Isolated BHs

Early works

«Halos around black holes» Soviet Astronomy – Astronom. Zhurn (1971)

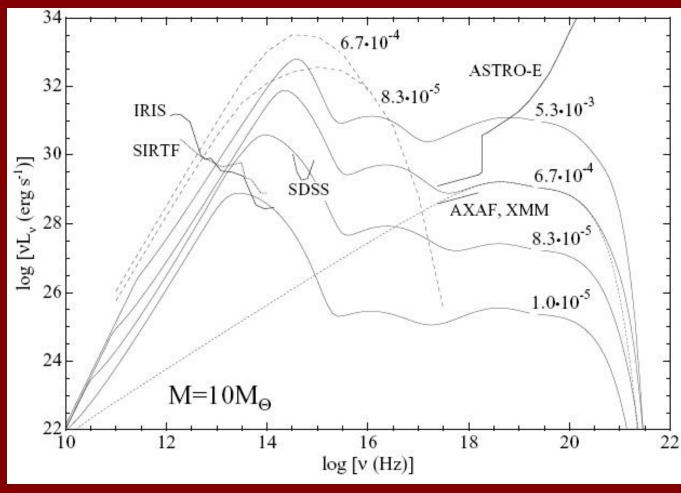
In this paper accretion onto isolated BHs from the ISM was studied for different BH masses (including intermediate).

Dynamics of accretion, the role of turbulence, the role of magnetic fields in the ISM, spectrum.

Synchrotron radiation of magnetized plasma, which is heated during accretion up to 10¹² K (here the temperature means the average energy of electrons motion perpendicular to magnetic field lines).

(Development of this approach see in astro-ph/0403649)

Victorij Shvartsman

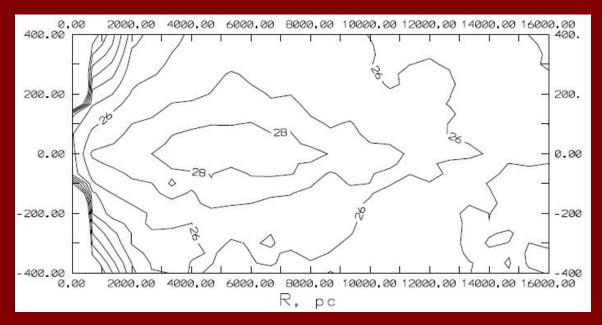

Basic formulae

(Fujita et al. 1998)

$$\begin{split} \dot{M} &\sim \pi r_{\rm cap}^2 \rho_{\rm gas} V \\ &\approx 7.4 \times 10^{13} \ {\rm g \ s^{-1}} \left(\frac{M}{M_{\odot}}\right)^2 \left(\frac{n_{\rm gas}}{10^2 \ {\rm cm^{-3}}}\right) \left(\frac{V}{10 \ {\rm km \ s^{-1}}}\right)^{-3} \\ &\approx 5.3 \times 10^{-4} \dot{M}_{\rm Edd} \left(\frac{M}{M_{\odot}}\right) \left(\frac{n_{\rm gas}}{10^2 \ {\rm cm^{-3}}}\right) \left(\frac{V}{10 \ {\rm km \ s^{-1}}}\right)^{-3} \\ v_{\rm turb} \sim 1.1 \ (r/1 \ {\rm pc})^{0.38} \ {\rm km \ s^{-1}}, \quad \text{Velocity of turbulent motions} \end{split}$$
$$V \lesssim 52 \ \left(r_g/r_o f_l^2\right)^{0.18} (M/M_{\odot})^{0.14} \ {\rm km \ s^{-1}} \\ \text{The critical velocity corresponding to an accretion disc formation.} \end{split}$$

See also A&A 381, 1000 (2002)

