Evolution with decaying and re-emerging magnetic field
Diversity of young neutron stars

Young isolated neutron stars can appear in many flavors:

- Radio pulsars
- Compact central X-ray sources in supernova remnants.
- Anomalous X-ray pulsars
- Soft gamma repeaters
- The Magnificent Seven & Co.
- Transient radio sources (RRATs)
-

“GRAND UNIFICATION” is welcomed! (Kaspi 2010)

See a review in 1111.1158
Magnetic field decay

Magnetic fields of NSs are expected to decay due to decay of currents which support them.

Crustal field of core field?

It is easy to decay in the crust.

In the core the field is in the form of superconducting vortices. They can decay only when they are moved into the crust (during spin-down).

Still, in most of models strong fields decay.
An evolutionary track of a NS is very different in the case of decaying magnetic field.

The most important feature is slow-down of spin-down. Finally, a NS can nearly freeze at some value of spin period.

Several episodes of relatively rapid field decay can happen.

Number of isolated accretors can be both decreased or increased in different models of field decay. But in any case their average periods become shorter and temperatures lower.
Magnetars, field decay, heating

A model based on field-dependent decay of the magnetic moment of NSs can provide an evolutionary link between different populations (Pons et al.).
Magnetic field decay vs. thermal evolution

Magnetic field decay can be an important source of NS heating.

Heat is carried by electrons. It is easier to transport heat along field lines. So, poles are hotter. (for light elements envelope the situation can be different).

Ohm and Hall decay

arxiv:0710.0854 (Aguilera et al.)
It is important to understand the role of heating by the field decay for different types of INS.

In the model by Pons et al. the effect is more important for NSs with larger initial B.

Note, that the characteristic age estimates ($P/2 \ Pdot$) are different in the case of decaying field!

arXiv: 0710.4914 (Aguilera et al.)
The line marks balance between heating due to the field decay and cooling. It is expected that a NS evolves downwards till it reaches the line, then the evolution proceeds along the line: \(T_{\text{eff}} \sim B_d^{1/2} \)

Selection effects are not well studied here. A kind of population synthesis modeling is welcomed.

(astro-ph/0607583)
What kind of decay do we see?

- Ohmic decay due to phonons
- Hall cascade

Both time scales fit, and in both cases we can switch off decay at \(\sim 10 \) either due to cooling, or due to the Hall attractor.

\[
B = B_0 \frac{\exp(-t/\tau_{\text{Ohm}})}{1 + \frac{\tau_{\text{Ohm}}}{\tau_{\text{Hall}}} (1 - \exp(-t/\tau_{\text{Ohm}}))}
\]
P-Pdot diagram and field decay

\[B = B_0 \frac{\exp(-t/\tau_{\text{Ohm}})}{1 + \frac{\tau_{\text{Ohm}}}{\tau_{\text{Hall}}} (1 - \exp(-t/\tau_{\text{Ohm}}))}\]

\[\tau_{\text{Ohm}} = 10^6 \text{ yrs}\]

\[\tau_{\text{Hall}} = 10^4/(B_0/10^{15} \text{ G}) \text{ yrs}\]

Decay parameters and P-Pdot

\[\tau_{\text{Ohm}} = 10^7 \text{ yrs} \]
\[\tau_{\text{Hall}} = 10^2/(B_0/10^{15} \text{ G}) \]

Longer time scale for the Hall field decay is favoured.

\[\tau_{\text{Ohm}} = 10^6 \text{ yrs} \]
\[\tau_{\text{Hall}} = 10^3/(B_0/10^{15} \text{ G}) \]

\[\tau_{\text{Ohm}} = 10^6 \text{ yrs} \]
\[\tau_{\text{Hall}} = 10^4/(B_0/10^{15} \text{ G}) \]

It is interesting to look at HMXBs to see if it is possible to derive the effect of field decay and convergence.
Realistic tracks

Using the model by Pons et al. (arXiv: 0812.3018) we plot realistic tracks for NS with masses 1.4 Msolar.

