have to be
added separately.



Total active gravitational mass

For the spherically symmetric case (Λ = 0)

R0
0 −

1

2
R = −e−λ

(
−λ

′

r
+

1

r 2

)
+

1

r 2
= 8πGT 0

0 ,

λ = − ln

(
1− 8πG

r

∫ r

0

T 0
0 r

2 dr

)
Outside the body (T 0

0 = 0 for r > r0), λ = − ln
(
1− 2GM

r

)
.

Thus,

M = 4π

∫ r0

0

T 0
0 r

2 dr

Difference between 4πr 2 dr and dV = 4πr 2eλ/2dr - the
gravitational mass defect.



Gravitational field far away from bodies

gik = ηik + hik , ψ
k
i = hki −

1

2
δki

The Lorentz gauge:
∂ψk

i

∂xk
= 0. Then

Rik = −1

2
ηik

∂2hik
∂x i∂xk

= −1

2
�hik , � =

∂2

∂t2
−4

.

The static case, order r−1.

h
(1)
00 = − rg

r
, h

(1)
αβ = − rg

r
δαβ, h

(1)
0α = 0

They are determined from the comparison with the
Schwarzschild solution re-written in terms of the Cartesian

coordinates x , y , z . Let r = ρ
(

1 + rg
4ρ

)2
and

ρ2 = x2 + y 2 + z2.



ds2 =

(
1− rg

4ρ

)2
(

1 + rg
4ρ

)2 dt2 − (1 +
rg
4ρ

)4

(dx2 + dy 2 + dz2)

As a result:

ds2 = (1 + 2ϕ) dt2 − (1− 2ϕ)(dx2 + dy 2 + dz2),

where ϕ is the Newtonian gravitational potential.

In the next order r−2 (∝ c−3 in usual units)

h
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1

2

( rg
r

)2
, h

(2)
αβ =

3

8

( rg
r

)2
δαβ, h

(2)
0α = −2GLαβ

nβ
r 2

where Lαβ is the total angular momentum 4-tensor.



The Tolman formula for the total mass

Another expression for the total mass in the stationary case -
the Tolman formula.

R0
0 =

1√
−g

∂

∂xα
(√
−gg i0Γα0i

)
Integrating over the 3-space, using the Gauss theorem and the
formula for a metric far away from bodies at the remote
2-sphere, we get: ∫

R0
0

√
−g dV = 2πrg

M =

∫
(T 0

0 − T 1
1 − T 2

2 − T 3
3 )
√
−g dV



Weak gravitational waves (GW) in flat space-time

In the Lorentz gauge ψk
i ,k = 0,

�hik = 0.

In flat space-time, GW propagate with the velocity of light.
Recently confirmed by the observation of the GW170817 +
GRB 170817A event - merging of two neutron stars at the
distance 40± 10 Mpc. X-ray signal: 1.7 s after the peak of
the GR one.

|vGW − 1| < 3× 10−15

The Lorentz gauge still does not fix the reference system
unambiguously. The remaining freedom of coordinate
transformations: x̃ i = x i + ξi , �ξi = 0.



Consider a plane gravitational wave moving right along the
x1 = x axis. hki are functions of t − x . From the Lorentz
gauge condition: ψ̇1

i = ψ̇0
i .

ψ1
1 = ψ0

1, ψ
1
2 = ψ0

2, ψ
1
3 = ψ0

3, ψ
1
0 = ψ0

0.

Additional transformation: x̃ i = x i + ξi(t − x). Used to make

ψ0
1 = ψ0

2 = ψ0
3 = ψ2

2 + ψ3
3 = 0.

Then ψ1
1 = ψ1

2 = ψ1
3 = ψ0

0 = ψi
i = 0 and ψk

i = hki .
Remaining non-zero components are h22 = −h33 and h23.
Thus, GW are transverse, traceless and have two polarization
states. They have two degrees of freedom, and initial
conditions for vacuum gravity at a space-like Cauchy
hypersurface are given by 4 arbitrary functions of spatial
coordinates. In the presence of a barotropic matter, 4 more
arbitrary functions (energy density and spatial velocity) appear.



