Internal structure of Neutron Stars

Artistic view

Astronomy meets QCD

arXiv: 0808.1279

Hydrostatic equilibrium for a star

For NSs we can take T=0 and neglect the third equation

For a NS effects of GR are also important.

$$r_g = \frac{2GM}{c^2} \approx 2.95 \frac{M}{M_{SUN}} \text{ km}$$

 $M/R \sim 0.15 (M/M_{\odot})(R/10 \text{ km})^{-1}$ J/M ~ 0.25 (1 ms/P) (M/M_{\odot})(R/10km)²

Lane-Emden equation. Polytrops. $P = K\rho^{\gamma}, \quad K, \gamma = \text{const}, \quad \gamma = 1 + \frac{1}{2}$ $\frac{dP}{dr} = -\frac{Gm\rho}{r^2} = g\rho, \qquad g = -\frac{Gm}{r^2} = -\frac{d\varphi}{dr}$ $\frac{dP}{dr} = -\rho \ \frac{d\varphi}{dr}, \qquad \Delta \varphi = 4\pi G\rho$ $\rho = \rho_c \Theta^n$, $\Theta = 1$ при r = 0 $P = K \rho_c^{1+1/n} \Theta^{1+n}, \quad \frac{dP}{dr} = (n+1) K \rho_c^{1+1/n} \Theta^n \frac{d\Theta}{dr}$ $\frac{d\varphi}{dr} = -(n+1)K\rho_c^{1/n} \frac{d\Theta}{dr}$ $\Delta \Theta = -\frac{4\pi G \rho_c^{1-1/n}}{(n+1)K} \Theta^n$ $\Theta = \Theta(\xi)$ $0 \leq \xi \leq \xi_1$ $\xi = r/a, \quad a^2 = (n+1)K\rho_c^{1/n-1}/(4\pi G)$ $\Theta(0) = 1, \quad \Theta'(0) = 0$ $\frac{1}{\xi^2} \frac{d}{d\xi} \xi^2 \frac{d}{d\xi} \Theta = -\Theta^n$ $\Theta(\xi_1) = 0$

Properties of polytropic stars

О

Analytic solutions:

$$n = 0 \qquad \Theta = 1 - \frac{\xi^2}{6} \qquad \xi_1 = \sqrt{6}$$
$$n = 1 \qquad \Theta = \frac{\sin \xi}{\xi} \qquad \xi_1 = \pi$$

5

$$n = 5 \qquad \Theta = \frac{1}{\sqrt{1 + \xi^2 / 3}} \qquad \xi_1 = \infty$$

$$M = 4\pi \int_{0}^{R} dr \, r^{2} \rho = 4\pi \rho_{c} a^{3} \xi_{1}^{2} |\Theta'(\xi_{1})|$$
$$\frac{\rho_{c}}{\rho} = \frac{4\pi R^{3} \rho_{c}}{3M} = \frac{\xi_{1}}{3|\Theta'(\xi_{1})|}$$

	n	0	1	1.5	2	3
	ξ_1	2.449	3.142	3.654	4.353	6.897
$M \sim \rho_c^{(3-n)/(2n)}$	$ \Theta'_1 $	0.7789	0.3183	0.2033	0.1272	0.04243
R $(1-n)/(2n)$	$\rho_c/\overline{ ho}$	1	3.290	5.991	11.41	54.04
$\mathbf{K} \sim \boldsymbol{\rho}_c$	$n=0$ $M \sim R^3$					
$M \sim R^{(3-n)/(1-n)}$	$n=1$ $M \sim \rho_c$ $R = \text{const}$					

n=1 $M \sim \rho_c$ R = const

$$n=1.5 \qquad M \sim \sqrt{\rho_c} \sim R^{-3}$$

$$n=3$$
 $M=\mathrm{const}$ $R\sim\rho_c^{-1/3}$

Useful equations White dwarfs

- 1. Non-relativistic electrons $\gamma=5/3$, K=(3^{2/3} $\pi^{4/3}/5$) ($\hbar^2/m_e m_u^{5/3} \mu_e^{5/3}$); μ_e -mean molecular weight per one electron K=1.0036 10¹³ $\mu_e^{-5/3}$ (CGS)
- 2. Relativistic electrons $\gamma = 4/3$, K=(3^{1/3} $\pi^{2/3}/4$) (ħc/m_u^{4/3} $\mu_e^{4/3}$); K=1.2435 10¹⁵ $\mu_e^{-4/3}$ (CGS)

Neutron stars

- 1. Non-relativistic neutrons $\gamma=5/3, K=(3^{2/3} \pi^{4/3}/5) (\hbar^2/m_n^{8/3});$ $K=5.3802 \ 10^9 (CGS)$
- 2. Relativistic neutrons $\gamma=4/3$, K=(3^{1/3} $\pi^{2/3}/4$) (ħc/m_n^{4/3}); K=1.2293 10¹⁵ (CGS)

Neutron stars

Superdense matter and superstrong magnetic fields

Proto-neutron stars

Mass fraction of nuclei in the nuclear chart for matter at T = 1 MeV, $n_B = 10^{-3}$ fm⁻³, and $Y_P = 0.4$. Different colors indicate mass fraction in Log₁₀ scale.

1202.5791

NS EoS are also important for SN explosion calculation, see 1207.2184

EoS for core-collapse, proto-NS and NS-NS mergers

	Core-collapse	Proto-neutron	Mergers of compact
	supernovae	stars	binary stars
n/n_s	10^{-8} - 10	10^{-8} - 10	10^{-8} - 10
$T({ m MeV})$	0 - 30	0 - 50	0 - 100
Y_e	0.35 - 0.45	0.01 - 0.3	0.01 - 0.6
$S(k_B)$	0.5 - 10	0 - 10	0 - 100

Wide ranges of parameters

Astrophysical point of view

Astrophysical appearence of NSs is mainly determined by:

- Spin
- Magnetic field
- Temperature
- Velocity
- Environment

The first four are related to the NS structure!

