Самая маломассивная планета, открытая с помощью метода микролинзирования. Она почти в 100 000 раз легче своей звезды. Масса звезды 0.3-0.6 солнечных. Планета получается 1.4-3.1 массы Земли. Планета видна в 1.4-3.1 а.е. от звезды.
Очередной небольшой обзор по общим свойствам экзопланет и по ближайшим планам поиска планет, в результате чего существенно возрастет выборка, причем возрастет в недоступной сейчас области параметров.
Если все по плану, то в начале Gaia представит тысячи планет, открытый астрометрическими методами. Затем в 2025 на орбиту выйдет WFIRST (известный теперь как телескоп Роман) и даст множество планет по наблюдениям микролинзирования (безусловно, запуск этого аппарата может отложиться, например, если снова затянется история с JWST). А в 2026 полетит Plato, в результате чего появятся десятки тысяч новых планет, открытых методом транзитов.
Как известно, Юпитер является мощным источником низкочастотного (ниже 40 МГц) радиоизлучения. Естественно, возникает мысль поискать экзопланеты в радиодиапазоне. Тем более, что излучения Юпитера во многом связано с взаимодействием магнитосферы Юпитера с солнечным ветром, а есть планеты, которые подходят к своей звезде ближе - и там можно ожидать более мощное излучение.
Авторы выбради довольно уникальный объект - HD80606b. У этой планеты рекордный эксцентриситет - 0.93. К тому же, она подходит близко к своей звезде. Наблюдения проводились на LOFAR.
Увы, увидеть ничего не удалось. Авторы обсуждают, какие установки в ближайшем будущем смогут надежно зарегистрировать радиоизлучение экзопланет.
Авторы моделируют наблюдения экзопланет на телескопе Вебба. Резюме такое. Юпитеры можно будет видеть на расстояниях далее 30 а.е. Аналоги Сатурна - далее 50 а.е. А планеты с массой 0.1 юпитерианской - далее 100 а.е. Речь идет о молодых планетах в группах бета Живописца и TW Гидры. Конечно, это шаг вперед, по сравнению с современными наземными наблюдениями. Правда, шаг не гигантский, но все же.
С одной стороны, это очередное открытие в череде подобных. С другой, пока таких случаев не так уж много, и не хочется упускать возможность поговорить о том, что растет популяция известных двойных систем, где один из компонентов - бурый карлик, а второй - планета.
Это молодая система, поэтому оба объекта имеют относительно высокую светимость, т.е., оба видны напрямую. Система очень широкая, а потому легко может развалиться в будущем, в результате чего появится свободно летающая (freee-floating) планета. Т.о., подобные двойные - это еще один канал формирования одиночных планет.
Большой обзор по теме.
Авторы начинают с введения, с понятных основ формирования планетных систем, но постепенно переходят к основной части - химии протопланетных дисков и планет. Химии, в первую очередь, в смысле состава. Хотя много внимания уделяется и формированию молекул в облаках и ядрах.
По наблюдениям на ALMA авторы обнаружили набор концентрических структур (колец) в молодом протопланетном диске. Обычно такие образования связывают с формирующимися массивными планетами, но не только. Природа обнаруженных колец пока не ясна. Но как бы то ни было, их наличие в столь молодом диске вызывает интерес. А если это планеты, то, как будут писать в СМИ, "результаты бросают вызов существующим моделям формирования планет".
В атмосферах белых карликов тяжелые элементы быстро оседают, а потому не проявляются в спектрах. Соответственно, когда линии видны - это является следствием недавнего выпадения вещества. Очевидным источником является разрушение планетных тел (включая малые тела). Конечно, на стадии красного гиганта звезда поглощает все объекты вплоть до нескольких астрономических единиц. Но после сброса звездой внешних слоев (и соответствующего уменьшения массы) тела на далеких орбитах могут начать активно взаимодействовать друг с другом. В результате некоторые из них оказываются вблизи "вылупившегося" белого карлика, приливы которого разрушают их - и тогда "загрязняется" атмосфера.
Разрушение тел и выпадение вещества на карлик нередко должно сопровождаться формированием диска. Диски видят редко - было известно всего 8 штук. И тут разом авторы статьи удваивают выборку, представив данные по девяти дискам.
Все это весьма интересно для изучения эволюции планетных систем после того, как звезды превратились в белые карлики.
"Если вы оптимист, то потенциально обитаемые планеты есть у каждой второй звезды, а если пессимист - то у каждой третьей" - примерно так можно суммировать результаты исследований.
На самом деле, есть, конечно, уточняющие детали, поскольку есть некоторая неопределенность в определении частоты встречаемости. Самые оптимисты могут рассчитывать и на три такие планеты у пары звезд. Наоборот, может они встречают лишь у одной из 6-7 звезд. Важно, что это все без учета красных карликов. Так что новости скорее хорошие.
Часто в лекциях говоришь, что "а вот это пока невозможно". Мне нравится читать и рассказывать о новых результатах, которые делают "это" возможным.
В данном случае речь идет о том, что с помощью адаптивной оптики удалось увидеть звезду с экзопланетой, являющуюся гравитационной линзой. Обычно мы приговариваем, что метод линзирования как метод открытия экзопланет, обладает тем недостатком, что есть большие неопределенности в расстоянии и скорости звезды-линзы, и вообще - мы ее не видим. Теперь видим.
Наблюдения с адаптивной оптикой на телескопе Кека позволили выделить звезду-линзу на фоне звезды-источника. Это позволило увидеть смещение звезд друг относительно друга. Теперь есть и расстояние, и скорость, и даже оценка массы (по спектральному классу). Это позволяет радикально уточнить оценку массы экзопланеты.
Красивый и содержательный обзор. Основная тема - визуализация протопланетных дисков и структур в них, особенно структур, связанных с распределением скоростей в диске. Но, чтобы понять, что на изображено картинке, надо описать физику дела. И это понятным образом сделано авторами.
Известно, что планеты могут пережить эпизод, когда звезда выходит на стадию красного гиганта, а затем превращается в белый карлик. Накоплено уже немало свидетельств в пользу того, что у белых карликов есть объекты планетных масс. Но данный результат (если он окончательно подтвердится и снимется слово "кандидат") претендует, все-таки, на термин "впервые".
Впервые у белого карлика обнаружен транзитный кандидат в планеты с юпитерианской массой. При этом планета имеет орбитальный период всего лишь 1.4 дня. Т.е., ей пришлось существенно приблизится к звезде, ведь красный гигант вычистил все вокруг на пару астрономических единиц. Как это произошло - не ясно. Наблюдения проводились на спутнике TESS, а затем на наземных инструментах.
Я бы сказал, что транзит довольно странный для такой системы. Планета намного больше белого карлика, поэтому скорее мы ожидали бы полного исчезновения более массивного объекта при транзите. Однако транзит "скользящий" (grazing), что довольно маловероятно (но не исключено).
Известно, что в диапазоне масс от десятых долей юпитера до сотых масс Солнца размеры тел меняются не сильно. Поэтому, чтобы понять с чем мы имеем дело, надо как-то оценить массу затмевающего тела. Это было сделано непрямым способом - по отсутствию теплового излучения. Если бы это была не планета, а бурый карлик, то следовало бы ожидать заметный поток, но его нет. Тем не менее, можно сказать, что масса определена не очень надежно.
На самом деле, правильнее было бы написать "первый кандидат, открытый не методом микролинзирования". Но как бы то ни было - результат интересный.
Авторы искали транзиты в рентгеновском диапазоне. Речь о рентгеновских двойных системах. Специфика тут такова, что тело размером с Юпитер может полностью закрыть источник. Обнаружить такое можно, даже если источник находится в другой галактике, поскольку речь идет не о падении блеска на доли процента, а о полном исчезновении. Конечно, яркие рентгеновские системы (чтобы там ни писали авторы во введении) не лучшее место для планет. Тем не менее.
Проанализировав более 2 тысяч кривых блеска, полученных на Чандре, для более чем 200 источников в нескольких близких галактиках, авторы все-таки нашли один случай, похожий на транзит. Источник расположен в галактике М51 (Водоворот).
Размер затмевающего объекта - десятки тысяч километров, что похоже на планету. Но также похоже и на белый карлик, красный карлик, бурый карлик. Никаких повторов не наблюдалось (что и не удивительно). По длительности события можно сказать, что если затмевающее тело вращается вокруг тесной двойной, то большая полуось составляет десятки астрономических единиц.
Спутник CHEOPS был успешно запущен в конце 2019-го. Весной были проведены все тесты и калибровки. Началось выполнение научной программы.
В статье не только описан аппарат, его инструменты, разделы научной программы и план наблюдений, но и приведены результаты первых тестовых наблюдений транзитов.
Краткое резюме: все работает хорошо. Так что ждем интересных результатов.
Коллаборация OGLE представила потрясающий результат. Они зарегистрировали самое короткое событие микролинзирования: длилось менее часа. Анализ показал, что (с учетом неизвестного расстояния до линзы) наилучшим образом данные описываются, если линзой является объект с массой порядка массы Земли или Марса. Поиск возможной материнской звезды ничего не дал. Так что наиболее вероятно, что это одиночная планета, выброшенная из системы, в которой возникла. Хотя, конечно, возможны и другие интерпретации. В частности, наверняка появятся люди, которые скажут, что это первичная черная дыра :) (в самое статье такая возможность даже не упоминается).
Авторы анализируют, по сути, область обитаемости в Галактике, с учетом ее (Галактики) эволюции. В Галактике то сверхновые вспыхивают, то гамма-всплески, то еще что-нибудь, что не полезно для жизни (о влиянии гамма-всплесков на обитаемые планеты см. свежую статью arxiv:2009.14078). Соответственно, авторы ищут "время и место", где и когда эти факторы реже проявляются. Я бы сказал, что статья интересна тем, что там на количественном уровне разбираются мощные транзиентные явления и анализируется эволюция темпа их появления. Т.е., у статьи большой образовательный потенциал. И тут крайне важна "приманка" в виде интересного вопроса о выборе идеального времени и места.
Впервые по данным астрометрических радионаблюдений выявлен хороший кандидат в экзопланеты. Вообще, по астрометрии открытых экзопланет считай что и нет. Все ждем результатов от Gaia. А тут отличный кандидат, да еще в радио!
Конечно, речь не идет о том, что сама планета видна в радиодиапазоне. Наблюдалась звезда и определялось ее положение, что в радио можно делать очень точно, благо использовали VLBA.
VLBA (Very Long Baseline Array) - это несколько телескопов, разбросанных по США и работающих вместе как интерферометр. Исследовавшаяся звездочка находится в 10 пк от нас и имеет массу прямо на границе между бурыми карликами и звездами (0.06-0.08 масс Солнца). НАблюдения велись полтора года. В итоге, было обнаружено смещение положения звезды, указывающее на периодическое движение с периодом около 220 дней.
Масса планеты примерно как у Сатурна, но находится планета всего в 0.3 а.е. от звезды. Это, как отмечают авторы, учитывая, что мы имеем дело с маленьким красным карликом, ставит некоторые вопросы перед моделями образования.
Результат, конечно, надо еще проверять и уточнять. Здесь могут помочь оптические измерения вариации лучевой скорости. Через пару лет ситуация должна окончательно проясниться.
