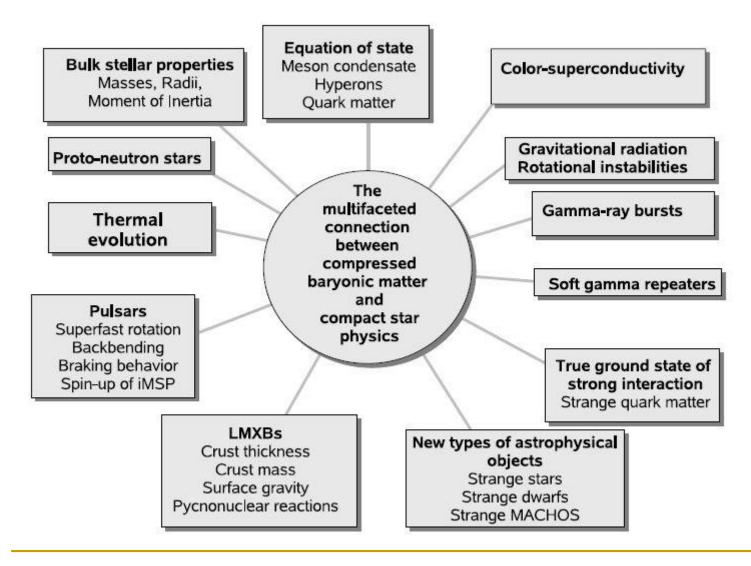
Internal structure of Neutron Stars

Artistic view

Astronomy meets QCD



arXiv: 0808.1279

Hydrostatic equilibrium for a star

(1)
$$\frac{dP}{dr} = -\frac{Gm\rho}{r^2} \qquad m = m(r)$$

$$(2) \qquad \frac{dm}{dr} = 4\pi\rho \ r^2$$

- $(3) \quad \frac{dS}{dt} = Q$
- $(4) P = P(\rho)$

For NSs we can take T=0 and neglect the third equation

For a NS effects of GR are also important.

$$r_{\rm g} = \frac{2GM}{c^2} \approx 2.95 \ \frac{M}{M_{SUN}} \ {\rm km}$$

 $M/R \sim 0.15 (M/M_{\odot})(R/10 \text{ km})^{-1}$ $J/M \sim 0.25 (1 \text{ ms/P}) (M/M_{\odot})(R/10 \text{km})^{2}$

Lane-Emden equation. Polytrops.

$$P = K\rho^{\gamma}, \quad K, \gamma = \text{const}, \quad \gamma = 1 + \frac{1}{n}$$

$$\frac{dP}{dr} = -\frac{Gm\rho}{r^2} = g\rho, \qquad g = -\frac{Gm}{r^2} = -\frac{d\varphi}{dr}$$

$$\frac{dP}{dr} = -\rho \frac{d\varphi}{dr}, \qquad \Delta\varphi = 4\pi G\rho$$

$$\rho = \rho_c \Theta^n, \qquad \Theta = 1 \text{ при } r = 0$$

$$P = K\rho_c^{1+1/n} \Theta^{1+n}, \quad \frac{dP}{dr} = (n+1)K\rho_c^{1+1/n} \Theta^n \frac{d\Theta}{dr}$$

$$\frac{d\varphi}{dr} = -(n+1)K\rho_c^{1/n} \frac{d\Theta}{dr}$$

$$\Delta\Theta = -\frac{4\pi G \rho_c^{1-1/n}}{(n+1)K} \Theta^n$$

$$\xi = r/a$$
, $a^2 = (n+1)K\rho_c^{1/n-1}/(4\pi G)$

$$\frac{1}{\xi^2} \frac{d}{d\xi} \xi^2 \frac{d}{d\xi} \Theta = -\Theta^n$$

$$\Theta = \Theta(\xi)$$

$$0 \le \xi \le \xi_1$$

$$\Theta(0) = 1, \quad \Theta'(0) = 0$$

$$\Theta(\xi_1) = 0$$

Properties of polytropic stars

Analytic solutions:

$$n = 0 \qquad \Theta = 1 - \frac{\xi^2}{6} \qquad \xi_1 = \sqrt{6}$$

$$n = 1 \qquad \Theta = \frac{\sin \xi}{\xi} \qquad \xi_1 = \pi$$

$$n = 5 \qquad \Theta = \frac{1}{\sqrt{1 + \xi^2/3}} \qquad \xi_1 = \infty$$

$$M = 4\pi \int_{0}^{R} dr \, r^{2} \rho = 4\pi \rho_{c} a^{3} \xi_{1}^{2} |\Theta'(\xi_{1})|$$

$$\frac{\rho_{c}}{\rho} = \frac{4\pi R^{3} \rho_{c}}{3M} = \frac{\xi_{1}}{3|\Theta'(\xi_{1})|}$$

√ γ=5/3

↓ γ=4/3

$$M \sim \rho_c^{(3-n)/(2n)}$$
 $R \sim \rho_c^{(1-n)/(2n)}$
 $M \sim R^{(3-n)/(1-n)}$

n	0	1	1.5	2	3
ξ_1	2.449	3.142	3.654	4.353	6.897
$ \Theta'_1 $	0.7789	0.3183	0.2033	0.1272	0.04243
$\rho_c/\overline{\rho}$	1	3.290	5.991	11.41	54.04

$$n = 0$$
 $M \sim R^3$
 $n = 1$ $M \sim \rho_c$ $R = \text{const}$
 $n = 1.5$ $M \sim \sqrt{\rho_c} \sim R^{-3}$
 $n = 3$ $M = \text{const}$ $R \sim \rho_c^{-1/3}$

