Magnetars: SGRs and AXPs

Magnetars in the Galaxy

- ~11 SGRs, ~12 AXPs, plus 6 candidates, plus radio pulsars with high magnetic fields (about them see arXiv: 1010.4592)...
- Young objects (about 10⁴ year).
- About 10% of all NSs

Catalogue: http://www.physics.mcgill.ca/~pulsar/magnetar/main.html

(see a recent review in arXiv:1503.06313 and catalogue description in 1309.4167)

8 are related to SNRs, and 2 are probably associated.

Many of magnetars show glitches.

$10^{33} \text{ erg s}^{-1}$		L_X^{g}	Band ^h
to erg s	(kpc)	$10^{33} {\rm ~erg~s^{-1}}$	
1.4	62.4	65	
0.12	3.6	105	OIR/H
0.00021	~2	0.00096	
1.2	~ 2	0.81	OIR/H
2.9	53.6	189	
3.3	9.0	49	OIR
2300	8.4	0.2	R/H
210	4.5	1.3	O?/R/H
8.3	~9	0.4	R
43	11	3.6	
< 0.013	3.9	0.45	
0.58	3.8	42	O?/H
45	~ 13	56	
10	8.3	< 0.11	R/H
45	8.7	163	OIR/H
1.8	3.5	0.043	OIR/R
0.0014	1.6	>0.0004	
0.32			
21	4.2	< 0.0084	
0.99	8.5	184	
8100	6.0	19	
< 0.0036	~ 7	< 0.006	
26	12.5	90	н
17			
0.056	3.2	17	OIR/H
		2.9	
	0.12 0.00021 1.2 2.9 3.3 2300 210 8.3 43 <0.013 0.58 45 10 45 1.8 0.0014 0.32 21 0.99 8100 <0.0036 26 17 0.056 	$\begin{array}{cccccccc} 0.12 & 3.6 \\ 0.00021 & \sim 2 \\ 1.2 & \sim 2 \\ 2.9 & 53.6 \\ 3.3 & 9.0 \\ 2300 & 8.4 \\ 210 & 4.5 \\ 8.3 & \sim 9 \\ 43 & 11 \\ <0.013 & 3.9 \\ 0.58 & 3.8 \\ 45 & \sim 13 \\ 10 & 8.3 \\ 45 & 8.7 \\ 1.8 & 3.5 \\ 0.0014 & 1.6 \\ 0.32 & \ldots \\ 21 & 4.2 \\ 0.99 & 8.5 \\ 8100 & 6.0 \\ <0.0036 & \sim 7 \\ 26 & 12.5 \\ 17 & \ldots \\ 0.056 & 3.2 \\ \ldots & \ldots \\ 1.1 \\ 0.1$	0.12 3.6 105 0.00021 ~ 2 0.00096 1.2 ~ 2 0.81 2.9 53.6 189 3.3 9.0 49 2300 8.4 0.2 210 4.5 1.3 8.3 ~ 9 0.4 43 11 3.6 <0.013 3.9 0.45 0.58 3.8 42 45 ~ 13 56 10 8.3 <0.11 45 8.7 163 1.8 3.5 0.043 0.0014 1.6 >0.0004 0.32 21 4.2 <0.0084 0.99 8.5 184 8100 6.0 19 <0.0036 ~ 7 <0.006 26 12.5 90 17 $$ $$ $$ $$.

Spatial distribution

Scale height ~20 pc

Soft Gamma Repeaters: main properties

- Energetic "Giant Flares" (GFs, L ≈ 10⁴⁵-10⁴⁷ erg/s) detected from 3 (4?) sources
- No evidence for a binary companion, association with a SNR at least in one case
- Persistent X-ray emitters, L ≈ 10³⁵ - 10³⁶ erg/s
- Pulsations discovered both in GFs tails and persistent emission, P ≈ 5 -10 s
- Huge spindown rates,
 P/P ≈ 10⁻¹⁰ s⁻¹

Saturation of detectors

SGRs: periods and giant flares

7.5

5.2

9.1

7.6

- P, s Giant flares
- **0526-66** 8.0
- **1627-41 2.6**
- **1806-20**
- **1900+14**
- **0501+45** 5.7
- 0418+5729
- **1833-0832**
- **2013+34**?
- **1801-23**?