Появилась серия статей бернской группы, посвященная новой детальной модели популяционного синтеза планетных систем (две другие статьи: arxiv:2007.05562 и arxiv:2007.05563).
Новая модель не только детальнее ранних, но и включает в себя расчеты эволюции на больших масштабах времени.
Об образовании планет см. также статью arxiv:2007.06659 и обзор arxiv:2007.07890
На VLT идет программа поиска планет у молодых звезд типа Солнца. Молодых - потому что такие планеты проще увидеть, пока их собственная светимость высока, ведь речь идет о прямых изображениях.
У звезды TYC 8998-760-1 обнаружена уже вторая планета. Причем, обе имеют орбиты с очень большой полуосью. У ранее обнаруженной расстояние от планеты до звезды в проекции составляет 160 а.е., а у новой - аж 320 а.е. Эксцентриситет орбит неизвестен. Если он не мал, то орбиты неустойчивы на большом (миллиарды лет) масштабе времени. Возможно, в системе есть и другие большие планеты.
Все это очень интересно по ряду причин, начиная от вопроса "как планеты попали на такие орбиты?"
Будущий космический телескоп WFIRST недавно был переименован в честь Нэнси Грейс Роман. В данной статье рассматривается сколько одиночных планет разных масс этот инструмент сможет зарегистрировать через микролинзирование.
Ответ - не так уж много, где-то 250, из них штук 60 с массами меньше земной. Статья интересна, на мой взгляд, краткой сводкой ожиданий по статистике одиночных планет разных масс.
Пока не открыто ни одного спутника экзопланеты. Что и не удивительно - нужна существенно более высокая точность наблюдений. Авторы обсуждают один из возможных подходов, который позволяет надеяться на успех уже при существующем уровне.
Речь идет о методе вариации времени транзита (TTV). Из-за гравитационного влияния невидимого объекта транзит наступает, то раньше, то позже, а также может меняться его длительность (TDV - transit duration variation). Таким методом открыто много планет. Здесь же он применятся для поиска экзолун.
Авторы сразу отмечают, что таким сопособом было бы проще обнаружить Луну у Земли. В своей работе они выделяют из кеплеровских данных шесть кандидатов - планет с TTV, которые могут объясняться влиянием спутников. Пока это кандидаты - нужны новые ряды наблюдений.
У одной из самых близких звезд, находящихся на стадии до Главной последовательности обнаружена экзопланета. Сама экзопланета вполне заурядная - теплый нептун, да и звезда тоже - красный карлик. Но все вместе!
Про близость к нам уже сказано - это важно, т.к. проще наблюдать детали. Далее. В системе еще есть осколочный диск, поскольку система молодая. Причем, диск виден почти с ребра. В системе наблюдаются выбросы пылевых сгустков и кое-что еще. Планета явно мигрировала. И для планеты, кроме измерений радиуса по транзитам, наблюдавшимся на TESS и Спитцере, измерен верхний предел на массу по вариации лучевой скрости звезды. Все это вместе позволяет продвинуться в изучении формирования и ранней эволюции планетных систем.
Не удивительно, что вместе со статьей, рассказывающей об открытии, в Архиве сразу же появилось много работ, посвященных AU Микроскопа и ее планете. Уже удалось изучить много всего, связанного с этой планетой. Так что скоро и теоретики подтянутся.
Описан проект относительно небольшого спутника для изучения экзопланет. В этом году должен появиться очередной астрофизический Decadal survey, поэтому все активизировались в последние пару лет.
Идея состоит в спектроскопии высокого разрешения от УФ до ближнего ИК включительно для нескольких десятков близких ярких звезд (до 10 величины). Для этого все равно понадобится полутораметровое зеркало. Это позволит получать спектры, по которым можно обнаружить вариации лучевых скоростей, вызываемые планетами земной массы.
Разумеется, поскольку речь идет о телескопе, то у него будут возможности наблюдать и другие объекты,а аткже, получать дополнительную информацию при наблюдениях с целью изучения экзопланет. Здесь в первую очередь речь идет об изучении звезд вообще, и об об астросейсмологии, в частности.
Текста с картинками там всего полсотни страниц. Некоторые технические детали можно пропускать. Прочтите - довольно интересно. Но при том важно понимать, что есть и куча других интересных идей. И реализовать удастся лишь часть. Продвижение космических проектов в астрофизике - безумно конкурентная среда. Не зря, я думаю, эта группа придерживала архивную публикацию до дня, когда они выложили статью в Nature и кучу сопутствующих статей в разных журналах по AU Микроскопа. Это все помогает продвигать проект.
Авторы используют данные Кеплера и Gaia, чтобы рассмотреть, как планетные параметры связаны со свойствами звезд. В выборку вошло около 3000 звезд и чуть больше планет (поскольку у одной звезды может наблюдаться более одной планеты).
Какие-то полученные зависимости безусловно отягощены эффектами селекции. но, например, очень ярко показано, что провал в распределении планет по радиусам (соответствующий переходу от сверхземель к мини-нептунам) присутствует при всех массах звезд. Но при этом точное положение провала зависит от массы звезды (чем массивнее звезда - тем большим радиусам планет соответствует провал).
Есть и другие результаты, которые не требуют детального учета эффектов селекции, а потому могут достаточно надежно делаться по имеющимся данным. В частности, больше стало планетных кандидатов в зонах обитаемости.
Мое внимание периодически привллекают работы (выделю здесь деятельность группы Бердюгиной), посвященные возможному построению карт потенциально обитаемых планет с помощью телескопов следующего поколения. Это одна из них.
Собственно, статья посвящена методу обработки данных. Интересно, что автор применяет методику к наблюдениям Земли из точки L1 с помощью инструмента DSCOVR.
У яркой звезды Фомальгаут уже давно открыли нечто, что выглядело, как планета. Но не совсем (источник слишком яркий в оптике, при том, что он не может быть массивной молодой планетой, что следует из верхнего предела на ИК-поток). Поэтому было заподозрено, что это пылевое облако, возникшее в результате столкновения массивных тел. Кажется, в этом вопросе появляется ясность.
Анализ многолетних наблюдений на Хаббле показывает, что источник расширяется и слабеет, т.е. ведет себя, как облако. Кроме того, анализ его траектории также говорит в пользу формирования в результате столкновения. Столкнуться должны были массивные тела - километров по сто размером, а то и поболее..... Причем столкновение должно было произойти недавно. Видимо, система Фомальгаута недавна претерпела динамическую неустойчивость (например, такую как в молодой СОлнечной системе, что привело к ПОздней тяжелой бомбардировке).
В некоторых случаях интенсивное взаимодействие звезд с планетами может происходить уже на стадии красного гиганта или асимптотической ветви. Если планета массивная, то она может способствовать сбросу звездой-гигантом внешней оболочки. Это, в свою очередь, повлияет на форму туманности, формирующейся вокруг.
Авторы рассматривают шесть систем звезда-планета, используя код MESA. Показывается, что в одном случае сброс оболочки произойдет еще на стадии красного гиганта. В результате образуется гелиевый белый карлик. Еще в одной системе сброс оболочки случится на стадии асимтотической ветви. В этом случае можно получить эллиптическую оболочку в планетарной туманности вокруг медленно вращающейся звезды. Без планеты следовало бы ожидать лишь сферически симметричное распределение вещества планетарной туманности.
Фактически - это небольшая книга. Посвящена она достаточно полному рассказу о свойствах Солнечной системы, но в уме авторы постоянно держат экзопланетные системы, так что периодически обсуждается, как данные по Солнечной могут быть приложены к ним.
Рассмотрены и свойства отдельных объектов, и история формирования, и эволюция, и нерешенные вопросы. Отдельный раздел все-таки посвящен экзопланетам, чтобы в явном виде прокинуть связку от свойств тел СОлнечной системы (и процессов в ней) к внесолнечным телам.
После того как планетная система в общем и целом сформировалась, в ней летает много "строительного мусора". Столкновения этих тел приводят к формирования большого количества пыли, что наблюдается в виде т.н. остаточных (или осколочных) дисков.
В статье представлены результаты большой кампании по наблюдениям таких образований с помощью прибора Gemini Planet Imager (разумеется, на телескопе Джемини).
В обзор вошло 104 звезды с инфракрасным избытком. Удалось в деталях рассмотреть 26 остаточных и три протопланетных диска (некоторые диски собственно открыты по результатам этих наблюдений). Кроме того, в ряде случаев удалось померить поляризацию.
В статье много красивых картинок с дисками, но самое главное, конечно, что теперь у нас есть гораздо более объемная информация по свойствам молодых (менее нескольких сотен миллионов лет) планетных систем.
Впервые показано наличие химического градиента между ночной и дневной стороной планеты.
Наблюдался ультрагорчий юпитер WASP-76b. В точке полудня температура около 2000К (замечу, что из-за ветров и вращения точка максимума температуры немного сдвинута по вращению от полуденной). На дневной стороне железо находится в атомарной форме FeI, а на ночной - в молекулярной. Это показывает детальный анализ спектров (советую посмотреть очень понятный рисунок 3 в статье). Поглощающие области вблизи восточного и западного лимбов в моменты захода планеты на диск звезды и схода с него движутся относительно земного наблюдателя с разной скоростью. Кроме того, в момент захода на диск мы видим на лидирующем лимбе область раннего утра (на логоняющем - позднего вечера), а при сходе с диска - на лидирующем предутреннюю (и на догоняющем предвечернюю). Соответственно, можно определить, какие области вносят вклад в формирование линии атомарного железа. Видно, что на ночной стороне атомарного железа нет.
У нескольких звезд за прошедшие годы удалось показать наличие комет. Это делается, в первую очередь, по спектральным наблюдениям. Речь идет не которой форме транзитов. Комета, разумеется, не может сильно ослабить полный блеск звезды. А вот в узкой спектральной илнии - может. Т.е., ищут появляющиеся и исчезающие (или даже постоянные - ведь за короткое время наблюдений кометы обычно мало смещаются относительно звезды) линии поглощения, связанные с элементами, присутствующими в головах комет.
Авторы решили сильно увеличить количество известных звезд с экзопланетами. На телескопах 2-метрового класса они провели наблюдения 117 звезд разных спектральных классов и для 60 из них выявили присуствие постоянных линий поглощения, в десятках случаев их можно связать с холодным газом в окрестностях звезды, и 16 - переменных (как у бета Живописца - классического примера звезды с кометами), которые часто связаны с газом в непосредственной окрестности звезды. Не все эти случаи новые, но по большей части - это так.
В обзоре обсуждается, как в ближайшем будущем по спектральным наблюдениям атмосфер экзопланет можно будет изучать их физические и химические свойства. Это не тривиальная задача, т.к. по отдельным наблюдениям (например, глубина и ширина линии поглощения, связанной с какой-то молекулой) нужно будет переходить к химическому составу атмосферы, свойствам облаков, изменению параметров с глубиной и т.д. Т.е., нужны всякие модели и алгоритмы, которые свяжут данные наблюдений с комплексом параметров. Все это бросает ученым вызовы. Вот о них и речь. Но, конечно, есть и краткий экскурс в историю (благо, она короткая: первые наблюдения появились около 15 лет назад) и современные методы. Но важно, что с вводом JWST, ELT и других инструментов у нас появятся новые возможности, а значит и новые сложности и задачи.
Большой обзор, касающийся всех основных вопросов, связанных с теорией образования планет, и при этом написанный ведущими специалистами в данной области.