Weak high frequency GW in curved vacuum

space-time

gik = g
(0)
ik + hik

Weak: |hki | � 1.

High frequency: ω � L−1R = (R
(0)
iklmR

iklm(0))1/4 where R
(0)
iklm is

the background Riemann tensor, so that |Rk(1)
i | � |Rk(0)

i |.

Γ
i(1)
kl =

1

2
(hil ;k + hik;l − h ;i

kl ),

R
(1)
ik =

1

2
(hli ;k;l + hlk;i ;l − h ;l

ik ;l − h;i ;k) ≈ 0.

Imposing the generally covariant Lorentz gauge hki ;k = 1
2
h,i

and using the condition ωLR � 1, we get

h ;l
ik ;l = 0.



The Isaacson EMT of GW
The remaining freedom of coordinate transformations:
x̃ i = x i + ξi , ξi ;k;k = 0. Can be used to make h ≡ hii = 0, then
hki ;k = 0. After that the remaining admissible transformations
should satisfy ξi;i = 0.

Let us average the space-time over scales much more than
ω−1 but much less than LR . Then

< R
(2)
ik >≈ −1

4
< hnm,ih

m
n,k >

.
R

(0)
ik ≈ − < R

(2)
ik >= 8πGT

(GW )
ik ,

T
(GW )
ik =

1

32πG
< hnm,ih

m
n,k > .

For a plane GW in flat space-time considered previously,

T 01(GW ) =
1

16πG

[
ḣ223 +

1

4
(ḣ22 − ḣ33)2

]
.



Emission of GW by non-relativistic matter

1

2
�ψi

k = −8πGτ ki .

From the Lorentz gauge ψk
i ,k = 0, it follows that τ ki ,k = 0.

Solution in the form of retarded potentials:

ψk
i = −4G

∫
(τ ki )t−R

dV

R
.

Assuming that all matter velocities are small compared to the
light velocity, we can write:

ψk
i = −4G

R0

∫
(τ ki )t−R0 dV .



Calculation of the integral.

∂ταγ
∂xγ

=
∂τ0γ
∂x0

,
∂τ0γ
∂xγ

=
∂τ00
∂x0

.

Multiplying the first equation by xβ, integrating over the
volume and symmetrizing over α, β, we get∫

ταβ dV = −1

2

∂

∂x0

∫
(τα0x

β + τβ0x
α) dV .

Multiplication of the second equation by xαxβ and integration
over volume leads to

∂

∂x0

∫
τ00x

αxβ dV = −
∫

(τα0x
β + τβ0x

α) dV .

Combining these expression, we get∫
ταβ dV =

1

2

(
∂

∂x0

)2 ∫
τ00x

αxβ dV .



Since τ00 = ρ,

ψαβ = −2G

R0

(
∂

∂t

)2 ∫
ρxαxβ dV .

Let us introduce the quadrupole moment of mass distribution:

Dαβ =

∫
ρ (3xαxβ − r 2δαβ) dV .

At large distances from the source and locally, the GW can be
considered as a plane one. Along the x1 axis,

h23 = − 2G

3R0
D̈23, h22 − h33 = − 2G

3R0
(D̈22 − D̈33).

The energy flux to the x1 direction is

T 01 =
G

36πR2
0

[( ...
D22 −

...
D33

2

)2

+
...
D

2
23

]
.



The polarization tensor eαβ. Properties:

eαα = 0, eαβnβ = 0, eαβeαβ = 1.

The intensity of radiation into the solid angle do (restoring c):

dI =
G

72πc5
(
...
Dαβeαβ)2 do.

Summing over two polarizations of GW, we get:

dI =
G

36πc5

[
1

4
(
...
Dαβnαnβ)2 +

1

2

...
D

2
αβ −

...
Dαβ

...
Dαγnβnγ

]
do.

The total GW radiation flux I (luminosity L in GW):

I =
dE
dt

=
G

45c5
...
D

2
αβ

The limiting luminosity in GR: L ∼ c5

G
= 3.63 · 1059 erg/s

(compare to L� = 3.83 · 1033 erg/s).
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