- 5 March 1979 18 June 1998 (?)
- 27 Dec 2004
- 27 Aug 1998

See reviews in Turolla et al. arXiv: 1507.02924 and Beloborodov, Kaspi arXiv: 1703.00068

Soft Gamma Repeaters

 Rare class of sources, 11 confirmed
 Frequent bursts of soft γ-/hard X-rays: L < 10⁴² erg/s, duration < 1 s

Bursts from SGR 1806-20 (INTEGRAL/IBIS, Gőtz et al 2004)

Historical notes

- 05 March 1979. The "Konus" experiment & Co. Venera-11,12 (Mazets et al., Vedrenne et al.)
- Events in the LMC. SGR 0520-66.
- Fluence: about 10⁻³ erg/cm²

Mazets et al. 1979

N49 – supernova remnant in the Large Magellanic cloud (e.g. G. Vedrenne et al. 1979)

Main types of activity of SGRs

- Weak bursts. L<10⁴² erg/s
- Intermediate. L~10⁴²–10⁴³ erg/s
- Giant. L<10⁴⁵ erg/s
- Hyperflares. L>10⁴⁶ erg/s

Power distribution is similar to the distribution of earthquakes in magnitude

See the review in Rea, Esposito 1101.4472

Normal bursts of SGRs and AXPs

 Typical weak bursts of SGR 1806-29,
 SGR 1900+14 and of
 AXP 1E 2259+586
 detected by RXTE

(from Woods, Thompson 2004)

Intermediate SGR bursts

Examples of intermediate bursts.

The forth (bottom right) is sometimes defined as a giant burst (for example by Mazets et al.).

(from Woods, Thompson 2004)

Giant flare of the SGR 1900+14 (27 August 1998)

- Ulysses observations (figure from Hurley et al.)
- Initial spike 0.35 s
- P=5.16 s
- L>3 10⁴⁴ erg/s
- E_{TOTAL}>10⁴⁴ erg

Hurley et al. 1999

Anomalous X-ray pulsars

Identified as a separate group in 1995. (Mereghetti, Stella 1995 Van Paradijs et al.1995)

- Similar periods (5-10 sec)
- Constant spin down
- Absence of optical companions
- Relatively weak luminosity
- Constant luminosity

Anomalous X-ray Pulsars: main properties

Twelve sources known:

- 1E 1048.1-5937, 1E 2259+586, 4U 0142+614,
- 1 RXS J170849-4009, 1E 1841-045,
- CXOU 010043-721134, AX J1845-0258,
- CXOU J164710-455216, XTE J1810-197,
- 1E 1547.0-5408, PSR J1622-4950, CXOU J171405.7-381031
- Persistent X-ray emitters, $L \approx 10^{34} 10^{35}$ erg/s
- Pulsations with $P \approx 2 10 \text{ s} (0.33 \text{ sec for PSR } 1846)$
- Large spindown rates, P/P ≈ 10⁻¹¹ s⁻¹
- No evidence for a binary companion, association with a SNR in several cases

Known AXPs Sources

Periods, s

CXO 010043-7211	8.0
4U 0142+61	8.7
1E 1048.1-5937	6.4
1E 1547.0-5408	2.1
CXOU J164710-4552	10.6
1RXS J170849-40	11.0
XTE J1810-197	5.5
1E 1841-045	11.8
AX J1845-0258	7.0
PSR J1622-4950	4.3
CXOU J171405.7-381031	3.8
1E 2259+586	7.0

Are SGRs and AXPs brothers?

- Bursts of AXPs (more than half burst)
- Spectral properties
- Quiescent periods of SGRs (0525-66 since 1983)

Gavriil et al. 2002

Bursts of the AXP 1E1547.0-5408

Bursts of the AXP 1E1547.0-5408

Some bursts have pulsating tails with spin period.

Unique AXP bursts?

Bursts from AXP J1810-197. Note a long exponential tail with pulsations.

(Woods et al. 2005 astro-ph/ astro-ph/0505039)

A Tale of Two Populations ?

Pulse profiles of SGRs and AXPs

Hard X-ray Emission

INTEGRAL revealed substantial emission in the 20 -100 keV band from SGRs and APXs

Hard power law tails with $\Gamma \approx 1-3$

Hard emission pulse

SGRs and AXPs

SGRs and AXPs soft X-ray Spectra 0.5 – 10 keV emission is well represented by a blackbody plus a power law

See the latest discussion in: arXiv: 1001.3847, 1009.2810

SGRs and AXPs soft X-ray Spectra

- kT_{BB} ~ 0.5 keV, does not change much in different sources
- Photon index $\Gamma \approx 1 4$,
 - AXPs tend to be softer
- SGRs and AXPs persistent emission is variable (months/years)
- Variability is mostly associated with the non-thermal component

Magnetar spectra in comparison

And what about AXPs and PSRs?