Кроме обсуждения теорий в обзоре, конечно, приводится много фактических данных.
В статье приведены новые результаты по поиску планет в двойный системах и дан небольшой обзор состояния дел в этой области. Новые результаты говорят, что, исключая самые тесные двойные, доля звезд с планетами примерна такая же, как для одиночных.
Интересно отметить, что чаще всего не планету обнаруживают в известной двойной, а открыв экзопланету, и продолжив изучение системы, выясняют, что звезда имеет компаньона.
Заметную долю объема статьи занимают таблицы с параметрами звезд и планетных систем.
См. также arxiv:2002.12006. В этой статье обсуждается формирование и эволюция планет в двойных системах. С точки зрения "научно-популярного" прочтения эта статья будет даже интереснее, на мой взгляд.
Очередное изложение проекта по осуществлению наблюдательной миссии, в рамках которой Солнце выступает в роли гравитационной линзы, и аппарат получает (очень сложным методом) изображение экзопланеты с высокой степенью детализации.
У проекта много проблем, и вряд ли он будет осуществлен в обозримом будущем. Во-первых, просто технически трудно получить сколь-нибудь приемлемое изображение. Во-вторых, аппарат должен находиться далеко - примерно в 700 а.е., - от Солнца. Это сразу все усложняет и удорожает. В-третьих, практически невозможно использовать аппарат для исследования нескольких целей. Поэтому, видимо, должно пройти несколько десятилетий, прежде чем что-то подобное можно будет попробовать усуществить. Но читать про это интересно!
Основной задачей TESS является поиск землеподобных планет в зонах обитаемости у красных карликов. И вот первый результат. Материнская звезда - красный карлик с массой 0.4 солнечных. Расстояние - 31 парсек. TOI-700d - планета с радиусом 1.1-1.3 земных имеет орбитальный период 37 дней (в системе есть еще две небольшие планеты, но они находятся ближе к звезде - и там жарко). Авторы указывают, что это пока не выглядит как идеальная цель для JWST.
См. также arxiv:2001.00954, в которой рассматриваются наблюдения системы на Спитцере, и arxiv:2001.00955, где проведен анализ возможных условий на планете.
В последние годы, как благодаря миллиметровым наблюдениям (ALMA), так и благодаря оптическим телескопам (Хаббл, VTL, Subaru, ...) появилось множество данных по протопланетным дискам. В статье дается обзор полученных результатов по структурам в дисках: кольца, спирали, .... Важно. что в обзоре рассматриваются связи свойств дисков с их окружением и зависимость от параметров звезды. Также приводятся полученные данные по эволюции (в том числе - миграции) частиц в диске. В основном автор основывается на данных ALMA.
Обычно протопланетные диски существуют лишь несколько миллионов лет (в среднем, у более массивных звезд меньше, у менее массивных - слегка дольше). Авторы ищут (с участием citizen scientists) "долгоживущие" диски у маломассивных звезд. Ищут и находят. И называют их "диски Питера Пэна", поскольку они (диски) долго (около 40 млн лет) "не стареют". Откуда берутся такие диски пока не ясно, авторы обсуждают несколько вариантов (мне нравится приливное разрушение планеты, но есть аргументы против этого сценария, см. статью).
В статье описаны ожидаемые характеристики спутника CHEOPS в смысле собственно получения научных данных: точность фотометрии и тп.
Напомню, что CHEOPS имеет 30-сантиметровый телескоп. Его цель - высокоточная фотометрия звезд от 6 до 12 звездной величины, у которых уже зарегистрированы планеты методом измерения вариации лучевых скоростей.
Статья необходима всем, кто планирует использовать данные CHEOPS. Спутник начинает свою научную работу, которая продлится минимум до 2024 года.
В науке нормальной ситуацией является состояние, в котором на объяснение какого-либо процесса или типа объектов претендует несколько моделей. Так в моделях формирования планет конкурируют два принципиально разных сценария. Один - стандартный: планеты начинают свой рост с мелких объектов, все события в основном разворачиваются в окрестности снеговой линии (более активно - сразу за ней). Второй процесс - это формирование планет в результате неустойчивости диска на больших расстояниях (~100 а.е.), затем образовавшиеся сгустки сжимаются, мигрируют ближе к звезде, а по дороге частично или полностью разрушаются. Разумеется, в природе оба процесса могут сосуществовать, и вопрос в том, какой из них важнее для описания тех или иных феноменов.
В статье рассматривается модель формирования планет за счет неустойчивости диска как способ объяснить некоторые парадоксальные, по мнению автора, свойства дисков, наблюдаемых ALMA. Идея автора состоит в том, что многие такие диски "омолодились" за счет разрушения массивных планет, возникших на больших расстояниях от звезды. Эту идею можно проверить, если определить состав дисков, точнее - отношение масс газа и пыли в них.
Можно надеяться, что ближе к середине века появятся космические телескопы, способные достаточно подробно изучать свойства потенциально обитаемых планет. Разработки концепций таких инструментов активно велись последние лет 10-20. Вот некоторый итог.
Миссия HabEx - это 4-метровый телескоп в точке Лагранжа (L2). Предлагается оснастить его и коронографом, и экраном. Второе особенно сложно. Это должны быть 50-метровая конструкция, летающая в нескольких десятках тысяч километров от телескопа (!), и при этом должна быть достигнута точная соосность.
Конечно, проект крайне дорогой, поскольку в него заложено много новых технологий, которые пока не существуют. Оптимистично планируется, что речь идет о 2030х (причем, не о начале этого десятилетия).
Поскольку телескопы не слишком узко специиализированные инструменты, то HabEx будет применяться и для других уникальных исследований: экзопланеты не являются его единственной целью. Планируется, что телескоп будет чувствителен от ближнего УФ до ближнего ИК диапазона (примерно как Хаббл). В некотором смысле, миссия позиционируется как "новый Хаббл". Но в начале надо запустить JWST и WFIRST.
Подчеркну, что речь идет о проекте, который конкурирует с рядом других (о них в Архиве также появлялись 400-страничные обзоры см. в http://xray.sai.msu.ru/~polar/sci_rev/projects.html).
Авторы представляют каталог параметров звезд, наблюдавшихся Кеплером. Он построен на основании данных Кеплера и Gaia. Это важно, т.к. позволяет сделать очень точную и однородную выборку (этого нельзя добиться, если использовать данные из множества разнородных источников). Также это, разумеется, важно для более точного изучения свойств экзопланет и для поиска корреляций свойств планет со свойствами звезд.
Обнаружен белый карлик с мощным аккреционным диском довольно нетривиального состава. Карлик одиночный. Наиболее вероятная причина возникновения диска - постепенное разрушение массивной планеты (состав ее внутренней атмосферы сейчас и виден в диске).
Сама планета может быть еще не совсем разрушена. Возможно, она находится на расстоянии около 15 солнечных радиусов от белого карлика. Не исключено, что планета так близко подошла к ьелому карлику из-за влияния внешних планет в этой системе. Будут искать.
Авторы анализируют статистику встречаемости массивных газовых планет нна разных орбитах. Показано, что есть резкий скачок примерно на 1 а.е. Т.е., горячие юпитера, встречающиеся менее чем у одного процента звезд, сильно уступают "нормальным юпитерам", которые встречаются почти у 7 процентов звезд.
Как говорится, "обзор по сабжу".
Собственно, описывается, как сейчас мы можем судить о потенциальной обитаемости планеты, и что тут удасться сделать в ближайшем будущем.
См. также второй большой обзор по этому же вопросу: arxiv:1911.05597. Два текста отчасти дублируют, отчасти дополняют друг друга. Вместе они дают очень хорошее представление о состоянии дел.
Авторы обсуждают планету HIP41378f. При размере, примерно равном размеру Сатурна, планета имеет плотность почти на порядок меньше (<0.1 грамма в кубике). И это при том, что температура внешних слоев всего лишь 300К (планета расположена в 1.4 а.е. от звезды, чуть-чуть горячее и массивнее Солнца).
HIP41378 - многопланетная система. Пять планет были открыты методом транзитов. Но потом звезду много наблюдали на предмет регистрации вариации лучевой скорости (что привело к открытию еще одной планеты, для которой нет транзитов). Для трех из пяти транзитных планет удалось обнаружить и сигнал в лучевой скорости, что позволило определить их массы, а следовательно и плотности (радиусы уже были измерены по транзитам).
Почему планета f имеет такую низкую плотность - не ясно. Возможно, вы видим не внешние слои планеты, а плотное кольцо. Т.е., реальный радиус гораздо меньше. Это будут проверять по инфракрасным наблюдениям.
Очень интересный результат.
Пока нет ни одного объекта планетной массы, надежно идентифицированного благодаря астрометрическим наблюдениям. При том, что это самый старый метод (с той точки зрения, что едва ли не в 19 веке люди заявляли о том, что что-то видно, но потом все рассасывалось). Есть бурые карлики, есть кандидаты. Ну и мы ждем данных Gaia, которые смогут через несколько лет дать сразы тысячи кандидатов. Но пока....
Авторы изучали спутник Фомальгаута (не путать Фомальгаут B и Фомальгаут b!!!!!). Это красный карлик на очень широкой (световой год!) орбите вокруг яркого Фомальгаута. Так вот, проанализировав много анных, полученных разными способами, авторы заподозрили наличие компаньона планетной массы (примерно юпитерианской). Проверить, видимо, можно будет с помощью JWST, поскольку вся система молодая, и молодой аналог Юпитера с 7 пк можно будет разглядеть.
Краткое резюме: это не планета.
Рассказывая об экзопланетах, я часто начинаю с того, что трудно ответить на вопрос: "Какая экзопланета была открыта первой?" Необходимы уточнения. В частности, имеется неясность с объектом HD 114762 b, поскольку нижняя оценка массы попадает в планетный диапазон (11 масс Юпитера), а верхняя - в область бурых (или даже красных) карликов. В данной статье автор использует новые данные Gaia для уточнения оценки массы.
Итогом работы стало увеличение оценки массы. Теперь в планетный диапазон она не попадает (т.о., это убирает один из аргументов сомневающихся в том, что Майор и Кело в самом деле - самые-самые первые). Правда, надо оговориться, видимо необходимы более точные измерения.
На протяжении 2011-2015 гг. было издано пять томов, посвященных разным аспектам гелиофизики и всяким связанным вопросам. В Архиве представлены некоторые тексты из этих книг (примерно 20%).
Авторы адресуют книгу студентам старших курсов. Тематика охватывает физику Солнца и звезд, влияние звезд на планеты, свойства планет, влияние на планеты таких внешних факторов, как космические лучи, и, наконец, формирование и эволюцию звезд и планет. В общем - большой учебник. Не все процессы описаны так уж детально. Но это и невозможно в рамках одной книги. тем не менее - отличный ресурс!
Авторы получили хорошие спектры транзитной экзопланеты, обращающейся в зоне обитаемости (0.15 а.е.) вокруг близкого красного карлика (масса 0.3-0.4 солнечной). Правда, планета довольно массивная - восемь масс Земли, т.е. это сверхземля. Тем не менее, интересно, что в спектре обнаружено присутствие водяного пара. К обитаемости это не имеет никакого отношения (тем более, что в атмосфере много водорода и гелия, т.е. условия вовсе не земные), но важно для физики экзопланет и технике их изучения, поскольку это первая сверхземля в зоне обитаемости, для которой удалось получить спектр с деталями.