Useful equations

White dwarfs

1. Non-relativistic electrons

$$\gamma = 5/3, \ K = (3^{2/3} \ \pi^{4/3}/5) \ (\hbar^2/m_e m_u^{5/3} \mu_e^{5/3});$$

$$\mu_e \text{-mean molecular weight per one electron}$$

$$K = 1.0036 \ 10^{13} \ \mu_e^{-5/3} \ (CGS)$$

2. Relativistic electrons

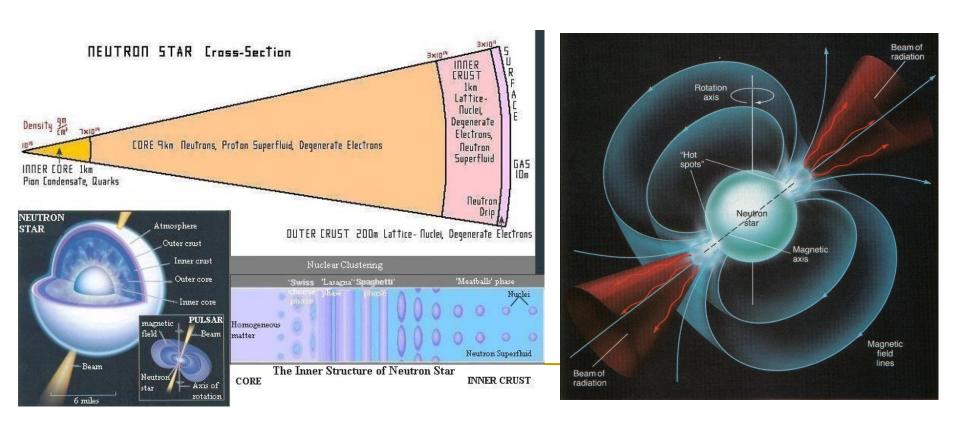
$$γ=4/3$$
, $K=(3^{1/3} π^{2/3} /4)$ ($ħc/m_u^{4/3}μ_e^{4/3}$); $K=1.2435 10^{15} μ_e^{-4/3}$ (CGS)

Neutron stars

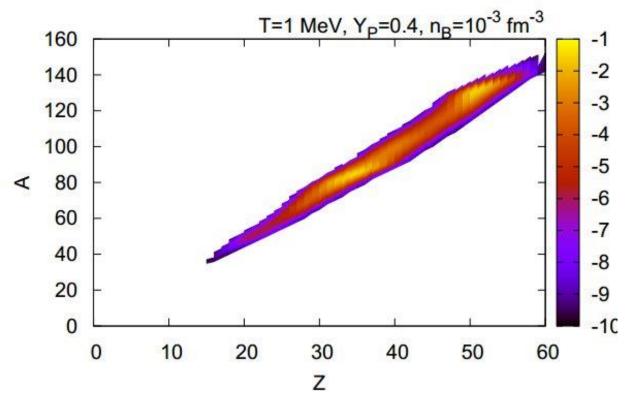
- 1. Non-relativistic neutrons γ =5/3, K=(3^{2/3} π ^{4/3}/5) (\hbar ²/m_n^{8/3}); K=5.3802 10⁹ (CGS)
- 2. Relativistic neutrons $\gamma=4/3$, $K=(3^{1/3} \pi^{2/3}/4)$ ($\hbar c/m_n^{4/3}$); $K=1.2293 \ 10^{15}$ (CGS)

Neutron stars

Superdense matter and superstrong magnetic fields



Proto-neutron stars



Mass fraction of nuclei in the nuclear chart for matter at T = 1 MeV, $n_B = 10^{-3}$ fm⁻³, and $Y_P = 0.4$. Different colors indicate mass fraction in Log₁₀ scale.

1202.5791

EoS for core-collapse, proto-NS and NS-NS mergers

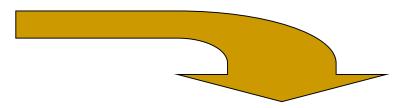
	Core-collapse	Proto-neutron	Mergers of compact	
	supernovae	stars	binary stars	
n/n_s	10^{-8} - 10	10^{-8} - 10	10^{-8} - 10	
$T({ m MeV})$	0 - 30	0 - 50	0 - 100	
Y_e	0.35 - 0.45	0.01 - 0.3	0.01 - 0.6	
$S(k_B)$	0.5 - 10	0 - 10	0 - 100	

Wide ranges of parameters

Astrophysical point of view

Astrophysical appearence of NSs is mainly determined by:

- Spin
- Magnetic field
- Temperature
- Velocity
- Environment



The first four are related to the NS structure!

Equator and radius

$$ds^2 = c^2 dt^2 e^{2\Phi} - e^{2\lambda} dr^2 - r^2 [d\theta^2 + \sin^2\theta d\phi^2]$$

In flat space $\Phi(r)$ and $\lambda(r)$ are equal to zero.

• t=const, r= const,
$$\theta=\pi/2$$
, $0<\Phi<2\pi$

• t=const,
$$\theta$$
=const, ϕ =const, $0 < r < r_0$ \longrightarrow $dl=e^{\lambda}dr$ \longrightarrow $l=\int_0^s e^{\lambda}dr \neq r_0$

Gravitational redshift

$$d\tau = dt e^{\Phi},$$

$$v_r = \frac{dN}{d\tau} = \mathrm{e}^{-\Phi} \; \frac{dN}{dt} \Longrightarrow$$
 Frequency emitted at r

$$r \to \infty \quad \Phi \to 0$$

$$v_{\infty} = \frac{dN}{dt}$$

Frequency detected by an observer at infinity

$$v_{\infty} = v_r e^{\Phi} \implies \Phi(r)$$

$$\Phi(r)$$

This function determines gravitational redshift

$$e^{2\lambda} \equiv \frac{1}{1 - \frac{2Gm}{c^2 r}}$$

It is useful to use m(r) – gravitational mass inside r – instead of $\lambda(r)$

Outside of the star

$$r > R \implies m(r) = M = \text{const}$$

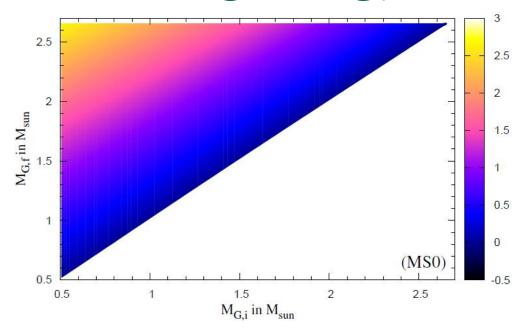
$$e^{2\Phi} = 1 - \frac{2GM}{c^2 r} = 1 - \frac{r_g}{r}, \qquad r_g = \frac{2GM}{c^2}$$

$$ds^2 = \left(1 - \frac{r_g}{r}\right)c^2 dt^2 - \left(1 - \frac{r_g}{r}\right)^{-1} dr^2 - r^2 d\Omega^2$$

$$v_{\infty} = v_r \sqrt{1 - \frac{r_g}{r}} \qquad \text{redshift}$$

Bounding energy
$$\Delta M = M_b - M \sim 0.2~M_{\rm sun}$$
 Apparent radius $R_{\infty} = R/\sqrt{1-r_{\rm g}/R}$