Initial fields are:
3 10^{12}, 10^{13}, 3 10^{13}, 10^{14}, 3 10^{14}, 10^{15}

Color on the track encodes surface temperature.

Tracks start at 10^3 years, and end at 2×10^6 years.

(Popov et al. MNRAS 2010)
Joint description of NS evolution with decaying magnetic field

The idea to describe all types of NSs with a unique model using one initial distribution (fields, periods, velocities) and to compare with observational data, i.e. to confront vs. all available observed distributions:
- P-P_{dot} for PSRs and other isolated NSs
- Log N – Log S for cooling close-by NSs
- Luminosity distribution of magnetars (AXPs, SGRs)
-

The first step is done in Popov et al. (2010)

The initial magnetic field distribution with $<\log B_0>\sim 13.25$ and $\sigma \sim 0.6$ gives a good fit.
~10% of magnetars.
Cooling curves with decay

Magnetic field distribution is more important than the mass distribution.
Observational evidence?

Kaplan & van Kerkwijk arXiv: 0909.5218
Extensive population synthesis: M7, magnetars, PSRs

Using one population it is difficult or impossible to find unique initial distribution for the magnetic field.

All three populations are compatible with a unique distribution.

Of course, the result is model dependent.
Magnetars bursting activity due to decay

In the field decay model it is possible to study burst activity. Bursts occur due to crust cracking. The decaying field produce stresses in the crust that are not compensated by plastic deformations. When the stress level reaches a critical value the crust cracks, and energy can be released.

At the moment the model is very simple, but this just the first step.
A recent model

Test illustrates the evolution of initially purely poloidal field

1204.4707
Another new model

Initially the poloidal field is large.

Initially the toroidal field is large.

If the toroidal field dominates initially then significant energy is transferred to the poloidal component during evolution. In the opposite case, when the poloidal component initially dominates, energy is not transferred. The toroidal component decouples.
A peculiar source was discovered in SMC. Be/Xray binary, \(P = 1062 \) sec. A SNR is found. Age \(\sim 10^4 \) yrs. (1110.6404; 1112.0491)

Typically, it can take \(\sim 1 \) Myr for a NS with \(B \sim 10^{12} \) G to start accretion.
Evolution of SXP 1062

A model of a NS with initial field $\sim 10^{14}$ G which decayed down to $\sim 10^{13}$ G can explain the data on SXP 1062.

Many other scenarios have been proposed. We need new observational data.
Anti-magnetars

Note, that there is no room for antimagnetars from the point of view of birthrate in many studies of different NS populations.

New results 1301.2717
Spins and derivative are measured for PSR J0821-4300 and PSR J1210-5226
Among young isolated NSs about 1/3 can be related to CCOs. If they are anti-magnetars, then we can expect that 1/3 of NSs in HMXBs are also low-magnetized objects. They are expected to have short spin periods <1 sec. However, there are no many sources with such properties. The only good example - SAX J0635+0533. An old CCO?

Possible solution: emergence of magnetic field (see physics in Ho 2011, Vigano, Pons 2012).
We use observations of Be/X-ray binaries in SMC to derive magnetic field estimates, and compare them with prediction of the Pons et al. model.
Where are old CCOs?

According to cooling studies they have to be bright till at least 10^5 years. But only one candidate (2XMM J104608.7-594306 Pires et al.) to be a low-B cooling NS is known (Calvera is also a possible candidate).

We propose that a large set of data on HMXBs and cooling NSs is in favour of field emergence on the time scale $10^4 \leq \tau \leq 10^5$ years (arXiv:1206.2819).