Наблюдения проводились на Космическом телескопе.
Авторы рассматривают, как планеты поглощаются звездами, и к чему это приводит. А это может приводить к выбросам вещества, вспышкам, изменению химического состава звезды и ее раскрутке. Кое-что из этого списка уже наблюдается.
Не так уж часто у планет достаточно точно измерены сразу и масса, и радиус. Тем интереснее, если комбинация параметров является необычной. У планеты WASP-174b при массе 0.3 юпитерианской радиус почти полтора радиуса Юпитера. Разумеется, дело в прогреве звездой. Орбитальный период всего лишь 4 дня с хвостиком.
Планета интересна еще тем, что транзит не полный: лишь часть диска попадает на звездный диск. Поэтому было не просто получить достаточно точные измерения радиуса.
Поскольку атмосфера сильно раздута и имеет место частичный транзит, планета очень хорошо подходит для спектральных исследований.
Гравитационное линзирование позволяет получать удивительные результаты в деле изучения экзопланет, и в вопросах, связанных с аккрецией на сверхмассивные черные дыры. А если эти две тематики объединить? Получится еще интереснее!
Исследования линзированных квазаров позволяют выявить изменения в параметрах спектральных линий от аккреционных дисков, что связано не с какими-то процессами внутри этих течений, а с гравитационным линзированием на небольших объектах в галактике-линзе. Моделирование позволяет определить массы линзирующих объектов. И в некоторых случаях они оказываются в планетном диапазоне.
Наблюдения двух квазаров на Чандре позволили выявить изменения в линии железа, а затем оценить массы линзирующих объектов. Они лежат в диапазоне от массы Луны до массы Юпитера. Это должны быть одиночные объекты (т.е., не экзопланеты в прямом смысле, а "свободно летающие объекты планетной массы"). Т.о., у нас есть возможность изучать статистику подобных тел в далеких-далеких галактиках.
У красных карликов планеты встречаются нередко. Однако это все маломассивные планеты вблизи звезды. Это хорошо укладывается в основные модели образования планет. Ну или уж открывают пару красный карлик - красный карлик или красный карлик - бурый карлик. Тогда расстояние между объектами может быть значитальным. А тут вдруг открыли планету типа Сатурна на расстоянии более трети астрономической единицы (вообще, орбита имеет значительный эксцентриситет, поэтому проще сказать, что орбитальный период более 200 дней).
Планету открыли по наблюдениям изменения лучевой скорости звезды. Необычные параметры орбиты можно объяснить наличием еще одной планеты сравнимой (но, видимо, меньшей) массы, находящейся в несколько раз дальше. по всей видимости планеты сформировались не "снизу вверх" (т.е., не в результате постепенного набора массы), а из-за неустойчивости во внешних частях протопланетного диска.
Рекорд. Конечно, не бог весть что, но рекорд. Орбитальный период горячего юпитера менее 19 часов. Такие планеты важны для изучения приливного взаимодействия. Напомню, что параметры звезд, связанные с возникающими в них приливами известны плохо. А это интересно. Совсем скоро LSST начнет открывать падения массивных планет на звезды главной последовательности. Совместные данные по таким событиям и по сокращению орбит планет типа NGTS-10b позволят получить точные определения приливных параметров звезд, что крайне важно для детального понимания их внутреннего строения и эволюции.
Авторы наблюдали на Спитцере горячую экзопланету LHS 3844b. Идея состояла в следующем. Если у этой планеты есть толстая атмосфера, то распределение температуры по ее поверхности из-за атмосферной циркуляции не будет симметричным, относительно направления на звезду. Кроме того, "полуночная" точка не может быть очень холодной. Наблюдения показали, что ничего такого нет. Т.е., все согласуется с тем, что влияние атмосферы невелико. Т.о., она не может быть толстой.
Авторы представляют новую модель миграции планет в протопланетном диске. Важным выводом является то, что лишь самые массивные планеты успевают существенно мигрировать к звезде. Также авторы рассматривают, как планеты набирают массу, учитывая процесс фотоиспарения диска центральной звездой.
Интересная тема. Начиная с 2003 года удается зарегистрировать следы взаимодействия магнитного поля планеты (для это она одлжна быть горчим юпитером) со звездой. Наблюдают это по периодическому изменению параметров линий в спектре звезды. Период равен орбитальному планетному. Такие данные позволяют измерить величину магнитного поля планеты, что важно и интересно. В данной статье сообщается о четырех новых измерениях.
Однако получить собственно оценки поля планеты не так-то просто, потому что нужны особые спектральные данные. И вот тут авторы практически первые. Правда и тут для того, чтобы перейти в вычислению магнитного поля, необходимо задаться моделью, и здесь есть из чего выбирать. Авторы перебрали несколько. В итоге получены оценки поля. Если им верить, то кое-что проясняется в вопросе его происхождения.
В Архиве появилось несколько white papers, посвященных экзопланетным исследованиям. Они написаны примерно одной и той же группой (легко найти по первому автору). Выделим ту, что посвящено созданию интерферометрических систем в космосе.
Именно такие системы способны позволить получить прямые изображения планет земного типа в зонах обитаемости. При этом, конечно, они могут делать еще много полезных вещей в данной области исследований. Так что тематика важная. Но дорогая. Авторы обсуждают, каковы реалистичные перспективы. Они связаны с небольшими спутниками и использованием технологий, развиваемых в коммерческих целях.
Пока политики думают, как остановить миграцию в Европу, а где-то еще народ думает о внутренней эмиграции, астрофизики размышляют, как остановить миграцию планет к звезде.
Новое моделирование показывает, что в некоторых случаях миграцию можно повернуть вспять. Происходит это у планет, сформировавших своей гравитацией щель в протопланетном диске. В норме планета в такой ситуации мигрирует к звезде, т.к. на внешнем крае щели много газа, и обмен моментом импульса с ним приводит к тому, что планета приближается к звезде. Однако на том же внешнем краю могут накапливаться (и расти) пылевые частицы. Крупные частицы затем быстро выпадают на звезду, передавая свой момент импульса газу. В результате, поверхностная плотность вещества на внешнем краю падает. А это приводит к замедлению миграции планеты внутрь, или даже к тому, что планета начинает удаляться от звезды.
После рассеивания газового диска пылевое кольцо, соответствовашее внешнему краю щели, может остаться, и там смогут формироваться планеты.
Авторы детально рассматривают, как мощные вспышки на звездах (красных карликах) влияют на обитаемость обращающихся вокруг них планет. Получается, что только при экстремальных параметрах (и более тонкой, чем у Земли, атмосферы) гарантируется фатальная доза на поверхности.
Представлены результаты по очень интересному объекту, обнаруженному спутником Кеплер в рамках миссии К2. Снова звезда с очень необычными транзитами. Или не транзитами.... Как бы то ни было, за 87 дней наблюдений авторы зафиксировали 28 падений блеска длительностью порядка 2 часов. Периодичности в появлении событий нет. 26 из 28 имеют примерно одинаковую глубину падения блеска. Транзиты (если это они) не симметричные. Звезда вполне нормальная (правда, не исключено, что у нее есть менее массивный спутник на расстоянии несколько сотен а.е.). Авторы обсуждают много возможных вариантов (включая короткоживущие пятна на звезде), но ничто не подходит полностью. Так что - загадка.
На космическом телескопе имени Спитцера проводились наблюдения с целью обнаружения транзита. Однако в назначенное время ничего не увидели. Авторы полагают, что заявление о регистрации транзита по оптическим наземным и космическим наблюдениям было преждевременным. Из-за сильной активности звезды предыдущие авторы приняли желаемое за действительное. Во время новых наблюдений такая активность была ниже, поскольку использовались достаточно длинные волны (4.5 микрона), так что подобный шум не мешал.
Разумеется, это никак не закрывает саму планету, которая была открыта по вариации лучевой скорости звезды. Просто не транзитная она.
Одним из мощных современных методов обнаружения экзопланет является техника т.н. вариации времени транзита (TTV). Идея проста: орбита известной планеты (для которой наблюдаются транзиты) испытывает влияние еще одной (или нескольких) планет. По этим вариациям орбиты можно выявить присутствие дополнительных планет и определить их свойства (орбита, масса).
В неформальном интересном (практически научно-популярном) обзоре (с массой любопытных "лирических отступлений) известный специалист по динамике планетных систем описывает саму методику и первый случай удачного применения.
В Архиве появилось еще несколько статей из специального номера New Astronomy Reviews, посвященного результатам Кеплера.
В статье описан большой комплекс подпрограмм, позволяющий описывать планетную эволюцию. Учитывается множество факторов: эволюция звезды, пролеты близких звезд, приливы, внутреннее тепло планеты и т.д. и т.п. Код находится в свободном доступе.
В основной части статьи даны краткие (преимущественно словесные) описания каждого из модулей (отвечающих за отдельные аспекты эволюции), а в приложениях для каждого модуля приведены детали с формулами и тп.
Впечатляет. К слову, приложения полезны и по отдельности, если вас интересуют отдельные аспекты эволюции планет.
Важно наблюдать долго. Особенно, если речь идет об обнаружении экзопланет методом измерения вариации лучевой скорости звезды. Потмоу что только так можно открывать планеты с большими орбитальными периодами. Наблюдения на спектрографе CORALIE продолжаются более 20 лет, что и позволяет обнаруживать объекты на расстояниях более 5 а.е.
В статье представлено пять новых открытий (три планеты и два маломассивных бурых карлика), а также четыре уточнения параметров. Существенно, что для некоторых из обнаруженных объектов впоследствии можно будет получить прямые изображения. Соответственно, длинные ряды измерений лучевых скоростей позволяют выделять хорошие кандидаты для непосредственных исследований на крупных телескопах.
Вот уже лет 15 как мы можем изучать спектры экзопланет. Разумеется, начали в планет-гигантов. Или молодых, которые видны непосредственно (как в системе HR8799), или горячих, которые сильно прогреваются звездой. Но с развитием техники наблюдений удается изучать атмосферы все более мелких планет. Сейчас добрались до сверхземель.
В обзоре во-первых суммировано, что мы уже узнали об экзопланетных атмосферах. Во-вторых, обсуждаются нерешенные проблемы. Ну а в-третьих, поскольку развитие инструментальной базы продолжается, и совсем скоро заработают большие наземные телескопы, как E-ELT, или космические - как JWST-, важно поговорить о том, что можно будет получить в ближайшее время.
Представлен анализ обзора 300 звезд с чцелью поиска планет-гигантов и бурых карликов. Показано, что планеты-гиганты в основном имеют орбиты с полуосями 1-10 а.е. Планет больше у звезд с массой >1.5 масс Солнца. Есть указания на то, что планеты-гиганты и бурые карлики имеют разные механизмы формирования.
Вдохновленные Оумуамуа авторы решили поискать по базам данных записи о мтеорах, имевших большую скорость. Данное обстоятельство должно указывать на их происхождение не в Солнечной системе. В результате одно такое событие было обнаружено. Отметим, что и ранее поступали сообщения об обнаружении метеоров с аномально большими скоростями. Так что непонятно, первое это событие или нет. Важно, что наблюдения спектров таких метеоров (пока они сгорают в земной атмосфере) позволяют изучать их химический состав.