Bounding energy



If you drop a kilo on a NS, then you increase its mass for < kilo

M_{acc} is shown with color

$M_{G,i}$ (M_{\odot})	ΔM_G (M_{\odot})	$M_{B,i} \ (M_{\odot})$		$M_{acc} (\Delta M_B)$ (M_{\odot})	
	. 07	APR	MS0	APR	MS0
1.4	0.57	1.554	1.525	0.768	0.712
1.5	0.47	1.681	1.647	0.641	0.591
1.6	0.37	1.811	1.767	0.511	0.470
1.7	0.27	1.943	1.892	0.379	0.345
1.8	0.17	2.080	2.018	0.242	0.219
1.9	0.07	2.221	2.146	0.101	0.091

 $M_{acc} = \Delta M_G + \Delta B E/c^2 = \Delta M_B$ BE- binding energy BE= $(M_B - M_G)c^2$

TOV equation

$$R_{ik} - \frac{1}{2} g_{ik} R = \frac{8\pi G}{c^4} T_{ik}$$

(1)
$$\frac{dP}{dr} = -\frac{G\rho m}{r^2} \left(1 + \frac{P}{\rho c^2} \right) \left(1 + \frac{4\pi r^3 P}{mc^2} \right) \left(1 - \frac{2Gm}{rc^2} \right)^{-1}$$
(2)
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

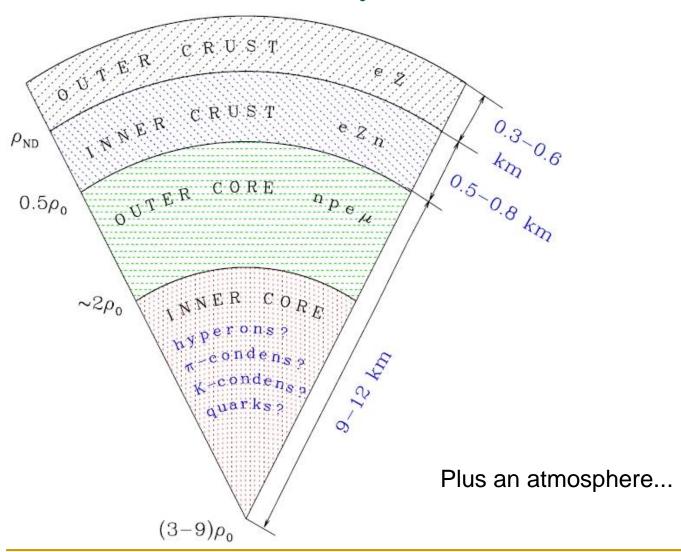
(2)
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

(3)
$$\frac{d\Phi}{dr} = -\frac{1}{\rho c^2} \frac{dP}{dr} \left(1 + \frac{P}{\rho c^2} \right)^{-1}$$

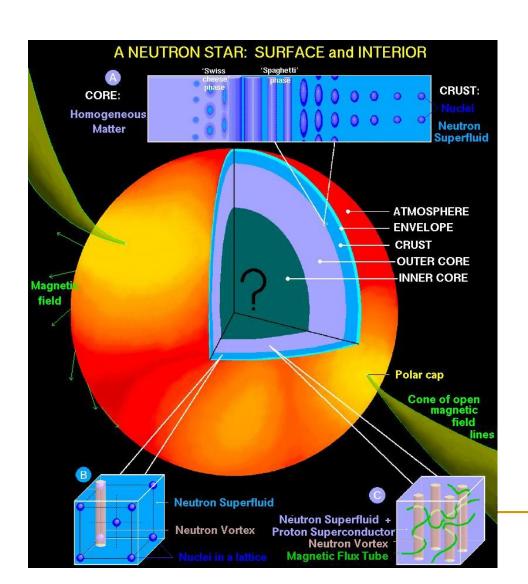
(4)
$$P = P(\rho)$$

Tolman (1939) Oppenheimer-Volkoff (1939)