Isolated accreting BHs

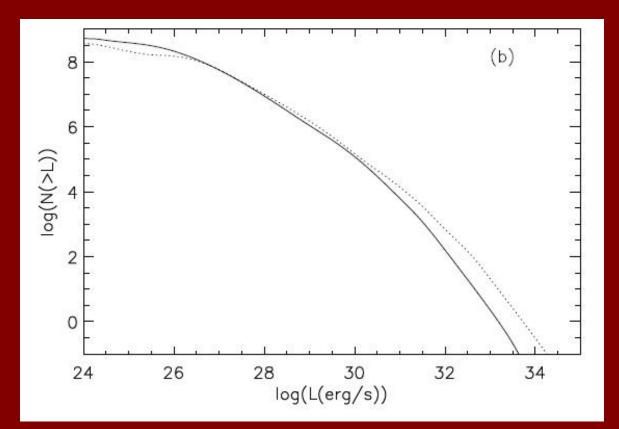


ADAF 10 solar masses

The objects mostly emit in X-rays or IR.

(Fujita et al. astro-ph/9712284)

The galactic population of accreting isolated BHs



The luminosity distribution is mostly determined by the ISM distribution, then – by the galactic potential.

It is important that maxima of the ISM distribution and distribution of compact objects roughly coincide. This results in relatively sharp maximum in the luminosity distribution.

(astro-ph/9705236)

Searching in deep surveys

Agol, Kamionkowski (astro-ph/0109539) demonstrated that satellites like XMM or Chandra can discover about few dozens of such sources.

However, it is very difficult to identify isolated accreting BHs.

(astro-ph/0109539)

21

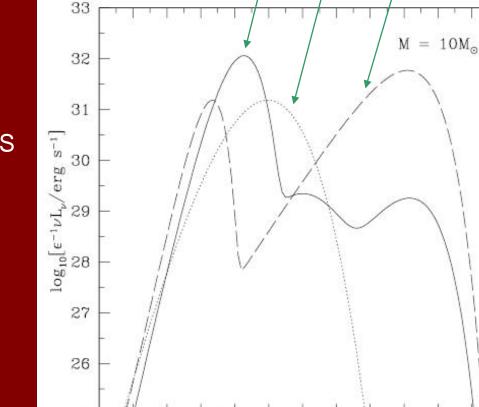
22

7

19

18

20


Digging in the SDSS

The idea is that the synchrotron emission can appear in the optical range and in X-rays.

Cross-correlation between SDSS and ROSAT data resulted in 57 candidates.

Regime of accretion and its efficiency are poorly known

(Chisholm et al. astro-ph/0205138)

ADAF IP CDAF

Radio emission from isolated BHs

 $L_{R} \sim L_{X}^{0.7}$

The task for LOFAR?

Phase/type	M_{BH}	n_H	T_{ISM}	N_{BH}	L_X	d_{radio}	N_{radio}
GMC Core	10	10^{5}	10^{4}	~ 1	5×10^{33}	12	~ 1
GMC/cold neutral	10	10^{3}	10^{4}	1.3×10^{6}	5×10^{29}	0.7	400
warm ISM	10	0.4	10^{4}	$5 imes 10^7$	7×10^{22}	.005	0
hot ISM	10	0.01	10^{6}	$5 imes 10^7$	5×10^{13}	10^{-5}	0
GMC/cold, fast halo IMBH	2600	10^{3}	10^{4}	30	$8 imes 10^{30}$	15	10
IMBH/disk pop/cold ISM	260	10^{3}	10^{4}	*	$8 imes 10^{33}$	40	*
IMBH/disk pop/GMC	260	10^{5}	10^{4}	*	$8 imes 10^{37}$	800	*
IMBH/disk pop/warm ISM	260	0.4	10^{4}	*	$1 imes 10^{27}$	0.5	*

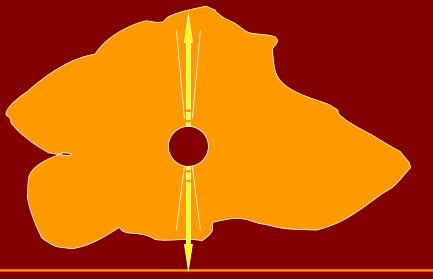
(Maccarone astro-ph/0503097)

Two isolated BHs in a globular cluster?