KOI - Kepler Object of Interest. Номер четыре говорит о том, что объект был четвертым, из включенных в этот список. При этом первые три были уже известными экзопланетами. Т.о., речь идет о первом планетном кандидате Кеплера. Однако по сю пору его не удавалось подтвердить. И вот.
С помощью наблюдений лучевых скоростей и астросейсмологического анализа удалось подтвердить планету. Несмотря на то что это горячий юпитер (масса 5-6 юпитерианских, орбитальный период - менее 4 дней), источник был непростой целью, т.к. звезды является субгигантом, причем достаточно массивным (около 1.5 масс Солнца). Тем не менее, все получилось.
Еще одна статья для Astro2020. На этот раз речь идет о том, как определить параметры планет по свойствам осколочных дисков, в которых они находятся.
Для этого понадобятся новые космические телескопы. JWST должен стать первым. А затем, как многие надеются, появится 9-метровый Origins.
В заметке кратко, но четко и понятно, описано, почему такие исследования важно проводить, что это нам расскажет о механизмах формирования планетных систем и т.д.
Авторы рассматривают, как астероиды могут нагревать токами, возникающими при движении тела в магнитосфере звезды (это может быть и белый карлик, и нейтронная звезда). Показано, что при сильных, но реалистичных полях (разумеется, речь идет о большим магнитных моментах, а не о полях на поверхности) могут возникать важные эффекты. Астероид может достаточно разогреться, чтобы его недра начали плавиться. Это может приводить к серьезным последствиям для орбитальной динамики. Кроме того, на астероидах могут возникать квазивулканические выбросы.
Потенциально, ситуация должна быть достаточно редкой (надо сильно приблизиться к телу с очень большим магнитным моментом), но было бы интересно такое обнаружить.
С помощью системы GRAVITY на VLT удалось исследовать одну из планет системы HR8799. Это первый случай, когда экзопланета успешно напрямую наблюдалась и исследовалась методами наземной оптической интерферометрии.
Удалось уточнить параметры орбиты и получить хороший спектр. Последнее помогло уточнить параметры планеты и ее классификацию.
Авторы обсуждают, что еще можно сделать с GRAVITY в этой области. Как минимум, можно наблюдать все планеты, для которых есть прямые изображения.
Также авторы отмечают, что полученные результаты говорят о том, что вполне реалистично с помощью наземных оптических интерферометров разрешать поверхность планет-гигантов. Это потребует базы порядка 10 км. Пока таких систем нет, но авторы предлагают задуматься о том, не будет ли подобный проект хорошим планом для ESO после создания E-ELT.
В статье представлены новые оценки числа планет у звезд спектральных классов FGK. Авторы использовали данные спутника Кеплер (полный набор основной программы - релиз D25). Для оценок радиусов звезд использовались данные Gaia DR2. Пронализировано количество планет с разными орбитальными перииодами. Особое внимание уделено планетам с размерами, близкими к земному на орбитах в зоне обитаемости. Такие встречатся у каждой пятой-десятой звезды.
Около года назад примерно эта же группа авторов детально рассматривала надежность идентификации небольших долгопериодических планет (т.е., попадающих в зону обитаемости вокруг везды типа Солнца планет типа Земли). Тогда авторы пришли к выводу, что достоверность регистрации кеплер-452b (лучшего "двойника Земли") существенно завышена. Теперь они идут дальше и рассматривают весь каталог Кеплера.
Снова авторы демонстрируют, что надежность завышена. В частности, "под удар" попадает другой известный "двойник Земли" - Kepler-186f. Авторы показывают, что для небольших планет (т.е., для неглубоких транзитов) с большими периодами (т.е., число транзитов, наблюдавшихся Кеплером, невелико) достоверность мала. И вообще, важно дополнять кеплеровские данные независимым последующим мониторингом транзитов или измерением вариации лучевой скорости звезды.
Удивительная ориентация протопланетного диска: его плоскость практически перпендикулярна плоскости двойной звездной системы, вокруг которой он существует. Наблюдения проводились на ALMA.
Диск, по всей видимости, находится в стабильной конфигурации, а его ориентация вызвана приливным действием двойной. Но какой двойной? Внешней! Хитрость в том, что система на самом деле четверная: она состоит из двух пар.
О других свежих наблюдениях на ALMA молодых двойных систем с дисками см. arxiv:1901.05029.
Авторы детально обсуждают, в чем образование Солнечной системы могло отличаться от типичного случая экзопланетной системы.
В настоящее время разработано несколько очень детальных моделей формирования Солнечной системы. В то время как для описания экзопланетных систем используются менее изощренные сценарии, чтобы можно было достаточно быстро просчитывать многие тысячи эволюционны треков для очень разных начальных условий. Постепенно детализированные подходы начинают применяться и для экзопланетных систем. В некотором смысле, данный обзор иллюстрирует это.
Обзор охватывает довольно много вопросов. Это и данные наблюдений, и базовые основы подходов к моделированию формирования систем, и ряд деталей, и, конечно, примеры расчетов. При этом, авторы выбрали подход, в котором не используются формулы. Т.е., все объяснения в некотором смысле качественные. Это делает обзор более доступным для неспециалистов.
В последние года на установке ALMA были получены важные результаты по протопланетным дискам. В данной статье представлен новый проект - DSHARP. В его рамках на ALMA были проведены наблюдения двух десятков протопланетных дисков в высоком разрешении. В последующих статьях представлены детальные результаты по отдельным объектам, а также рассмотрены отдельные вопросы. Так например в статье arxiv:1812.04045 рассматривается взаимодействие планет с диском на основе полученных данных.
Благодаря точным измерениям вариации радиальной скорости у звезды Барнарда подтверждена экзопланета.
Напомню, что звезда Барнарда выделяется самым большим собственным движением. А еще это самая близкая одиночная звезда (1.8 пк), ближе только три звезды системы Альфа Центавра.
Некоторое время назад у звезды Барнарда был заподозрен планетный спутник с орбитальным периодом около 230 дней. Но точности для достоверного обнаружения не хватало.
Планета имеет период 233 дня, что соответствует орбите с полуосью 0.4 а.е. Это как раз граница снеговой линии в этой системе. Орбита обладает заметным эксцентриситетом. Масса планеты превосходит 3 земных. Т.е., скорее всего, это сверхземля.
Авторы исследуют механизм появления массивного спутника на очень широкой орбите у экзопланеты Kepler 1625b. Показано, что такое вполне может произойти за счет приливного захвата в молодой планетной системе.
Спутник первоначально захватывается на более тесную орбиту, а затем удаляется за счет приливного взаимодействия с планетой (как Луна удаляется от Земли).
Кеплер - все. Но остаются архивы, и в них еще целые залежи всего. Статья содержит описание того, что можно (и нужно) делать с кеплеровскими архивами, и каких еще открытий нам ждать.
В обзорах неоднократно упоминались различные подходы, которые могут позволить получать с помощью астрономических наблюдений достаточно подробную информацию о землеподобных экзопланетах, чтобы строить хотя бы примерные и нечеткие карты их поверхности. В данном небольшом обзоре все эти идеи суммированы. Разумеется, такие методы имеют прямое отношение и к поискам следов существования жизни. Так что - вдвойне интересно!
В частности, интересная идея специализированных наземных телескопов для наблюдения землеподобных планет в зонах обитания. По мнению авторов инструмент стоимостью около 100 млн долларов сможет получить изображения десятка самых близких экзопланет такого типа. Чтобы осмотреть все экзопланеты в 20 пк от нас потребует уже более крупный инструмент стоимостью под полмиллиарда. На мой взгляд, после работы спутника PLATO обсуждение таких проектов должно стать более конкретным. И можно ожидать их создания в 40е гг.
Разумеется, с помощью 20 и даже 100-метровых телескопов нельзя рассотреть диск планеты типа Земли. МОжно лишь по кривой блеска восстанавливать детали поверхности. Чтобы рассмотреть все напрямую, нужен будет интерферометр (лучше, конечно, космический) с расстоянием между телескопами, измеряемым километрами. Однако есть еще одна фантастическая идея, основанная на эффекте гравитационного линзирования. В качестве линзы должно выступить Солнце. Об этом речь идет в заключительной части обзора.
Это первая планета, обнаруженная на TESS (запущен в апреле этого года). Сверхземля на тесной орбите вокруг звезды солнечного типа с периодом менее недели. Ранее в этой системе уже была обнаружена массивная планета типа Юпитера с орбитальным периодом более 5 лет. Планета отрытая на TESS интересна с точки зрения возможностей детального изучения ее атмосферы и разнообразных эффектов, наблюдаемых к экзопланетных системах.
Также детальные наблюдения этой планеты и звезды представлены в статье arxiv:1809.07573.
С помощью установки ALMA удалось хорошенько разглядеть интересную систему.
Вокруг молодой звезды CI Тельца известна массивная планета. Возраст настолько невелик (около 2 млн лет), что там еще не рассосался протопланетный диск. Это единственная такая система. При этом важно, что очень массивная планета (почти бурый карлик) находится близко от своей звезды. Т.е., миграция уже произошла.
Авторы получают изображение в высоком разрешении. Новые детали они интерпретируют в модели нескольких массивных формирующихся планет. Их, согласно проведенному анализу, три. Их большие оси составляют от 10 до 100 а.е. Т.е., они все снаружи от горячего суперъюпитера.
Кратко описан проект недорогого спутника, который будет в течение года исследовать в УФ диапазоне десяток маломассивных звезд с экзопланетами с целью изучения их переменности. Для этого на борту будет стоять 9-сантиметровый телескоп. Запуск запланирован на осень 2021 г.
Авторы проводят сравнение четырех основных каталогов экзопланет. На данный момент тут нет единства. В каталоги включено разное количество объектов, при этом используются разные принципы отбора. В статье сравнение каталогов проводится по шести ключевым параметрам звезд и планет.
В результате сравнения авторы рекомендуют в качестве основного каталога The NASA Exoplanet Archive (https://exoplanetarchive.ipac.caltech.edu).
Интересный обзор о том, как (согласно современным представлениям) мог меняться климат Венеры, Земли и Марса в разные эпохи. В начале ситуация на всех трех планетах была похожей, а потом тропинки разошлись из-за разной массы планет, разного расстояния от Солнца и тп.
Сейчас удается получать спектры планет-гигантов, горячих нептунов и сверхземель. Есть два основных подхода: спектры "на просвет" и прямые изображения. У первых есть свои преимущества - так проще. Поэтому в ближайшее время, если говорить о спектрах планет земного типа, основные надежды возлагаются именно на данные, получаемые во время транзитов. Землеподобные планеты у красных карликов - первые кандидаты для получения данных об атмосферах потенциально обитаемых планет. Но не все планеты транзитные. Поэтому в конце концов мы придем к тому, что спектральные данные (в том числе и с целью поиска биомаркеров) будут получать по прямым изображениям. Вот этому и посвящен обзор. А начинается все, разумеется, со сводки современных данных по прямым изображениям экзопланет.
Хороший понятный обзор, посвященный образованию больших планет. Уровень сложности идеальный для того, чтобы в основных чертах понять все ключевые процессы. Т.е., без технических деталей и сложностей, но описание вполне строгое. И при этом хорошо проиллюстрированное.