Structure and layers



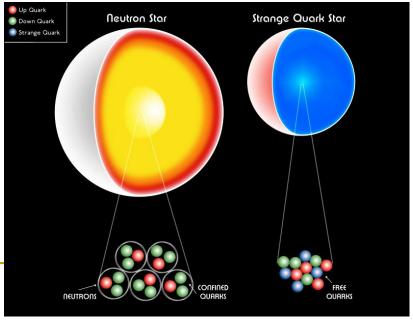
Neutron star interiors



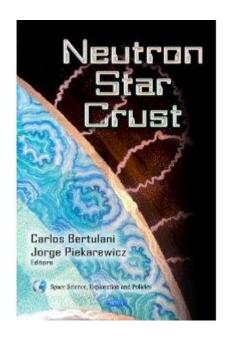
Radius: 10 km Mass: 1-2 solar

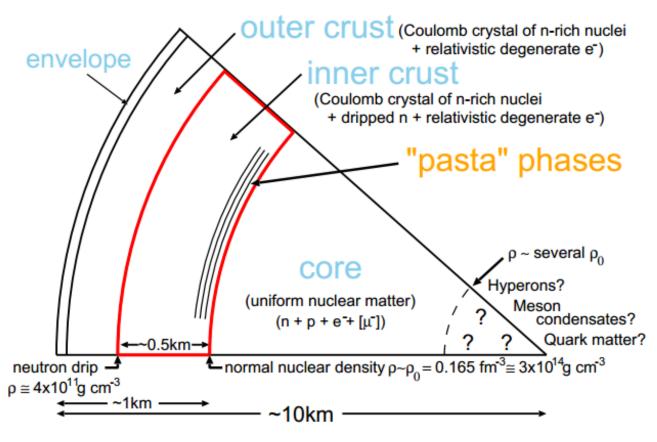
Density: above the nuclear

Strong magnetic fields



Neutron star crust

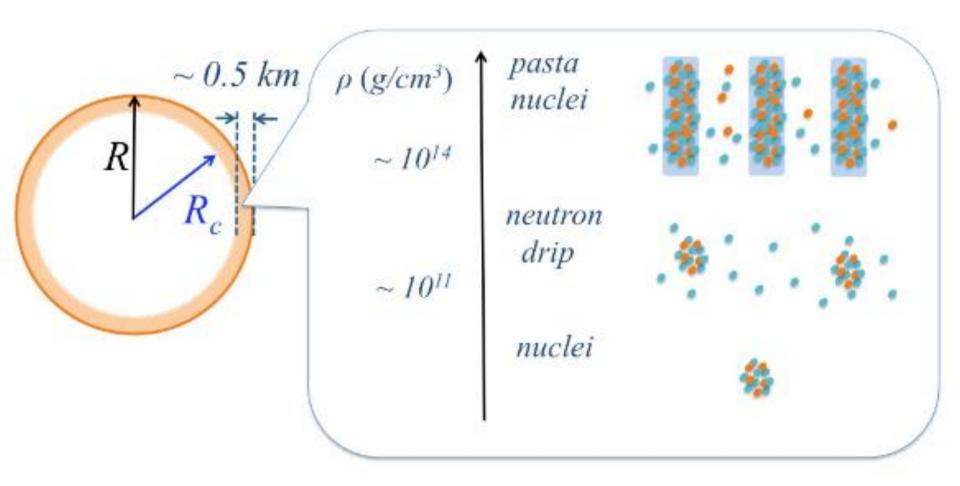




Many contributions to the book are available in the arXiv.

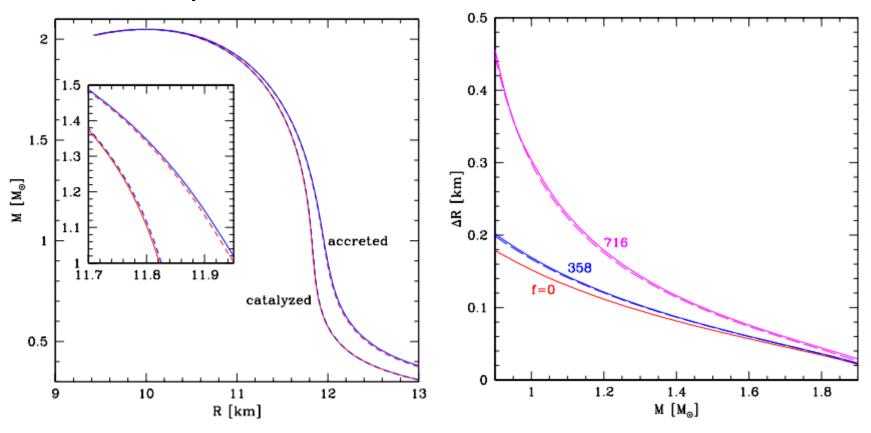
Mechanical properties of crusts are continuously discussed, see 1208.3258

Inner crust properties

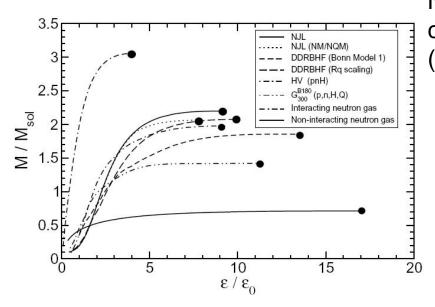


Accreted crust

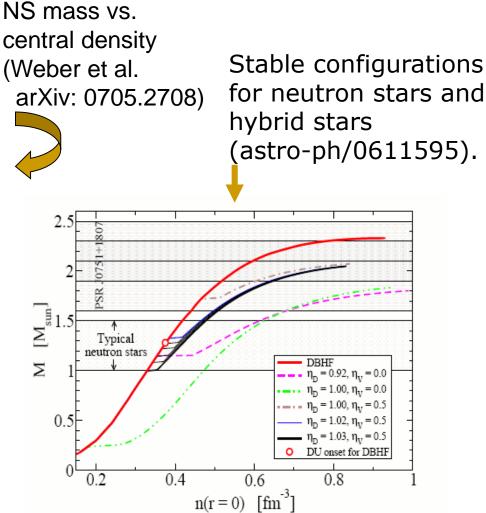
It is interesting that the crust formed by accreted matter differs from the crust formed from catalyzed matter. The former is thicker.



Configurations



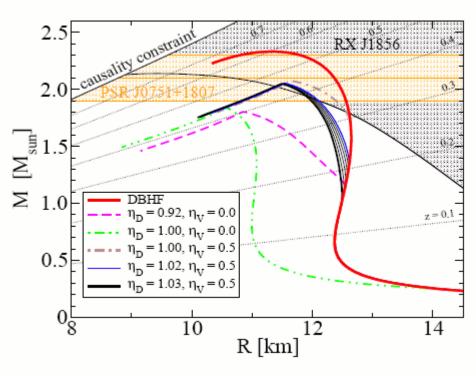
A RNS code is developed and made available to the public by Sterligioulas and Friedman ApJ 444, 306 (1995) http://www.gravity.phys.uwm.edu/rns/



Mass-radius

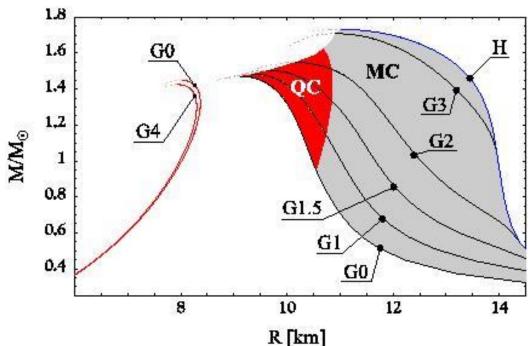
Mass-radius relations for CSs with possible phase transition to deconfined quark matter.