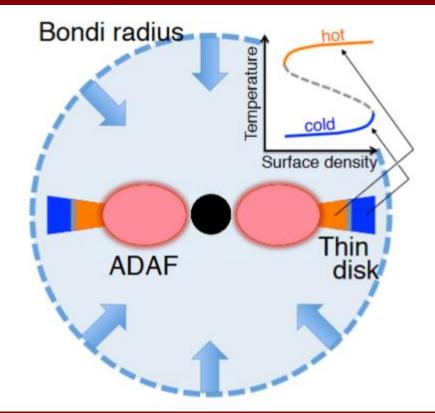
eVLA observations showed two flat-spectrum sources without X-ray or/and optical identfications.

Most probably, they are accreting BHs. Probably, isolated.

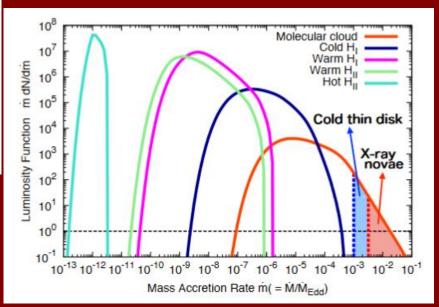
Numerical model for the cluster evolution and the number of BHs was calculated in the paper 1211.6608.



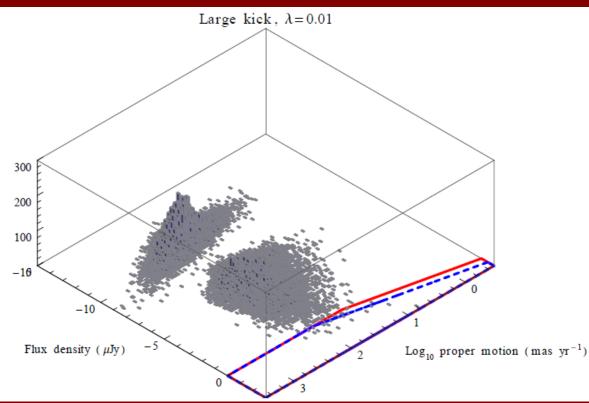
Electron-positron jets from isolated BHs


The magnetic flux, accumulated on the horizon of an IBH because of accretion of interstellar matter, allows the Blandford–Znajeck mechanism to be activated. So, electron–positron jets can be launched. Such jets are feasible electron accelerator which, in molecular clouds, allows electron energy to be boosted up to ~1 PeV. These sources can contribute both to the population of unidentified point-like sources and to the local cosmic-ray electron spectrum.

The inverse Compton emission of these locally generated cosmic rays may explain the variety of gamma-ray spectra detected from nearby molecular clouds.

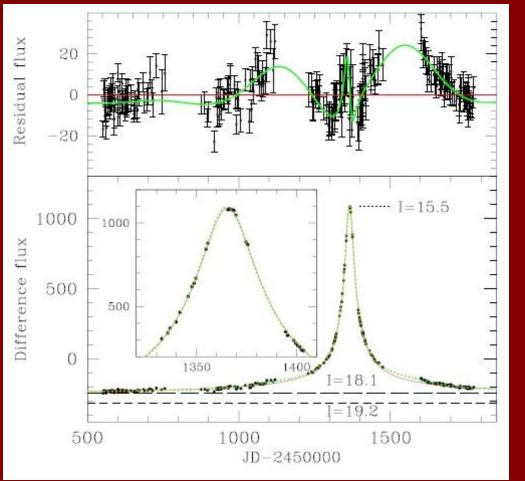


Barkov et al. 1209.0293


X-ray nova and accreting isolated BHs

Up to several event per year. Then some of known X-ray nova with unidentified companions, can be due to isolated BHs. Around accreting isolated BHs in molecular clouds it is possible to have conditions (hydrogen-ionization disk instability) necessary for X-ray nova appearance.