Equator and radius

$ds^2 = c^2 dt^2 e^{2\Phi} - e^{2\lambda} dr^2 - r^2 [d\theta^2 + sin^2\theta d\phi^2]$

In flat space $\Phi(r)$ and $\lambda(r)$ are equal to zero.

• t=const, r= const, $\theta=\pi/2$, $0<\Phi<2\pi$ III |= $2\pi r$ • t=const, $\theta=const$, $\phi=const$, $0<r<r_0$ III dl= $e^{\lambda}dr$ III $l=\int_{0}^{r_0}e^{\lambda}dr\neq r_0$

Gravitational redshift

It is useful to use m(r) – gravitational mass inside r – instead of $\lambda(r)$

Outside of the star

Bounding energy

1102.2912

TOV equation

$$R_{ik} - \frac{1}{2} g_{ik} R = \frac{8\pi G}{c^4} T_{ik}$$

(1)
$$\frac{dP}{dr} = -\frac{G\rho m}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi r^3 P}{mc^2}\right) \left(1 - \frac{2Gm}{rc^2}\right)^{-1}$$

(2)
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

(3)
$$\frac{d\Phi}{dr} = -\frac{1}{\rho c^2} \frac{dP}{dr} \left(1 + \frac{P}{\rho c^2}\right)^{-1}$$
(4)
$$P = P(\rho)$$
Tolman (1939)
Oppenheimer-Volkoff (1939)

Neutron star interiors

Radius: 10 km Mass: 1-2 solar Density: above the nuclear Strong magnetic fields

Neutron star crust

Many contributions to the book are available in the arXiv.

Mechanical properties of crusts are continuosly discussed, see 1208.3258

Accreted crust

It is interesting that the crust formed by accreted matter differs from the crust formed from catalyzed matter. The former is thicker.

1104.0385

Configurations

A RNS code is developed and made available to the public by Sterligioulas and Friedman ApJ 444, 306 (1995) http://www.gravity.phys.uwm.edu/rns/

NS mass vs. central density (Weber et al. arXiv: 0705.2708)

Stable configurations for neutron stars and hybrid stars (astro-ph/0611595).

Mass-radius

Mass-radius relations for CSs with possible phase transition to deconfined quark matter.

About hyperon stars see a review in 1002.1658. About strange stars and some other exotic options – 1002.1793

(astro-ph/0611595)

Mass-radius relation

Main features

- Max. mass
- Diff. branches (quark and normal)
- Stiff and soft EoS
- Small differences for realistic parameters
- Softening of an EoS with growing mass

Rotation is neglected here. Obviously, rotation results in:

- larger max. mass
- larger equatorial radius
 Spin-down can result in phase transition, as well as spin-up (due to accreted mass), see 1109.1179

Haensel, Zdunik astro-ph/0610549

EoS

(Weber et al. ArXiv: 0705.2708)

Au-Au collisions

Experimental results and comparison

1 Mev/fm³ = 1.6 10³² Pa

GSI-SIS and AGS data

Danielewicz et al. nucl-th/0208016

New heavy-ion data and discussion: 1211.0427

Also laboratory measurements of lead nuclei radius can be important, see 1202.5701

Phase diagram

Phase diagram

Phase diagram for isospin symmetry using the most favorable hybrid EoS studied in astro-ph/0611595.

(astro-ph/0611595)

```
Particle fractions
```


Effective chiral model of Hanauske et al. (2000)

Relativistic mean-field model TM1 of Sugahara & Toki (1971)

Яковлев и др. УФН 1999

Quark stars

1210.1910

See also 1112.6430

Formation of quark stars

1.4 3.4 0.6 5.0 1.0 1.2 (b) $t = 0.7 \, \text{ms}$

(d) $t = 4.0 \,\mathrm{ms}$

Turbulent deflagration, as in SNIa.

Neutrino signal due to conversion of a NS into a quark star was calculated in 1304.6884

1109.0539

Hybrid stars

1211.1231

Massive hybrid stars

Stars with quark cores can be massive, and so this hypothesis is compatible with existence of pulsars with M>2 Msolar

NS interiors: resume

(Weber et al. ArXiv: 0705.2708)

Maximum mass

Maximum mass of NSs depends on the EoS, however, it is possible to make calculations on the base of some fundamental assumptions.

astro-ph/9608059

Seminal paper: Rhoades, Ruffini 1974 http://prl.aps.org/abstract/PRL/v32/i6/p324_1

Papers to read

1. astro-ph/0405262 Lattimer, Prakash "Physics of neutron stars"

2. 0705.2708 Weber et al. "Neutron stars interiors and equation of state"

3. physics/0503245 Baym, Lamb "Neutron stars"

4. 0901.4475 Piekarewicz "Nuclear physics of neutron stars" (first part)

5. 0904.0435 Paerels et al. "The Behavior of Matter Under Extreme Conditions"

6. 1512.07820 Lattimer, Prakash "The EoS of hot dense matter"

7. 1001.3294 Schmitt "Dense matter in compact stars - A pedagogical introduction "

8. 1303.4662 Hebeler et al. "Equation of state and neutron star properties constrained by nuclear physics and observation "

9. 1210.1910 Weber et al. Structure of quark star

10. 1302.1928 Stone "High density matter "

+ the book by Haensel, Yakovlev, Potekhin

Lectures on the Web

Lectures can be found at my homepage:

http://xray.sai.msu.ru/~polar/html/presentations.html