About hyperon stars see a review in 1002.1658.
About strange stars and some other exotic options – 1002.1793



(astro-ph/0611595)

Mass-radius relation



Main features

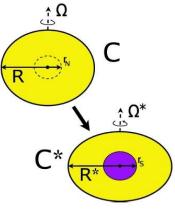
- Max. mass
- Diff. branches (quark and normal)
- Stiff and soft EoS
- Small differences for realistic parameters
- Softening of an EoS with growing mass

Rotation is neglected here.

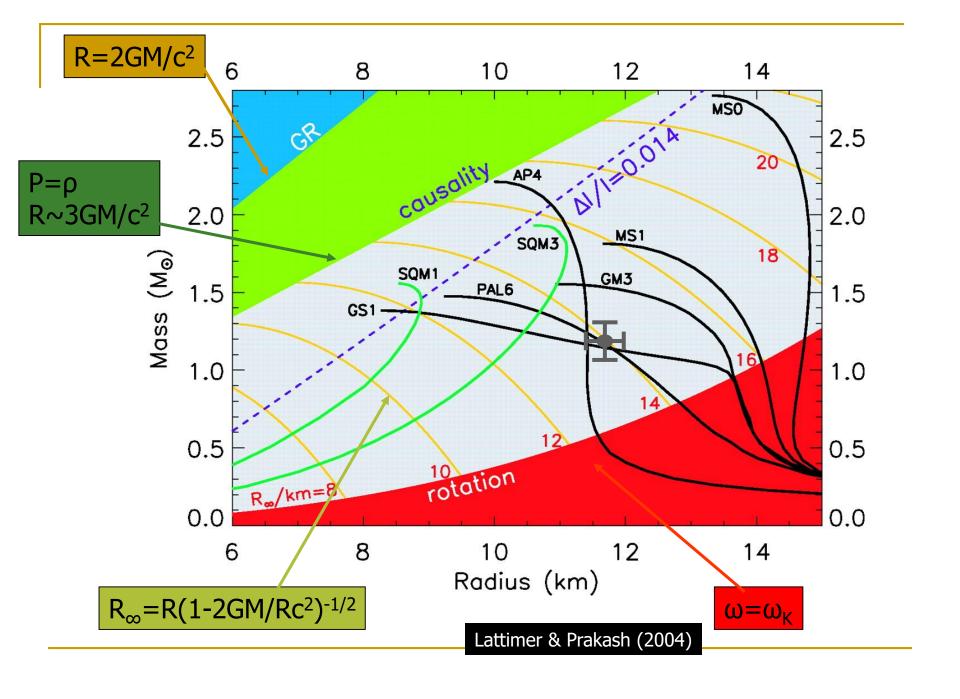
Obviously, rotation results in:

- larger max. mass
- larger equatorial radius

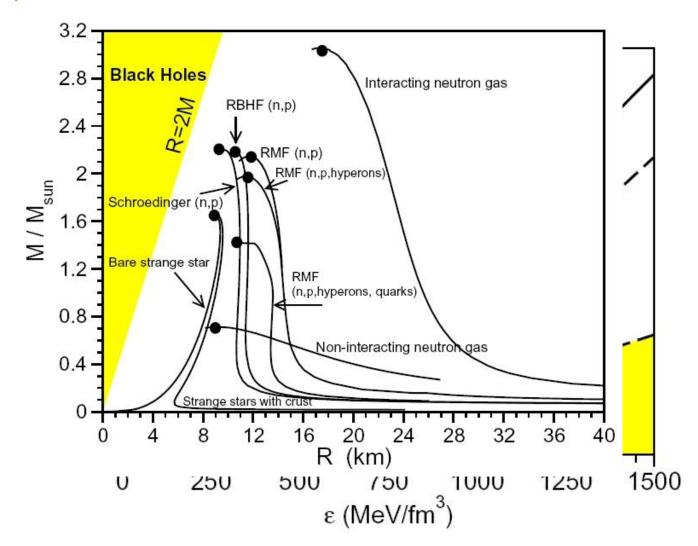
Spin-down can result in phase transition, as well as spin-up (due to accreted mass), see 1109.1179



Haensel, Zdunik astro-ph/0610549

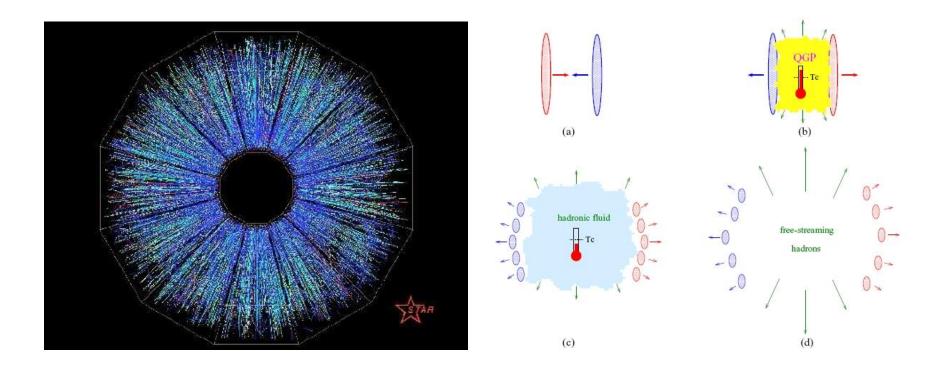


EoS

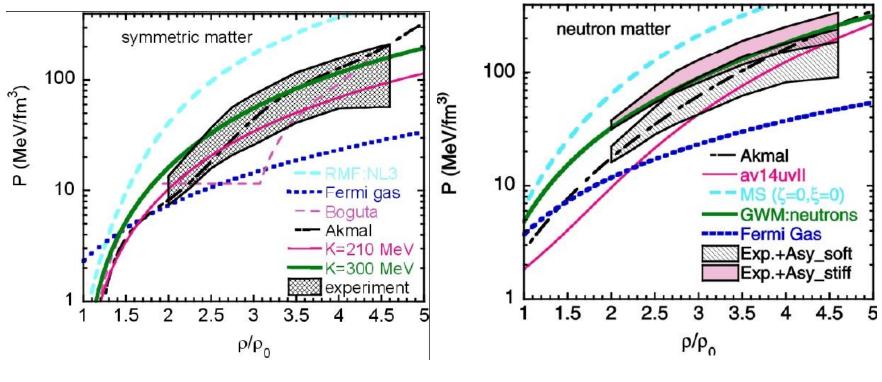


(Weber et al. ArXiv: 0705.2708)