New calculations for radio IBHs

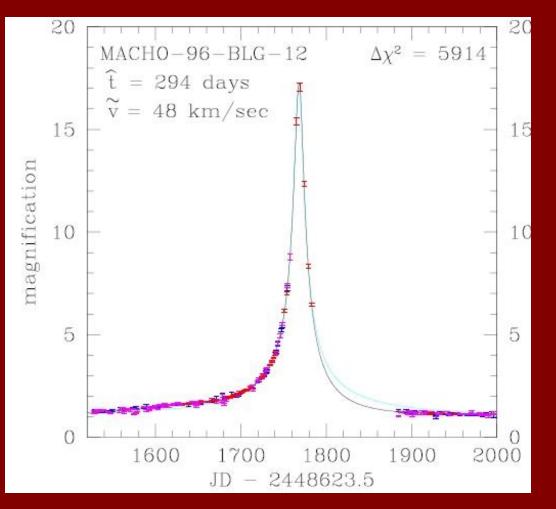


The authors calculate if IBHs can be detected by SKA and other future survey if the accrete from the ISM. Different assumptions about initial velocitites and accretion efficiency are made.

SKA will be effective in discovering isolated accreting BHs due to their radio emission.

1301.1341

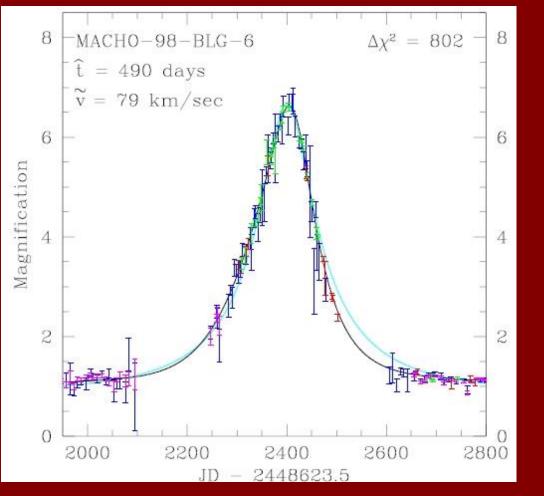
Microlensing and isolated BHs


Event OGLE-1999-BUL-32

A very long event: 641 days.

Mass estimate for the lense $>4 M_0$

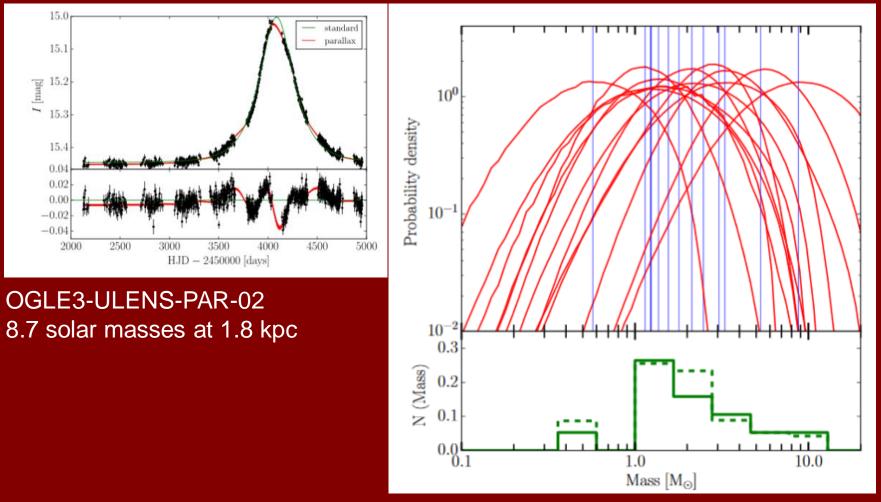
Mao et al. astro-ph/0108312


Microlensing – the MACHO project

MACHO-96-BLG-6 3-16 solar masses.