Some PSRs with thermal emission for which additional heating was proposed can be descendants of CCOs with emerged field.
How the field is buried

For t=60 msec

See 1210.7112 for a review of CCOs magnetic fields
Emerging field: modeling

1D model of field emergence

Dashed – crustal, dotted – core field

Ho 2011
Another model

2D model with field decay

Ohmic diffusion dominates in field emergence, but Hall term also can be important.

Calculations confirm that emergence on the time scale 10^3-10^5 years is possible.

$B_{0p} = 10^{14}$ G
Emerged pulsars in the P-Pdot diagram

Emerged pulsars are expected to have $P \sim 0.1$-0.5 sec
$B \sim 10^{11}$-10^{12} G
Negative braking indices or at least $n < 2$.
About 20-40 of such objects are known.

Parameters of emerged PSRs:
similar to “injected” PSRs
(Vivekanand, Narayan, Ostriker).

The existence of significant fraction of “injected” pulsars formally do not contradict recent pulsar current studies (Vranesevic, Melrose 2011).

Part of PSRs supposed to be born with long (0.1-0.5 s) spin periods can be matured CCOs.

Espinoza et al. arXiv: 1109.2740, 1211.5276
Growing field and kick velocities?

The idea is that $n<3$ are explained as due to growing field. Then it is possible to estimate the timescale for growing and plot it vs. velocity.

Larger kick –
- smaller fallback –
- faster field growing
Evolution of PSRs with evolving field

Three stages:
1. $n \leq 3$ Standard + emerging field
2. $n > 3$ Orhmic field decay
3. Oscillating and large n – Hall drift

\[n = 3 - 4 \frac{\dot{B}_0}{B_0 \tau_c} \equiv 3 - 4 \frac{\tau_c}{\tau_B}, \]
Buried field in Kes79?

The idea is to reconstruct surface temperature distribution, and then calculate which field configuration can produce it.

Very large pulse fraction (64%) in the anti-magnetar Kes 79. Large sub-surface magnetic field can explain the existence of compact hot spots. Then the field must have been buried in a fall-back episode.
Hidden magnetar in RCW103

1504.03279
Not so hidden!

1607.04107

1607.04264
Wide initial spin period distribution

Based on kinematic ages. Mean age – few million years. Note, that in Popov & Turolla (2012) only NSs in SNRs were used, i.e. the sample is much younger! Can it explain the difference?

1301.1265
Magnetic field decay and P_0

One can suspect that magnetic field decay can influence the reconstruction of the initial spin period distribution.

Exponential field decay with $\tau=5$ Myrs.

$\langle P_0\rangle=0.3$ s, $\sigma_P=0.15$ s; $\langle \log B_0/[G]\rangle=12.65$, $\sigma_B=0.55$

$Igoshev, Popov 2013$
Real vs. reconstructed P_0

How significantly the reconstructed initial periods changed due to not taking into account the exponential field decay.

Arrows point to initial parameters of pulsars if the exponential magnetic field decay was operating.

Igoshev, Popov 2013
Synthetic populations

Constant field

Exponential decay

\[P_0 = P \sqrt{1 - \frac{t_{true}}{\tau}}. \]
Fitting the field decay

Igoshev, Popov 2013
Another option: emerging field

The problem is just with few (6) most long-period NSs. Is it possible to hide them when they are young, and make them visible at the age ~few million years?

Yes! Emerging magnetic field!!!

Then we need correlations between different parameters.
Modified pulsar current

We perform a modified pulsar current analysis. In our approach we analyse the flow not along the spin period axis, as it was done in previous studies, but study the flow along the axis of growing characteristic age.

The idea is to probe magnetic field decay. Our method can be applied only in a limited range of ages.

We use distribution in characteristic ages to reconstruct the field evolution.
Tests

We make extensive tests of the method and obtain that in most of the cases it is able to uncover non-negligible magnetic field decay (more than a few tens of per cent during the studied range of ages) in normal radio pulsars for realistic initial properties of neutron stars.