Au-Au collisions



Experimental results and comparison



 $1 \text{ Mev/fm}^3 = 1.6 \ 10^{32} \text{ Pa}$

Danielewicz et al. nucl-th/0208016

GSI-SIS and AGS data

New heavy-ion data and discussion: 1211.0427

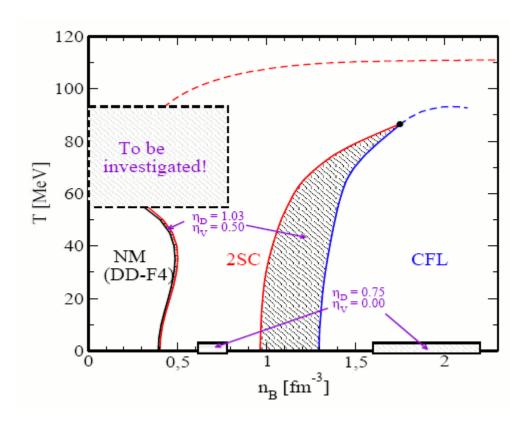
Also laboratory measurements of lead nuclei radius can be important, see 1202.5701

early universe Phase diagram quark-gluon plasma × RHIC $\langle \bar{\psi} \psi \rangle \sim 0$ Tc ~ 170 MeV crossover T SPS quark matter $\langle \psi \psi \rangle > 0$ crossover hadronic fluid superfluid/superconducting water phases? critical point $n_{\rm p} > 0$ $n_B = 0$ ice CFL nuclear matter vacuum neutron star cores μ ~ 922 MeV triple point μ steam quark-gluon plasma ~150 MeVhadrons → quarks hadron nuclear resonance gas color superconductivity

 M_N

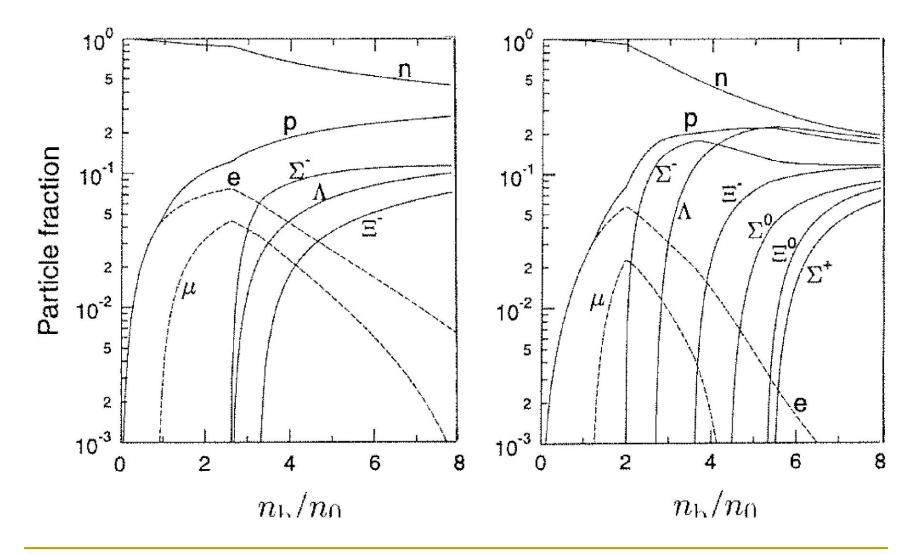
Phase diagram

Phase diagram for isospin symmetry using the most favorable hybrid EoS studied in astro-ph/0611595.



(astro-ph/0611595)

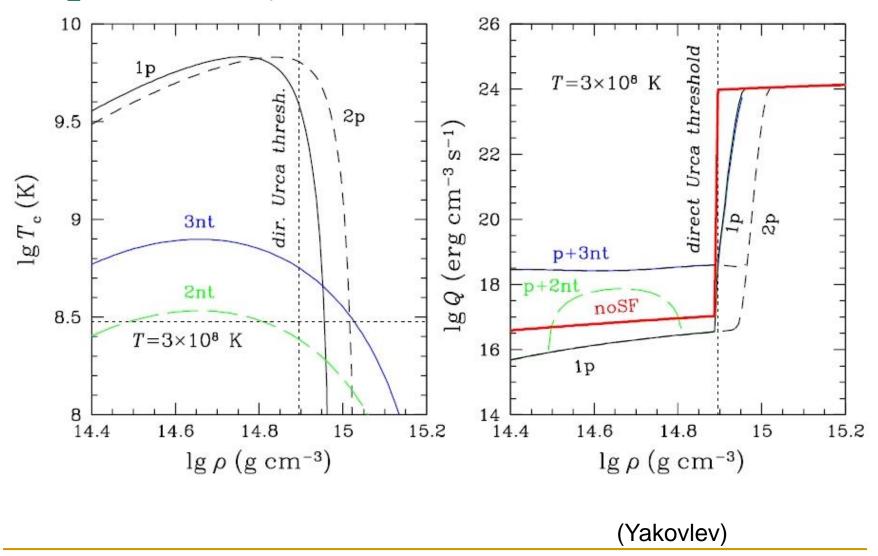
Particle fractions



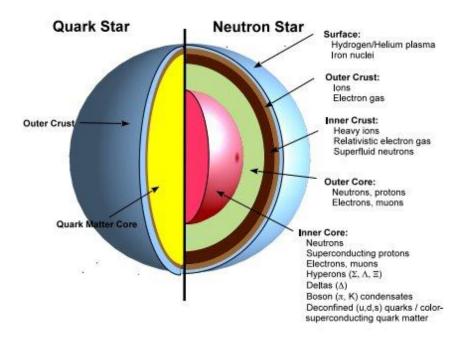
Effective chiral model of Hanauske et al. (2000)