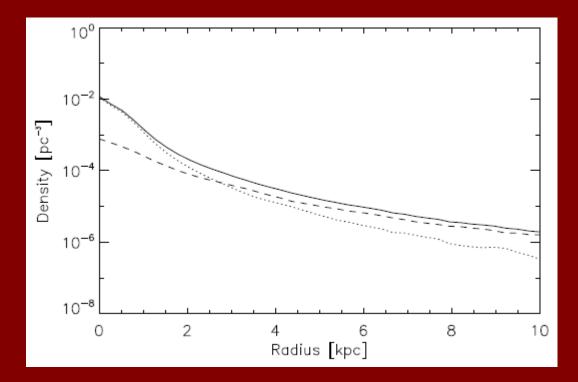
(Bennet et al. astro-ph/0109467)

Again MACHO!



MACHO-98-BLG-6 3-13 solar masses.

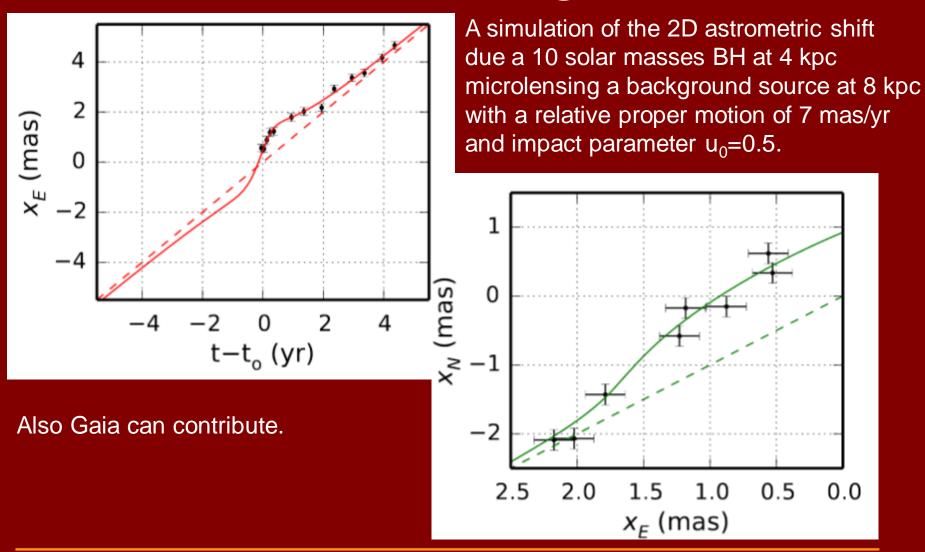
(Bennet et al. astro-ph/0109467)


More examples

OGLE-III data

1509.04899, see also 1601.02830

Probabilities of lensing

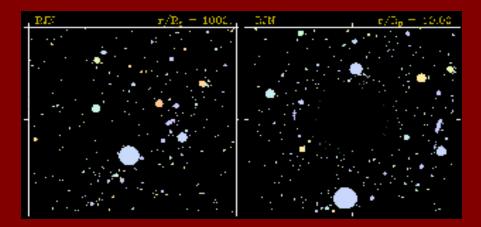


30-40% of events with >100 days are due to black holes

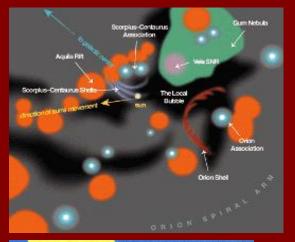
1.o.s.	Γ_{star}	⟨t _E ⟩ _{star}	Γ_{NS}	$\langle t_E \rangle_{NS}$	Γ_{BH}	$\langle t_E \rangle_{BH}$
(<i>l</i> , <i>b</i>)	[10 ⁻⁵ star ⁻¹ yr ⁻¹]	[days]	[10 ⁻⁶ star ⁻¹ yr ⁻¹]	[days]	[10 ⁻⁶ star ⁻¹ yr ⁻¹]	[days]
$(0^{\circ}, 0^{\circ})$	2.67	16	1.47	25	0.38	67
$(1^{\circ}, -3^{\circ}.9)$	0.52	20	0.40	28	0.10	77