Детальное изучение системы PDS 70 позволило обнаружить точечный источник внутри щели диска, окружающего эту молодую звезду (возраст 5-6 млн лет). По всей видимости, это массивная планета, обращающаяся на расстоянии около 22 а.е. от звезды (орбитальный период около 118 лет). Планета видна, разумеется, благодаря собственному излучению. Теоретически не исключено пока, что это легкий бурый карлик. Наблюдения проводились в основном на VLT (также использованы данные Gemini).
См. также arxiv:1806.11567, где представлены результаты по определению параметров планеты.
Очень полезный обзор о том, как свойства планет связаны со свойствами звезд, вокруг которых они вращаются. Разобраны все основные корреляции (например, большие планеты реже встречаются у красных карликов, и чаще - у звезд с более высокой металличностью) и возможные причины для их появления.
В последние годы основную долю бурых карликов обнаружили в обзорах, покрывающих большую площадь (2MASS, SDSS, UKIDSS, WISE и др.). Эта же методика позволяет обнаруживать массивные молодые одиночные экзопланеты. В этом обзоре обозреваются эти обзоры :).
Представлен полный каталог транзитных событий, зарегистрирвоанных на спутнике CoRoT. Аппарат исследовал более 160 000 звезд. В итоге в каталоге несколько десятков планет и более 500 кандидатов в экзопланеты, которые надо дополнительно изучать. Кроме того, обнаружено много двойных систем.
Авторы представляют новую программу, позволяющую сравнивать модельные параметры популяций экзопланет с данными наблюдений. Использование данных Кплера показало, что бОльшая часть звезд имет примерно по 7 планет. Причем самые близкие чаще всего имеют орбитальные периоды около 10 дней. Землепдобные планеты в зонах обитаемости должны встречаться довольно часто. А вот чем наша Солнечная система слегка выделяется (но не на уровне уникальности) - так это отсутствие планет с оритальным периодом короче меркурианского.
Хороший понятный обзор. Небольшой, а потому без деталей. Горячие юпитеры есть у 1 процента звезд (т.е., все стабильно), а планеты-гигант с орбитальными периодами до года - у примерно 3 процентов. Обсуждаются различные распределения параметров у планет-гигантов всех известных классов.
Обзор посвящен уникальному объекту WD 1145+017. Это белый карлик, вокруг которого обнаружен "планетный мусор", постепенно сваливающийся на компактный объект.
Открытие было сделано по результатам наблюдений на Кеплере в рамках программы К2. были обнаружены странные транзиты, которые удалось проинтерпретировать как результат загораживания белогок арлика обращающимися вокруг него пылевыми облаками. Причина формирования облаков состоит в том или ином разрушении твердых тел с массами порядка масс крупных астероидов.
В обзоре более половины места отведено под данные наблюдений. Затем рассмотрены возможные теоретические сценарии. Наконец, обсуждаются нерешенные вопросы и будущие наблюдения.
Вот про это должны написать новости, ведь как звучит: "Планета чернее угля"! Но она скорее темнее, чем чернее. Вообще, как пишут авторы, горячие юпитеры могут отражать лишь около 10% падающего на них света, что связано со свойствами облаков (которые, повторюсь, не черные, а темные). В случае WASP-104b отражается всего лишь около 3%. Отдельно напомню, что луна отражает 12%, и черной нам совсем не кажется.
Собственно, название отражает основной пафос. Результат получен на частном небольшом телескопе, работающем в США, но начиналось все в Коуровке.
Открытая планета - классический горячий юпитер с массой и радиусом почти как у Юпитера и орбитальным периодом 1.7 дня. Т.е., по науке ничего особенного, но демонстрирует, что в принципе любительские наблюдения (с некоторой помощью профессионалов) могут давать такие открытия.
Большой обзор (лекции) по изучению атмосфер транзитных планет. Подробно и понятно описано, как сейчас можно изучать атмосферы экзопланет, что будет возможно в ближайшем будущем, и с какими научными задачами это связано.
Исследуя новую выборку бурых карликов, авторы подтверждают единую зависимость масса-вращение для объектов дозвездных масс. Зависимость тянется от Марса до минимальной звездной массы. Скорость вращения пропорциональна квадратному корню из массы.
В последние примерно 15 лет мы получили возможность изучать атмосферы экзопланет. Сначала - горячих юпитеров, потом просто юпитеров, далее - планет с массой порядка нептунианской, затем - сверхземель. Вскоре, станет возможным напрямую получать данные об атмосферах планет земной массы. Это все требует развития методов моделирования назовых оболочек для разного состава, разного потока энергии звезды, разных типов планет и т.д. В статье приводится обзор этого широкого поля деятельности. Упор, разумеется, делается на получение численных оценок для тех параметров, которые можно измерять в наблюдениях.
См. также arxiv:1804.08340, где описаны основы моедлирования планетных атмосфер на примере тел Солнечной системы. Этот обзор более объемный и содержит больше деталей.
Формула воды...
Вода - одно из самых распространенных веществ во вселенной. В самом деле, молекула воды состоит из водорода и кислорода - первого и третьего по распространенности элементов. Учитывая, что гелий молекул не образует, можно догадаться, что вода - в общем-то самая распространенная молекула, состоящая из атомов разных элементов. Именно воде в контексте существования жизни и посвящен обзор.
Начинается все с основ, т.е. разбираются физические и химические свойства воды. Затем авторы рассматривают синтез элементов. После этого дана сводка наблюдательных данных по воде (межзвездная среда, протопланетные диски, атмосферы экзопланет и т.д.). Большой раздел посвящен воде в Солнечной системе. И завершается все темой "вода и жизнь".
Из 32 страниц текст занимает лишь около половины, так что читается быстро.
Очередная глава из сборника "Настольная книга по экзопланетам". Рассмотрены основные методы определения возрастов звезд, имеющих экзопланеты, и приведены результаты соответствующих исследований. Рассмотрены такие методы определения возрастов как замедление звезды, изменение обилия лития, астросейсмология и, конечно, просто изохроны. Правда, астросейсмология рассмотрена лишь кратко, поскольку ей посвящена отдельная глава в этом сборнике.
Короткопериодические планеты (с оритальными периодами менее пары дней) очень легко открывать, особенно метоом транзитов. Однако их не так уж много. Кроме горячих юпитеров есть еще короткопериодические планеты с массами порядка земной. Им, в первую очередь, и посвящен обзор.
Легкие ультракороткопериодические планеты (период менее 24 часов) встречаются примерно также часто, как и горячие юпитеры (а они, в свою очередь, есть примерно у пары процентов звезд). На сегодняшний день рекордные периоды менее 4.5 часов! Выделяется Кеплер-78 с периодом 8.5 часов, для которой есть надежные измерения и массы и радиуса. В обзоре обсуждается происхождение таких легких железно-каменных планет с короткими орбитальными периодами.
Появилась новая большая пачка коротких заметок (white papers), содержащих краткие описания проектов по изучению экзопланет из космоса. Выделю данную работу. Авторы мотивируют создание и запус специального аппарата для высокоточного измерения вариации лучевых скоростей звезд. Это должно позволить эффективно обнаруживать планеты земной массы в зонах обитаемости у звезд типа Солнца. Также измерению лучевых скоростей посвящена заметка arxiv:1803.04003. Тут речь идет о дальнейшем изучении транзитных планет, которые обнаружит TESS.
Также отмечу работу arxiv:1803.03732, где речь идет о специализированной астрометрической миссии с метровым телескопом. Цель также состоит в обнаружении планет земного типа у FGR звезд.
Еще несколько статей посвящены поискам жизни и изучению условий для ее существования: arxiv:1803.04010, arxiv:1803.03751.
ПОка не устоялся перевод слова biosignatures, будем употреблять "биомаркеры". Речь идет о поисках свойств, связанных с наличием биосферы. В данном случае обсуждаются свойства излучения поверхности и атмосферы с упором на процессы, подверженные сезонным изменениям. Многие из них так или иначе связаны с процессом фотосинтеза.
Подробно рассмотрена эволюция атмосферы нашей планеты. Рассмотрено как и почему менялось содержание кислорода, двуокиси углерода, метана и азота, и какие эффекты это все вызывало.
Очередная глава из сборника про экзопланеты. На этот раз подробно один из методом исследования - по вторичным затмениям. Это когда планета оказывается за звездой. Апофеозом такого подхода является картирование диска планеты. Действительно, космические инфракрасные наблюдения позволяют уже сейчас восстанавливать распределение яркости по диску для больших планет, близких к своим звездам.
Эта глава в "Handbook of Exoplanets" посвящена динамической эволюции орбит планет. В первую очередь, это важно для начального периода эволюции, когда в системе еще много тел, и крупные планеты еще не заняли свои окончательные орбиты, на которых они, в норме, проведут миллиарды лет.
Небольшой обзор по аккреционным процессам в протопланетных дисках. Рассмотрено, как планеты растут "снизу вверх".
Достаточно подробно описан самый эффективный на сегодняшний день метод обнаружения экзопланет - транзитный.
Изложены основы, перечислены ключевые проекты, приведены некоторые важные результаты.
В статье подробно обсуждается, как формируются планеты земного типа, а также - сверхземли, отсутствующие в Солнечной системе. Интересно, как более детальные данные и модели по формированию нашей системы увязываются с более пестрой картиной других планетных систем.
Хороший понятный обзор (как, впрочем, всегда у Армитажа) по формированию планет. Как раз в меру простых формул, чтобы начать все понимать не только на словесном уровне.
Рассмотрено три основных каталога (NASA, европейский и Открытый каталог), каждый из которых включает чуть более 3500 экзопланет. Также упомянуты более специализированные каталоги, где собраны данные по планетам определенных типов.
На русском языке см. статью, где также описаны он-лайновые каталоги экзопланет.
Авторы показывают, что в большинстве случаев (исключая очень большие значения сигнал/шум) кеплеровские планеты с малыми радиусами и большими полуосями (в первую очередь - двойники Земли) требуют независимых наблюдений для окончательного подтверждения. Речь не идет о том, что все или большинство таких регистраций под вопросом. Авторы полагают, что в целом статистика по таким планетам, полученная по данным Кеплера, верна. Однако в каждом конкретном случае необходимо, чтобы наличие планеты было подтверждено на другом инструменте, т.к. в данных Кеплера есть достаточно много шумов, которые для долгопериодических планет (для которых за все время работы миссии не удалось пронаблюдать много орбитальных периодов) могут приводить к ложным результатам. В качестве примера авторы выбирают планету kepler-452b. Опять же, речь не идет о "закрытии" этой планеты, а лишь о том, что нет окончательной уверенности.
Сверхземли по всей видимости являются самым распространенным типом экзопланет. С другой стороны, нельзя забывать, что сверхземли могут быть очень разными (в основном железно-каменными, или ледяными, или с очень толстыми атмосферами ...). Поэтому и формироваться они могут по-разному. И ясности тут нет. В обзоре рассматриваются разные теории образования планет этого типа, обсуждаемые в настоящее время.
На поздних стадиях формирования планетной системы вокруг звезд наблюдают т.н. остаточные диски. В основном, мы видим излучение пыли, порожденной столкновениями небольших тел в молодой системе (т.е., это не совсем "остатки", а "осколки остатков"). Благодаря ряду инструментов про остаточные диски мы узнаем все больше и больше интересного. В обзоре дается подробное описание дисков этого типа.