1E1547.0-5408 – the most rapidly rotating AXP (2.1 sec) The highest rotation energy losses among SGRs and AXPs. Bursting activity.

Pulsar wind nebulae around an AXP.

Postburst properties of PSR J1846-0258

The pulsar showed a glitch. A period of magnetar-like activity was started. After the burst parameters of the pulsar changed.

n=2.65 -> n=2.16 Timing noise was increased (was very small for a magnetar before bursts)

Generation of the magnetic field

The mechanism of the magnetic field generation is still unknown.

Turbulent dynamo

 α - Ω dynamo (Duncan, Thompson) α^2 dynamo (Bonanno et al.) or their combination

In any case, initial rotation of a protoNS is the critical parameter.

Strong field via flux conservation

There are reasons to suspect that the magnetic fields of magnetars are not due to any kind of dynamo mechanism, but just due to flux conservation:

- Study of SNRs with magnetars (Vink and Kuiper 2006). If there was a rapidly rotating magnetar then a huge energy release is inevitable. No traces of such energy injections are found.
- 2. There are few examples of massive stars with field strong enough to produce a magnetars due to flux conservation (Ferrario and Wickramasinghe 2006)

Still, these suggestions can be criticized (Spruit arXiv: 0711.3650)

Alternative theory

- Remnant fallback disc
- Mereghetti, Stella 1995
- Van Paradijs et al.1995
- Alpar 2001
- Marsden et al. 2001
- Problems
- How to generate strong bursts?
- Discovery of a passive disc in one of AXPs (Wang et al. 2006).
 A new burst of interest to this model.

Magnetic field estimates

- Spin down
- Long spin periods
- Energy to support bursts
- Field to confine a fireball (tails)
- Duration of spikes (alfven waves)
- Direct measurements of magnetic field (cyclotron lines)

Spectral lines claims

All claims were done for RXTE observations (there are few other candidates). All detections were done during bursts.

1E 1048.1-5937 Gavriil et al. (2002, 2004) 4U 0142+61 Gavriil et al. (2007)

Hyperflare of SGR 1806-20

- 27 December 2004 A giant flare from SGR 1806-20 was detected by many satellites: Swift, RHESSI, Konus-Wind, Coronas-F, Integral, HEND, ...
- 100 times brighter than any other!

Palmer et al. astro-ph/0503030

Integral

RHESSI
27 Dec 2004: Giant flare of the SGR 1806-20

- Spike 0.2 s
- Fluence 1 erg/cm²
- E(spike)=3.5 10⁴⁶ erg
- L(spike)=1.8 10⁴⁷ erg/s
- Long «tail» (400 s)
- P=7.65 s
- E(tail) 1.6 10⁴⁴ erg
- Distance 15 kpc see the latest data in arXiv: 1103.0006

Konus observations

Mazets et al. 2005

The myth about Medusa

QPO in tails of giant flares of SGRs

A kind of quasi periodic oscillations have been found in tail of two events (aug. 1998, dec. 2004). They are supposed to be torsional oscillations of NSs, however, it is not clear, yet.

(Israel et al. 2005 astro-ph/0505255, Watts and Strohmayer 2005 astro-ph/0608463)

QPO in SGR 1806-20 giant flare

Power spectrum made by averaging nine 3 s segments from the time interval marked by dashed lines in the top left panel. The 92 Hz and 625 Hz QPOs are clearly visible, and the inset illustrates the significance of the 625 Hz feature (from Strohmayer & Watts, 2006)

SGR 1806-20 - I

SGR 1806-20 displayed a gradual increase in the level of activity during 2003-2004 (Woods et al 2004; Mereghetti et al

SGR 1806-20 - II

Twisted Magnetospheres – I

- The magnetic field inside a "wound up"
- The presence of a toroidal induces a rotation of the su
- The crust tensile strength
- A gradual (quasi-plastic ?) crust
- The external field twists up (Thompson, Lyutikov & Kulkarni 2002)

Growing twist

(images from Mereghetti arXiv: 0804.0250)

A Growing Twist in SGR 1806-20?