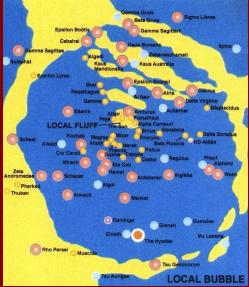
1009.0005

Astrometric microlensing and BHs



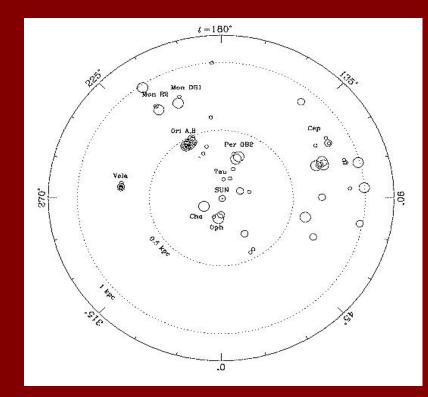
1607.08284

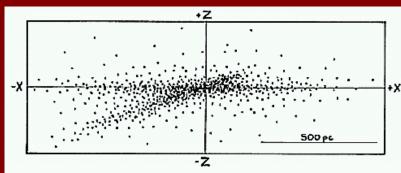

Black holes around us


- Black holes are formed from very massive stars
- It is very difficult to see an isolated black hole:
 - Microlensing
 - Accretion
 -?
- It is very improtant to have even a very approximate idea where to serach. Let us look at our neighbouhood....

There should be about several tens of million isolated BHs in the Galaxy

The Solar proximity

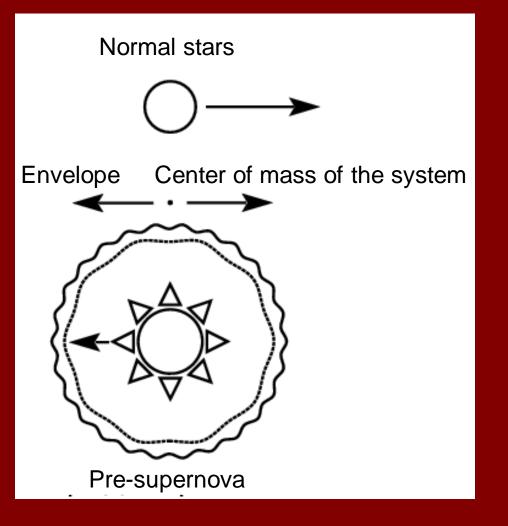


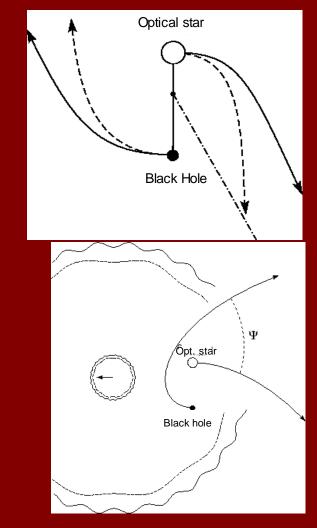

The solar vicinity is not just

- an average "standard" region
- The Gould Belt
- R=300-500 pc
- Age: 30-50 mill. years
- 20-30 SN in a Myr (Grenier 2000)
- The Local Bubble
- Up 6 SN in several Myrs

The Gould Belt

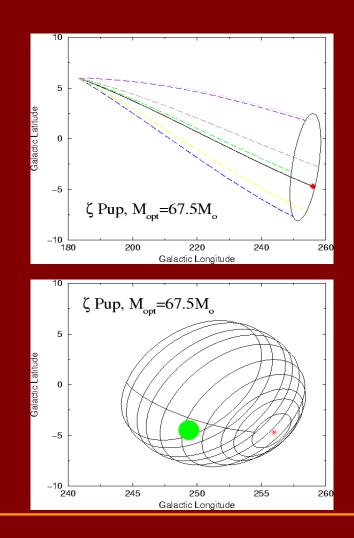
- Poppel (1997)
- R=300 500 pc
- The age is about 30-50 million years
- A disc-like structure with a center 100-150 pc from the Sun
- Inclined respect to the galactic plane by ~20°
- 2/3 of massive stars in 600 pc from the Sun belong to the Belt