Обзор, в первую очередь, феноменологический. Поэтому все очень понятно.
Авторы показывают, что яркое событие микролинзирования содержит деталь, говорящую о присутствии планеты с массой 3-15 масс Земли. Т.е., скорее всего, она относится в сверхземлям. Если это так, то это самая близкая линза среди известных событий микролинзирования - до нее всего лишь 380 пк. Звезда, вокруг которой вращается планета, - красный карлик в четыре раза более легкий, чем Солнце.
Авторы объяснятют бимодальность распределения части звезд в молодых скоплениях по периодам вращения поглощением массивных планет. Захват тяжеой планеты легкой звездой приводит к ее заметной раскрутке. Т.о., те звезды, которые вращаются быстро, поглотили в молодости что-то вроде юпитера.
Детальное описание удивительного проекта по картированию экзопланет, используя Солнце в качестве гравлинзы.
Правда, спутник надо будет доставить на расстояние под 600 а.е. от Солнца. Далее, попиксельно (перемещаясь в фокальной плоскости гравлинзы) аппарат будет строить изображение (что, мягко говоря, непросто). И такую штуку можно сделать только для одной планеты.
В общем, звучит фантастически. Но научно-фантастически.
Сейчас известно более 100 экзопланет в системах двойных звезд, а также в системах более высокой кратности. В статье дается обзор этого многообразия. Обсуждаются вопросы устойчивости систем (по этому поводу см. также arxiv:1802.08868) и их эволюции, а также ряд наблюдательных аспектов.
Еще один небольшой обзор из новой версии "Handbook of Exoplanets". На этот раз анализируется, как мы могли бы видеть разные биомаркеры в атмосфере Земли, если бы наблюдали ее со стороны (с межзвездных расстояний) на протяжении ее геологической эволюции.
Обзор небольшой, и не все вопросы затронуты. Тем не менее, довольно интересно.
В заглавии нет слов "планет-гигантов", поэтому тему нуждается в комментарии. Речь идет о том, что нам говорят прямые поиски гигантских планет о чакстоте их встречаемости. Речь именно о прямых изображениях, а не о транзитах, микролинзировании, лучевых скоростях и т.п.
Сейчас уже есть достаточно надежные данные по сотням звезд, чтобы говорить о том, что массивные планеты есть лишь у 1% из них. Причем речь идет о действительно массивных (в несколько раз больше Юпитера) планетах на расстояния более примерно 10 а.е.
К слову, бурые карлики встречают примерно столь же редко (они есть у 2-4% звезд). Так что, вероятно, и механизмы формирования у них схожие.
Чаще гигантские планеты видны в системах с остаточными дисками.
Кратко описан довольно эффективный недоргой проект KELT, который решает очень четко поставленную задачу по поиску больших транзитных планет с короткими орбитальными периодами у ярких звезд, чуть более массивных, чем кеплеровская выборка. Обнаружено более двух десятков горячих юпитеров у звезд массивнее Солнца (и, как правило, быстровращающихся).
Где в Галактике жить хорошо? Ответ - в обзоре. Кратко он звучит так: есть месте получше, есть места похуже, но в принципе - везде можно.
Продолжают появляться статьи, посвященные Оумуамуа и объектам этого типа. В данной работе авторы оценивать количетсво таких объектов. Получается 0.2 на кубическую астрономическую единицу. Это дает примерно 4 массы Земли на кубический парсек. Т.е., все звездные системы должны вносить свой вклад.
Еще в одной статье рассматривается новая гипотеза о происхождении таких объектов: приливной разрыв тел белыми карликами. Конечно, в таком случае такие объекты должны быть более редкими, а сам Оумуамуа оказывается некоторой флуктуацией.
Наконец, не могу не отметить курьезное, на мой взгляд, исследование, в котором на большом радиотелескопе (GBT) прослушивали Оумуамуа на предмет не звездолет ли это. Ничего не слышно.
Авторы представляют популяционную модель для планет, сформированных на окраинах протопланетных дисков за счет неустойчивости в них. Это позволяет не только объяснить появление систем типа HR8799 (где 4 гигантские планеты находятся примерно на 20, 40, 60 и 80 а.е.), но также дает, потенциально, новый канал для образования бурых карликов и даже маломассивных звезд. Правда, в текущем исследовании массивные объекты (тяжелее 20 масс Юпитера) почти не формировались, в отличие от предыдущих моделей Forgan et al.
Появилось сразу несколько интересных результатов миссии К2. Это спутник Кеплер, который больше не наблюдает одну область неба, а сканирует его. Выделим один из них.
Обнаружена планета с очень коротким периодом: чуть менее 7 часов!. Причем, звезда - это не какой-нибудь совсем мелкий красный карлик класса М8. Это оранжевый карлик класса К4. Конечно, он легче Солнца и меньше его (масса 0.7 солнечных, радиус - тоже примерно 0.7, а температура - чуть более 4500К), но все-таки. Данное открытие важно в контексте понимания того, как планеты мигрируют и где останавливаются. В данном случае "стоп, машина" случился на расстоянии 1.3 радиуса звезды от поверхности!
Замечательно, что для планеты измерен и радиус (по данным Кеплера), и масса (по данным о лучевых скоростях по наблюдениям на HARPS). Радиус планеты - полторы земного, а масса - пять земных.
Планета находится очень близко от звезды - потому там горячо. В подзвездной точке (в "точке полудня") температура может достигать 3000К! Поэтмоу планета видна в красных лучах. Удалось увидеть вторичное затмение, связанное с тем, что планета оказывается за звездой.
Автор обсуждает, что выделяет Солнечную систему среди типичых экзопланетных систем. Есть два основных пункта: отсутствие сверхземель и отсутствие планет, близких к Солнцу.
В связи с этим автор рассматривает образование сверхземель и миграцию планет в контексте потенциального существования развитых форм жизни на поверхности планет типа Земли в зоне обитаемости. Еще одним связанным с упомянутыми темами вопросом является наличие и поведение малых тел (астероидов), которые могут сталкиваться с землеподобными планетами. Этому также посвящено большое обсуждение.
Наконец, отдельный большой параграф посвящен прямо проблеме разумной жизни и парадоксу Ферми. Здесь пока трудно придумать достоверную причину для утверждения об уникальности разумной жизни на Земле.
Авторы рассматривают крайне экзотическую возможность исследовать топографию экзопланет. Представим себе транзитную экзопланету без атмосферы. У планеты есть крупные детали рельефа - горы и тп. Тогда на кривой транзита будут сказываться эти особенности, т.к. в зависимости от того, как планета в данный момент ориентирована относительно нас, она будет иметь разную площадь в проекции.
В деталях авторы анализируют совсем экзотическую ситуацию: транзитный аналог Марса у белого карлика. Тогда, показывают они, "через следующее" поколение гигантских (100-метровых) наземных телескопов может зарегистрировать эффект.
Авторы изучают формирование систем спутников массивных планет. Спутники образуются быстро (десятки тысяч лет), т.к. характерные периоды обращения короткие. Часть спутников быстро выпадает на планету. Поэтому выживает последнее (позднее) поколение. Старые околопланетные диски сохраняют много льда (сама планета должна успеть остыть, чтобы не разогревать околопланетный диск), поэтому аналоги галилеевых спутников должны содержать много этого вещества.
Большой обзор, посвященный нашему современному пониманию (и непониманию) того, как образуются горячие юпитеры.
Дается краткий обзор по перспективам поиска жизни с помощью телескопов следующего поколения. По сути, просто перечислены некоторые пункты с упором на байесовские методы.
См. также еще ряд статей, написанных по поводу поисков жизни в ближайшие годы. Это все т.н. white papers: arxiv:1801.06935, arxiv:1801.07333, arxiv:1801.07810, arxiv:1801.08970, arxiv:1801.07811.
В обзоре дается сводка данных по частоте встречаемости планет, основанная на данных наблюдений вариации лучевых скоростей звезд и транзитов.
Когда мы говорим о "двойниках Земли", не надо забывать о возрасте планеты. Не обязательно абсолютном (в годах). Речь в первую очередь идет о разных эволюционных стадиях. Разумеется, Земля в прошлом была совсем не похожа на Землю современную. Соответственно, различались и их спектры, включая биомаркеры (если уже было что маркировать). В статье авторы рассматривают планеты, похожие на Землю, на разных эволюционных стадиях, да еще и вокруг звезд разных спектральных классов.
Авторы рассматривают четыре эпохи: до появления жизни, рост количества киислорода, 800 миллионов лет назад, современная Земля. Для всех случаев рассмотрены существенные спектральные детали, которые могут юыть зарегистрированы в случае близких планет (несколько парсек) телескопами ближайшего будущего. Приведено много примеров спектров.
Фантастически звучит? А авторы считают, что вполне реалистично. По их мнению анализ отраженного планетой света может позволить изучать поверхность планет. На основе детального анализа они показывают, что уже следующее поколение телескопов с аппаратурой типа SPHERE (работающей сейчас на VLT) смогут взяться за такую задачу для десятка планет. А когда в будущем появятся телескопы, эквивалентные 60-70 метровым диаметрам, то речь может пойти уже о сотнях планет.
Некоторые коллеги полагают, что в этой работе окончательно решена т.н. "проблема метрового барьера". Дело в том, что в моделях формирования планет есть некоторая незадача. Когда твердые частицы достагиют размеров порядка сантиметров-метра, то газ начинает их сильно тормозить, и частицы должны быстро выпадать на центральную звезду. Только достигнув размера в несколько метров, тела перестают чувствовать газ в столь сильной степени. Проблема в том, чтобы придумать механизм, позволяющий частицам небольшого размера, во-первых, быстро расти, во-вторых, не свалиться на звезду. И вот, кажется, проблема решена.
На самом деле, качественно идея была понятна уже лет 10-15 назад. Надо запустить какие-нибудь неустойчивости в диске, создадутся области повышенного давления. Частицы в них соберутся, будут быстрее расти (или даже могут прямо коллапсировать в планетезимали) и смогут избежать быстрого дрейфа к звезде. Даже неустойчивости были предложены - это т.н. пучковая неустойчивость (streaming instability). Вопрос был в деталях.
Авторы расмотрели эти детали и обнаружили целый ряд неустойчивостей, которые могут помочь быстрому формированию достаточно массивных тел в протопланетных дисках. А дальше мы уже знаем, как вырастить планеты.
В следующем году начнутся активные наблюдения на приборе ESPRESSO на VLT. Он приходит на смену известнейшему HARPS (установлен на 3.6-метровом телескопе), который внес огромный вклад в поиски экзопланет методом лучевых скоростей. Задача нового инструмента - получать стабильные результаты для скоростей в сантиметры в секунду. Т.е., он должен позволить обнаруживать двойников Земли: планеты с массой порядка земной в зонах обитаемости у звезд, подобных Солнцу.
Кроме экзопланетныз задач, у прибора есть и другие научные цели, связанные с изучением звезд и даже космологические исследования. В статье описаны и научные задачи, и конструкция прибора (включая разные режимы работы).
Авторы показывают, что в системе TRAPPIST-1 должна часто происходить покрытия планет планетами. Только наблюдать их трудно. Видимо, JWST справится. Это даст возможность определать параметры планет гораздо точнее. В частности, их массы и эксцентриситеты. Разумеется, есть и другие системы-кандидаты. Их авторы также обсуждают.