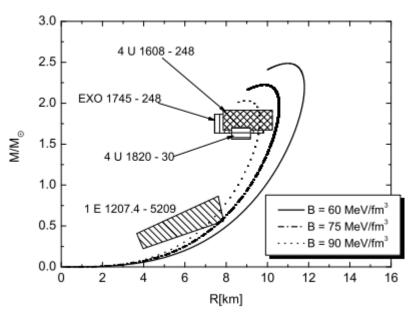
Relativistic mean-field model TM1 of Sugahara & Toki (1971)

Superfluidity in NSs



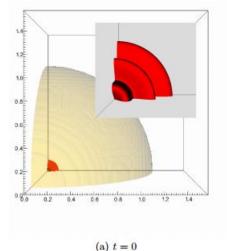
Quark stars

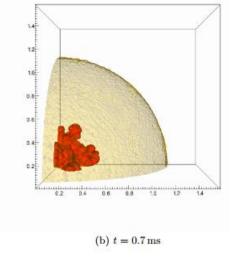


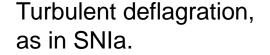


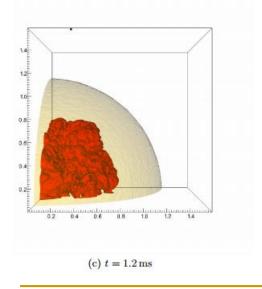
1210.1910

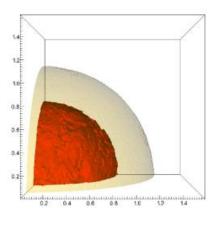
Formation of quark stars







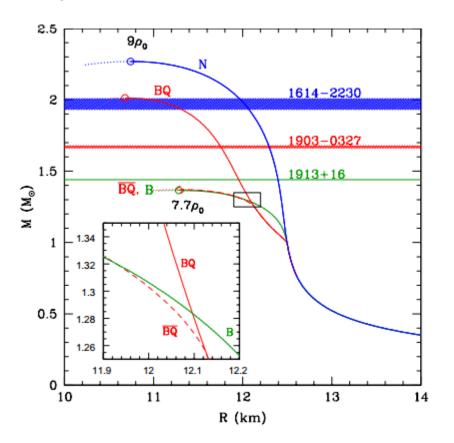


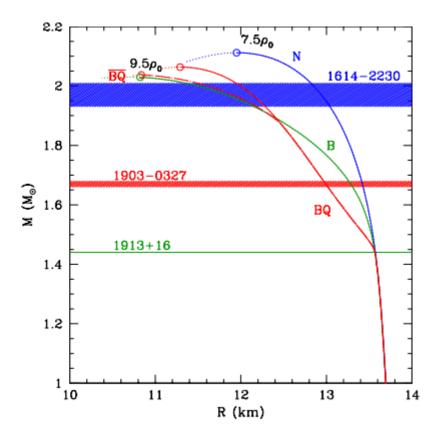


(d) $t = 4.0 \, \text{ms}$

Neutrino signal due to conversion of a NS into a quark star was calculated in 1304.6884

Hybrid stars

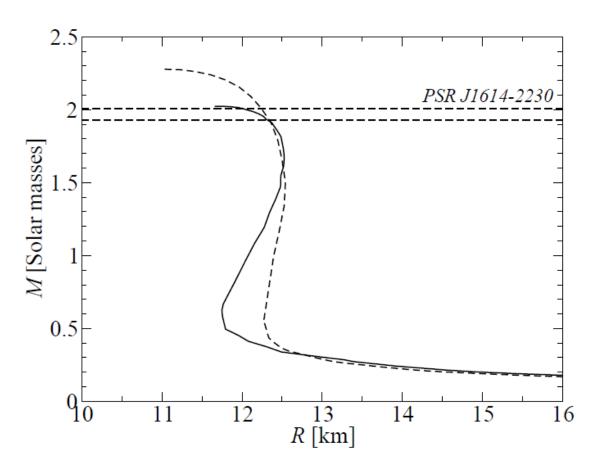




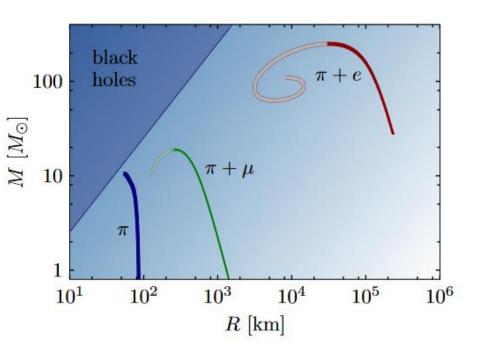
1211.1231

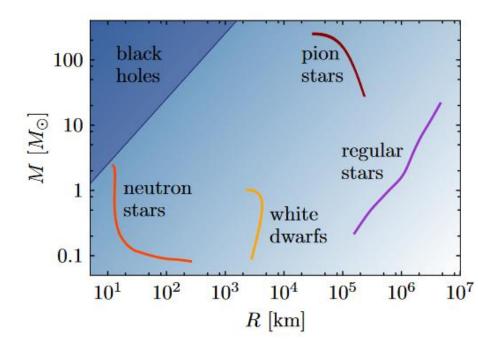
Massive hybrid stars

Stars with quark cores can be massive, and so this hypothesis is compatible with existence of pulsars with M>2 Msolar



Pion stars

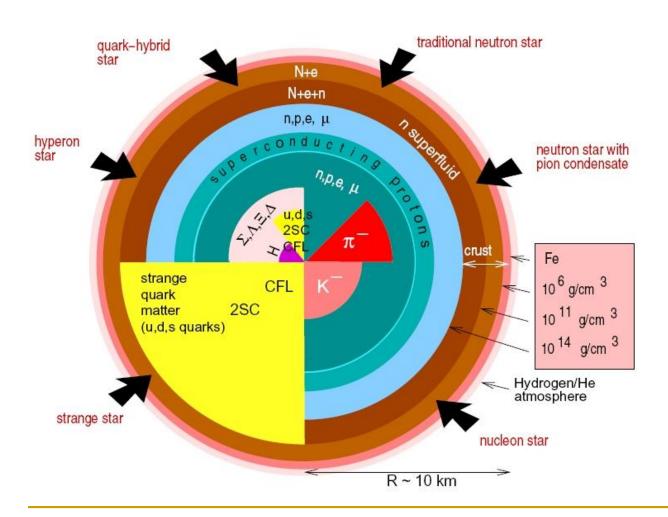




New exotic solution.