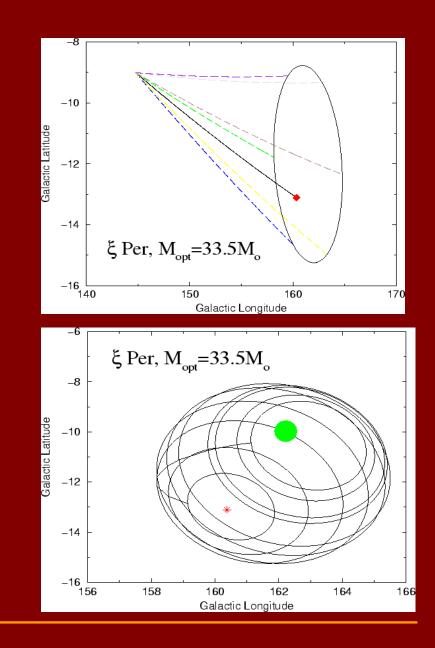


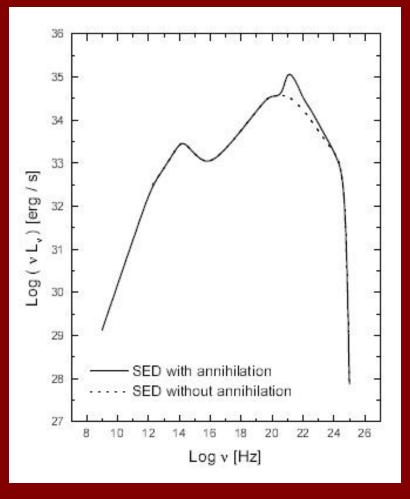
Close-by BHs and runaway stars

56 runaway stars inside 750 pc	Star	Mass	Velocit y km/s	Age, Myr
(Hoogerwerf et al. 2001)	ξPer	33	65	1
 Four of them have M > 30 M_{solar} 	HD 64760	25-35	31	6
30101	ς Pup	67	62	2
	λ Сер	40-65	74	4.5


SN explosion in a binary

ς Pup


- Distance: 404-519 pc
- Velocity: 33-58 km/s
- Error box: 12° x 12°
- N_{EGRET}: 1


ξ Per

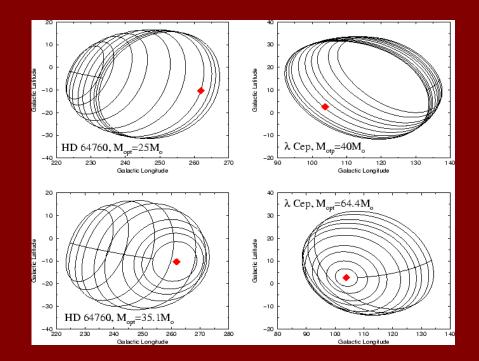
Distance: 537-611 pc

- Velocity: 19-70 km/s
- Error box: 7° x 7°
- N_{EGRET}: 1

Gamma-ray emission from isolated BHs

Kerr-Newman isolated BH.

Magnetosphere. B ~ 10¹¹ Fc


Jets.

See details about this theory in Punsly 1998, 1999.

astro-ph/0007464, 0007465 – application to EGRET sources

Runaway BHs

- Approximate positions of young close-by BHs can be estimated basing on data on massive runaway stars
- For two cases we obtained relatively small error boxes
- For HD 64760 and for λ Cep we obtained very large error boxes (40-50°)
- Several EGRET sources inside

Resume

- 1. Accreting stellar mass isolated BHs
- They should be! And the number is huge!
- But sources are very weak.
- Electron-positron jets and/or radio sources
- Problems with identification, if there are no data in several wavelengths
- 2. Microlensing on isolated stellar mass BHs
- There are several good candidates
- But it is necessary to find the black hole ITSELF!
- 3. Exotic emission mechanisms
- As all other exotics: interesting, but not very probable
- If it works, then GLAST will show us isolated BHs
- 4. Runaway stars
- A rare case to make even rough estimates of parameters
- Error-boxes too large for any band except gamma-rays
- All hope on the exotic mechanisms (Torres et al. astro-ph/0007465)