(Synthetic samples are calculated by Gullon, Pons, Miralles)
Application to real data

We apply our methods to large observed samples of radio pulsars to study field decay in these objects. As we need to have as large statistics as possible, and also we need uniform samples, in the first place we study sources from the ATNF catalogue (Manchester et al. 2005). Then we apply our methods to the largest uniform subsample of the ATNF — to the PMSS (stands for the Parkes Multibeam and Swinburne surveys) (Manchester et al. 2001).

We reconstruct the magnetic field decay in the range of true (statistical) ages: $8 \times 10^4 < t < 3.5 \times 10^5$ yrs which corresponds to characteristic ages $8 \times 10^4 < \tau < 10^6$ yrs.

In this range, the field decays roughly by a factor of two.

With an exponential fit this corresponds to the decay time scale $\sim 4 \times 10^5$ yrs.

Note, this decay is limited in time.

Igoshev, Popov (2014)
Hall cascade and field evolution

\[
\frac{\partial B}{\partial t} = -c \nabla \times E, \\
E = -\frac{1}{c} v \times B + \frac{J}{\sigma} + \frac{J \times B}{n_e e c},
\]

\[
J = \left(\frac{c}{4\pi}\right)(\nabla \times B).
\]

With only Hall term we have:

\[
\frac{\partial B}{\partial t} = -\nabla \times \left(\frac{J \times B}{n_e e}\right), \quad t_{\text{Hall}} = \frac{n_e e L}{J} = \frac{4\pi n_e e L^2}{cB},
\]

\[
\tau_{\text{Ohm}} = \frac{4\pi \sigma L^2}{c^2}.
\]
Hall cascade and attractor

Hall cascade can reach the stage of so-called Hall attractor, where the field decay stalls for some time (Gourgouliatos, Cumming).
Hall attractor

After some time the Hall cascade decays as the field finds a new stable configuration.
Evolution of different components

Hall attractor mainly consists of dipole and octupole
New studies of the hall cascade

New calculations support the idea of a kind of stable configuration.

1501.05149
Where the currents are located?

\[\tau_{\text{Hall}} \approx \frac{4\pi e L^2 n_e}{cB} \]

\[L \approx H = \frac{P(\rho)}{\rho g} \]

Igoshev, Popov (2015)
Thermal evolution

Calculations are made by Shternin et al.

We fit the numerical results to perform a population synthesis of radio pulsars with decaying field.

![Graph showing temperature evolution over time with labeled curves for different masses.](image)
Different decay time scales

In the range of ages interesting for us the Hall rate is about the same value as the rate of Ohmic dissipation due to phonons.

\[
B = B_0 \frac{\exp\left(-t/\tau_{\text{Ohm}}\right)}{1 + \frac{\tau_{\text{Ohm}}}{\tau_{\text{Hall}}} \left(1 - \exp\left(-t/\tau_{\text{Ohm}}\right)\right)}
\]

\[
\tau_{\text{imp}} = 5.7 \frac{\rho_{14}}{Q} \left(\frac{Z}{30}\right) \left(\frac{Y_e}{0.05}\right)^{1/3} \left(\frac{Y_n}{0.8}\right)^{10/3} \times \left(\frac{f}{0.5}\right)^2 \left(\frac{g_{14}}{2.45}\right) \text{ Myrs,}
\]

\[
\tau_{\text{phonon}} = 2.2 \frac{\rho_{14}}{T_s^{15/6}} \left(\frac{Y_e}{0.05}\right)^{5/3} \left(\frac{Y_n}{0.8}\right)^{10/3} \times \left(\frac{f}{0.5}\right)^2 \left(\frac{g_{14}}{2.45}\right)^{-2} \text{ Myrs,}
\]
Magnetic field evolution

\[B = B_0 \frac{\exp\left(-t/\tau_{\text{Ohm}}\right)}{1 + \frac{\tau_{\text{Ohm}}}{\tau_{\text{Hall}}} (1 - \exp\left(-t/\tau_{\text{Ohm}}\right))} \]

All inclusive:
- Hall
- Phonons
- Impurities

Igoshev, Popov (2015)
Only Ohmic decay

Here the Hall cascade is switched off

In one figure we have Ohmic decay only due to impurities, on another one – phonons are added.
We think that at the ages $\sim 10^5$ yrs and below for normal pulsars we see mostly Ohmic decay, which then disappears as NSs cool down below the critical T.