- Evidence for spectral hardening AND enhanced spin-down
- Γ-Pdot and Γ-L correlations
- Growth of bursting activity
- Possible presence of proton cyclotron line only during bursts

All these features are consistent with an increasingly twisted magnetosphere

Twisted magnetospheres

- Twisted magnetosphere model, within magnetar scenario, in general agreement with observations
- Resonant scattering of thermal, surface photons produces spectra with right properties
- Many issues need to be investigated further
 - Twist of more general external fields
 - Detailed models for magnetospheric currents
 - More accurate treatment of cross section including QED effects and electron recoil (in progress)
 - 10-100 keV tails: up-scattering by (ultra)relativistic (e[±]) particles ?
 - Create an archive to fit model spectra to observations (in progress)

See, for example, arXiv: 1008.4388 and references therein and more recent studies in 1201.3635

Non-global twist model

Energy in the twist: $\sim I^2 R_{NS}/c^2$ Twist decay time ~ 1 yr for typical parms

Optical pulsations

SGR 0501+4516 P=5.76 s d=0.8 kpc – the closest!

4.2m William Herschel Telescope

Low-field magnetars

SGR 0418+5729 and Swift J1822.3-160

See a review in arXiv:1303.6052

The first low-field magnetar

Only after ~3 years of observations it was possible to detect spin-down.

The dipolar field is $\sim 6 \ 10^{12}$ G.

The dipolar field could decay, and activity is due to the toroidal field.

Large field (at last) ... But multipoles!

XMM-Newton observations allowed to detect a spectral line which is variable with phase. If the line is interpreted as a proton cyclotron line, then the field in the absorbing region is $2 \ 10^{14} - 10^{15}$ G

1308.4987

SGR 0418+5729

Another low-field magnetar

3XMM J185246.6+003317 P=11.5 s No spin-down detected after 7 months $B<4\ 10^{13}$ G Transient magnetar

More lines in low-field magentars

phase-dependent absorption line

SWIFT J1822.3-1606

Old evolved sources?

Swift J1822.03–160

How many magnetars?

<540 barely-detectable (L=3 $10^{33} A_{rms}$ =15%) 59⁺⁹²-32 easily detectable (L=10³⁵ A_{rms}=70%)

Muno et al. arXiv: 0711.0988

Extragalactic giant flares

Initial enthusiasm that most of short GRBs can be explained as giant flares of extraG SGRs disappeared.

At the moment, we have a definite deficit of extraG SGR bursts, especially in the direction of Virgo cluster (Popov, Stern 2006; Lazzatti et al. 2006).

However, there are several good candidates.

Extragalactic SGRs

It was suggested long ago (Mazets et al. 1982) that present-day detectors could alredy detect giant flares from extragalactic magnetars.

However, all searches in, for example, BATSE database did not provide clear candidates (Lazzati et al. 2006, Popov & Stern 2006, etc.).

Finally, recently several good candidates have been proposed by different groups (Mazets et al., Frederiks et al., Golenetskii et al., Ofek et al, Crider).

[D. Frederiks et al. astro-ph/0609544]

Magnetars and supernovae

With large field and short spin a newborn NS can contribute a lot to the luminosity of a SN.

KASEN & BILDSTEN (2010)

Parameters needed

For short initial spin periods it is not even necessary to have magnetar scale B.

What is special about magnetars?

Link with massive stars There are reasons to suspect that magnetars are connected to massive stars (astro-ph/0611589).

Link to binary stars There is a hypothesis that magnetars are formed in close binary systems (astro-ph/0505406, AXI 0905.3238). AXI a view The question is still on the list.

AXP in Westerlund 1 most probably has a very massive progenitor >40 Msolar.

Are there magnetars in binaries?

At the moment all known SGRs and AXPs are isolated objects. About 10% of NSs are expected to be in binaries. The fact that all known magnetars are isolated can be related to their origin, but this is unclear.

If a magnetar appears in a very close binary system, then an analogue of a *polar* can be formed.

The secondary star is inside the huge magnetosphere of a magnetar.

This can lead to interesting observational manifestations.

Magnetor

arXiv:0803.1373

Few candidates have been proposed based on long spin periods and large Pdots: 1203.1490, 1208.4487, 1210.7680, 1303.5507

Conclusions

- Two classes of magnetars: SGRs and AXPs
- Similar properties (but no giant flare in AXPs, yet?)
- Hyperflares (27 Dec 2004)
- Transient magnetars
- About 10% of newborn NSs
- Links to PSRs (and others?)
- Twisted magnetospheres

Papers to read

- Woods, Thompson astro-ph/0406133 old classical review
- Mereghetti arXiv: 0804.0250
- Rea, Esposito arXiv: 1101.4472 bursts
- Turolla, Esposito arXiv: 1303.6052 Low-field magnetars
- Mereghetti et al. arXiv: 1503.06313
- Turolla, Zane, Watts arXiv: 1507.02924 Big general review
- Beloborodov, Kaspi arXiv: 1703.00068