It is not clear if it can be applied to any known type of sources.

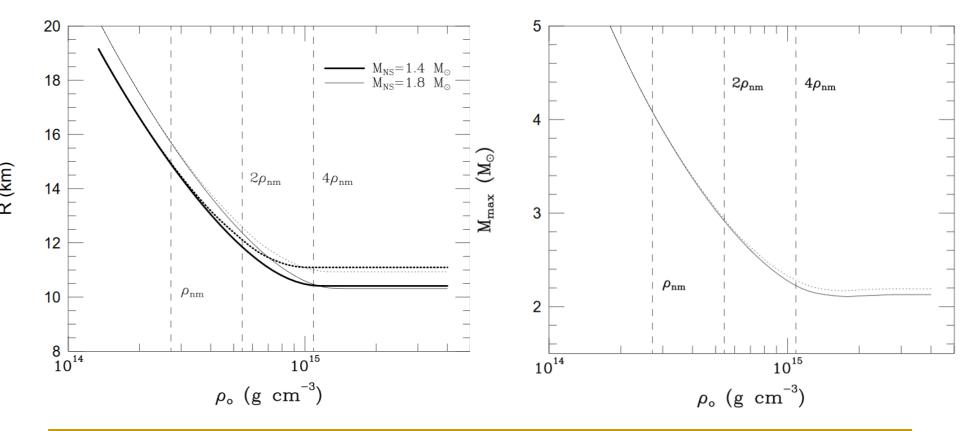
NS interiors: resume



(Weber et al. ArXiv: 0705.2708)

Maximum mass

Maximum mass of NSs depends on the EoS, however, it is possible to make calculations on the base of some fundamental assumptions.

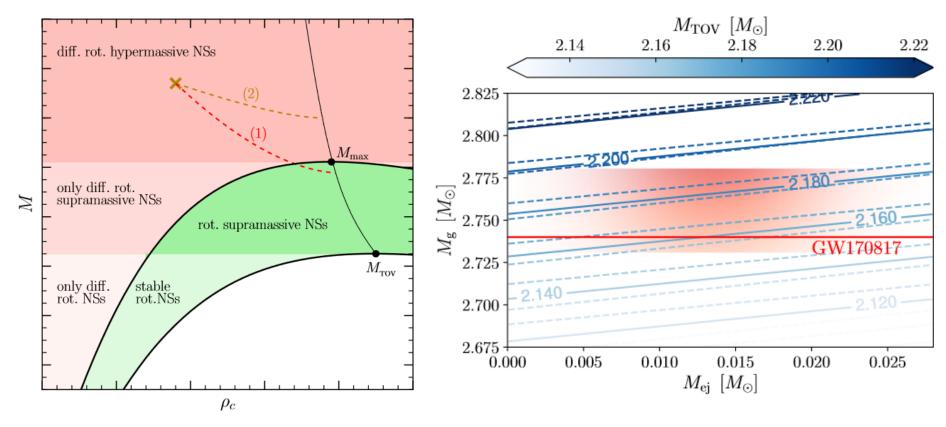


astro-ph/9608059

Seminal paper: Rhoades, Ruffini 1974 http://prl.aps.org/abstract/PRL/v32/i6/p324_1 $c_s^2 = \frac{dP}{d\rho} = c^2$.

Calculations based on recent data on NS-NS coalescence

What uniform rotation can give: $M_{\rm max} = \left(1.20^{+0.02}_{-0.02}\right) M_{\rm TOV}$ independently of the EOS



Another constraint from GW170817

$$M_{\rm NSNS} \approx 2.74 \lesssim M_{\rm thresh} \approx \alpha M_{\rm max}^{\rm sph}$$
. As there was no prompt collapse

Here $\alpha \approx 1.3-1.7$ is the ratio of the HMNS threshold mass limit to the NS spherical maximum mass as gleaned from multiple numerical experiments of merging NSNSs

$$M_{\rm NSNS} \approx 2.74 \gtrsim M_{\rm max}^{\rm sup} \approx \beta M_{\rm max}^{\rm sph}$$

where $\beta \approx 1.2$ is the ratio of the uniformly rotating supramassive NS limit to the nonrotating spherical maximum

$$\begin{split} M_{\rm max}^{\rm sph} &= 4.8 \left(\frac{2 \times 10^{14} \ {\rm gr/cm^3}}{\rho_m/c^2} \right)^{1/2} M_{\odot} \,, \\ M_{\rm max}^{\rm sup} &= 6.1 \left(\frac{2 \times 10^{14} \ {\rm gr/cm^3}}{\rho_m/c^2} \right)^{1/2} M_{\odot} \,, \\ \beta &\approx 1.27. \end{split} \qquad \begin{aligned} 2.74/\alpha &\lesssim M_{\rm max}^{\rm sph} \lesssim 2.74/\beta \\ M_{\rm max}^{\rm sph} &\lesssim 2.16. \quad \beta \approx 1.27. \\ M_{\rm max}^{\rm sph} &\lesssim 2.28. \quad \beta = 1.2 \end{aligned}$$

Papers to read

- 1. astro-ph/0405262 Lattimer, Prakash "Physics of neutron stars"
- 2. 0705.2708 Weber et al. "Neutron stars interiors and equation of state ..."
- 3. physics/0503245 Baym, Lamb "Neutron stars"
- 4. 0901.4475 Piekarewicz "Nuclear physics of neutron stars" (first part)
- 5. 0904.0435 Paerels et al. "The Behavior of Matter Under Extreme Conditions"
- 6. 1512.07820 Lattimer, Prakash "The EoS of hot dense matter"
- 7. 1001.3294 Schmitt "Dense matter in compact stars A pedagogical introduction"
- 8. 1303.4662 Hebeler et al. "Equation of state and neutron star properties constrained by nuclear physics and observation"
- 9. 1210.1910 Weber et al. Structure of quark star
- 10. 1302.1928 Stone "High density matter"
- 11. 1707.04966 Baym et al. "From hadrons to quarks in neutron stars: a review"

Lectures on the Web

Lectures can be found at my homepage:

http://xray.sai.msu.ru/~polar/html/presentations.html