Igoshev, Popov (2015)
Evolution with field decay
Getting close to the attractor
Who is closer to the attractor stage?
Tracks on the P-\(p_{\text{dot}}\) diagram

Kinematic age is larger for 0720, but characteristic age – for 1856.

It seems that 1856 is now on a more relaxed stage of the magneto-rotational evolution.

RX J0720 shows several types of activity, but RX J1856 is a very quiet source.
Evolution of different components

Hall attractor mainly consists of dipole and octupole
Temperature maps

Pure dipole

Dipole + octupole

Dipole + octupole + H5
Spectral fits: single blackbody

Single black body does not provide a good fit, even using, in addition, a line, or condensed surface.
Formally, two black bodies is the best fit for 1856. And for dipole+octupole we can obtain a very good fit. But
Two black bodies is the best fit. The colder component corresponds to larger surface area. This is in contrast with our results for the Hall attractor proposed by GC2013 (dipole + octupole).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Single BB</th>
<th>Two BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_h) ([10^{19} \text{ cm}^{-2}])</td>
<td>4.8(+0.2)(-0.2)</td>
<td>12.9(+2.2)(-2.3)</td>
</tr>
<tr>
<td>(kT_h^\infty) ([\text{eV}])</td>
<td>61.5(+0.1)(-0.1)</td>
<td>62.4(+0.6)(-0.4)</td>
</tr>
<tr>
<td>(R_h^\infty) ([\text{km}])</td>
<td>5.0(+0.1)(-0.1)</td>
<td>4.7(+0.2)(-0.3)</td>
</tr>
<tr>
<td>(kT_s^\infty) ([\text{eV}])</td>
<td>-</td>
<td>38.9(+4.9)(-2.9)</td>
</tr>
<tr>
<td>(R_s^\infty) ([\text{km}])</td>
<td>-</td>
<td>11.8(+5.0)(-0.4)</td>
</tr>
<tr>
<td>(\sigma_{sys})</td>
<td>1.5%</td>
<td>0.6%</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>1.12</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Conclusions

• Decaying magnetic field results in additional heating of a NS and decreasing its spin-down rate
• Field decay can be more important for large initial fields, for “standard” fields (~10^{12} G) it is not important
• It is possible to describe different types of young NSs (PSRs, magnetars, M7 etc.) in the model with decaying magnetic field
• Re-merging magnetic field can be an important ingredient
• With re-emerging field we can add to the general picture also CCOs.
• Recent studies indicate that in the life of normal radio pulsars there is a period when their magnetic field decay
• Hall cascade (and attractor) can be an important ingredient of the field evolution.
• At the moment we cannot state that we see the Hall attractor in the population of normal radio pulsars
• Also, we do not see that any of the M7 NSs are at the attractor stage, as its properties are predicted by GC2013
• Probably, the attractor stage is reached later, or its properties are different form the predicted ones.
Papers to read

• Pons, Geppert “Magnetic field dissipation in neutron star crusts: from magnetars to isolated neutron stars” astro-ph/0703267
• Ho “Evolution of a buried magnetic field in the central compact object neutron stars” arXiv:1102.4870
• Pons et al. “Pulsar timing irregularities and the imprint of magnetic field Evolution” arXiv: 1209.2273
• Cumming et al. “MAGNETIC FIELD EVOLUTION IN NEUTRON STAR CRUSTS DUE TO THE HALL EFFECT AND OHMIC DECAY” astro-ph/0402392