НА разных инструментах ведутся поиски целей для изучения атмосфер на крупных телескопах следующего поколения. В данном случае речь идет о доплеровских наблюдениях на HARPS. Изучалась звезда Ross 128 (Proxima Virginis, GJ447, HIP 57548). Это карлик класса М4 примерно в 10 световых годах от нас. Обнаруженная планета имеет массу чуть больше земной. Орбитальный период - 10 дней. В зависимости от параметров атмосферы планета может попадать в зону обитаемости. Планета не транзитная. Авторы полагают, что это хорошая цель для наблюдений на ELT в смысле поиска кислорода в атмосфере. Проксима Центавра ближе, но там звезда неспокойная, что будет мешать наблюдениям.
Как известно, спутник Кеплер уже несколько лет не может наблюдать одну и ту же область неба из-за поломок гироскопов. Однако работы продолжается. Этот этак получин наименование К2.
В статье преставлен каталог из полусотни надежных кандидатов в экзопланеты по данным части наблюдений в рамках программы К2. После выделения кандидатов авторы провели оптическую спектроскопию звезд, вокруг которых заподозрено присутствие экзопланет. Это позволяет отбросить двойные звезды, имитирующие планетные транзиты, а также уточняет оценки радиусов планет (т.к. уточняются параметры звезд).
Фазовая кривая - это изменение блеска экзопланеты на протяжении орбитального периода. Анализ таких данных позволяет вытянуть много данных по экзопланете. В первую очередь речь идет о параметрах атмосферы. Распределение яркости по диску планеты позвооляет судить о циркуляции в ее атмосфере, о ветрах и т.д. Кроме того, планета может быть сплюснутой, что также отразиться в фазовой кривой. Разумеется, речь идет о планетах, очень близких к своим звездам. Наблюдать такие тонкие эффекты непросто, но сейчас есть уже около двух десятков планет, для которых такие данные получены. Все они описаны в обзоре.
Красивый небольшой обзор по наблюдениям протопланетных дисков на приборе SPHERE на VLT. Много картинок (причем не только со SPHERE, но и с ALMA). При этом авторы умудрились еще и рассказать кое-чо важное про физику дела. Всем рекомендую.
Авторы рассматривают параметры зон обитаемости в системах двойных звезд. Основным результатом является получение фитирующих формул для расчета параметров таких зон в случае когда планета вращается вокруг одного из компонентов двойной, или же сразу вокруг всей системы. Метод, правда, подгоночный, а не основан на понятной физике.
См. также полезную статью 1605.06769, посвященную динамике и обитаемости экзопланет в двойных системах.
Очередной обзор, посвященный перспективам дистанционных поисков жизни. Речь идет не только о биомаркерах как таковых, но о biosignatures. Т.е., о всех возможных свидетельствах существования жизни. Поэтому обзор не ограничивается только атмосферами планет типа Земли. А в рассказе о собственно биомаркерах интересно описание процессов, которые приводят к изменениям содержания этих веществ.
Представлен очередной каталог экзопланетных кандидатов по данным Кеплера. Это надежные кандидаты. И их более 8000. Из них более 200 - новые объекты.
Авторы исследовали пару звезд типа Солнца с идентичными кинематическими параметрами и возрастами. Это все указывает на то, что звезды образуют двойную систему. Но есть и отличия: состав внешних слоев. В спектре одной из звезд заметно больше тяжелых элементов. Авторы полагают, что объяснение может состоять в том, что эта звезда поглотила примерно 15 масс Земли каменного вещества. А это тянет, соответственно, на поглощение целой системы каменных планет.
В статье речь идет именно о (потенциально обитаемых) землеподобных планетах вокруг звезд типа Солнца (FGK), т.е. никаких красных карликов и тп. Планеты вроде Проксимы Центавра b и системы Траппист-1 можно будет изучать и крупными наземными инструментами (особенно, если планеты транзитные, как у Трапписта). А вот настоящие двойники Земли можно эффективно характеризовать только из космоса. Причем, инструменты для этого нужны покруче JWST. Поэтому для этого нужны и новые технологии, которых пока нет.
Первым важным шагом станет WFIRST - следующий (после JWST) крупный космический телескоп. На этом инструменте будет коронограф, позволяющий изучать экзопланеты. Там будет опробовано несколько важных технологий. Но WFIRST относительно невелик (как Хаббл), а для достижения цели необходимы гораздо более крупные инструменты.
Существует несколько проектов больших телескопов (HabEx, LUVOIR, OST), у которых затмевающие элементы будут летать на большом расстоянии от самого детекторы. Также рассматриваются и более привычные (но очень продвинутые) коронографы. Возможно, к следующему десятилетнему обзору (decadal survey), который будет определять развитие американской астрофизики на 20-е - 30-е гг., попробуют хотя бы частично определиться с подобными проектами. Хотя мне кажется, что это будет сделано только еще через 20 лет (Decadal Survey 2030), т.к. нужен будет опыт WFIRST и побольше времени, чтобы наработать технологии и набраться опыта, а также определиться с параметрами и конкретными целями (т.е., должны хорошенько поработать и PLATO, и SPICA, и JWST, и 30-40метровые наземные телескопы). Пока предыдущие разработки (проекты TPF, Darwin) остались на бумаге: слишком сложно и дорого.
В случае внешнего диска, убирающего свет звезды, телескоп может и не быть очень крупным (1-2-3 метра), но сам экран долэен быть больишм (десятки метров). Он должен находиться на расстоянии десятки тысяч (!) километров от телескопа. И при этом нужно выдерживать очень точную соосность и тп. (возможно, при создании LISA будут наработаны какие-то из нужных технологий).
В качестве телескопов рассматриваются и 4-метровые монолитные зеркала, и 15-метровые составные-раскладные. Стоимость проекта (с учетом разработки и эксплуатации) явно составить миллиарды долларов. Возможно, понадобятся прототипы. Так изучается возможность запуска экрана, который будет работатьв паре с WFIRST (решение о таком проекте как раз может быть принято на основе следующего Decadal survey 2020)
До середины века NASA считает вопрос "Одни ли мы во вселенной" одним из ключевых и надеется с ним разобраться в этот срок. В смысле надежного обнаружения жизни земного типа на двойнике Земли это выглядит реалистичным.
В обзоре много всяких полезных картинок, таблиц и тп. Рекомендуется всем, кто хочет быть в теме.
В ходе своей эволюции планеты могут падать на свои звезды. Это может происходить из-за приливов, из-за взаимодействия с магнитным полем, наконец, из-за превращения звезды в красный гигант. Все эти аспекты рассмотрены в небольшом обзоре.
Планета WASP-12b настолько близко подобралась к своей звезде, что начала потихоньку перетекать не нее. При этом происходит ряд интересных сопутствующих явлений: часть вещества разбрасывается вокруг, а сама звезда начинает проявлять высокую активность. Эта ситуация и является предметом обзора.
Обзор понятный, но адресован явно специалистам. Т.е. нет "захватывающей популярности".
Описан один из методов обнаружения экзопланет. Периодическая модуляция наблюдаемой картины звездных пульсаций может позволить обнаружить экзопланету, чье гравитационное влияние и вызывает эту модуляцию. Из-за движения звезды относительно центра масс системы время прихода сигнала от нее будет периодически изменяться. Таким методом уже открыто несколько экзопланет (и множество компаньонов двойных систем). Проблемы обычно связаны с устойчивостью периода самих пульсаций. Но метод все-таки работает.
Впервые надежно продемонстрировано наличие стратосферы у экзопланеты. Т.е., в части атмосферы температура растет при удалении от планеты. Такое поведение приводит к появлению эмиссионных линий в спектре, которые и были обнаружены. Сделано это было благодаря наблюдениям на Хаббловском телескопе во время затмения звездой планеты (т.н. вторичное затмение). Планета является газовым гигантом, сильно прогреваемым своей звездой (температура 2700К). Полученные результаты помогают в деле проверки моделей атмосфер экзопланет.
По наблюдениям на инструменте HARPS (ESO) и телескопе Кека выявлено четыре маломассивные экзопланеты вокруг солнцеподобной звезды тау Кита. Пара планет находится в зоне обитаемости. Данные получены по анализу лучевых скоростей. Планеты не транзитные.
Существенно, пожалуй, то, что методами хитрой обработки авторы подобрались вплотную к пределу, позволяющему обнаруживать методом изменения лучевых скоростей полных двойников Земли (параметры звезды, масса, расстояние от звезды).
Наконец, напомним, что кандидаты в экзопланеты обнаруживались у тау Кита и в 2012-13 гг. Два из них воспроизведены в этой работе. Остальные - нет. Так что система явно нуждается в дальнейшем изучении.
Большой материал, посвященный задачам и перспективам экзопланетных исследований. Авторы пытаются выделить ключевые вопросы (и описать соответствующий контекст), на которые смогут хотя бы частично ответит благодаря работе таких проектов ближайшего будущего как JWST, WFIRST, PLATO, крупные наземные телескопы (GMT, E-ELT, TMT) и некоторые другие, а также уже работающие системы, например ALMA. Рассмотрены вопросы, не связанные с жизнью, биомаркерами и тп. Речь идет о физических свойства планет и их систем, хотя атмосферы и свойства поверхности (например, наличие воды) обсуждаются.
Снова рекорды. Самая близкая многопланетная система: 10 световых лет от нас. Самые легкие планеты обнаруженные по лучевым скоростям: 0.75+/-0.13 масс Земли (и еще есть кандидат с массой около 0.5 земной!). Правда, все это планеты у красного карлика (0.13 масс Солнца), находящися близко от звезды: периоды обращения от 2 до 5 дней (а у очень маломассивного кандидата - 1 день).
Авторы моделируют наблюдения спектров атмосфер для 9 небольших планет вокруг близких красных карликов. Показано, что для планет, близких к своим звездам, JWST будет достаточно пронаблюдать около десятка прохождений, чтобы получить спектральную информацию. С планетами в зонах обитаемости сложнее, но и там есть надежды вытянуть состав атмосферы для некоторых вариантов ее состава. Лучшие цели из числа рассмотренных GJ 1132b и TRAPPIST-1b. Но они вне зон обитанемости (ближе к звезде).
Авторы обсуждают концепции трех спутников для астрометрического поиска экзопланет. Все это недорогие аппараты (хотя речь, разумеется, все равно идет о сотнях миллионах евро). И все это только проекты, т.е. ни один из аппаратов не одобрен ESA. Видимо потому, что ожидаемое количество открытий невелико (десятки планетных систем), и нет явных надежд открыть таким способом что-то очень интересное, или как-то качественно продвинуться в понимании экзопланет. Тем не менее, читать описание проектов и их задачи весьма интересно.
STARE (самый дешевый из описанных вариантов - всего пятидюймовый телескоп) предназначен для поиска двойников Земли у какой-нибудь близкой звезды (авторы обсуждают Альфа Центавра). NEAT (его стоимость уже около полумиллиарда евро) предназначен для наблюдения пары сотен ближайших звезд классов F,G, K. Сложность состоит в том, что это не один спутник, а система из двух (фокусное расстояние 40 метров). Theia - модификация NEAT, где все собрано на одной платформе. У этого спутника есть и другие научные задачи (изучение локального темногов ещества), а для экзопланетных поисков предлагается осмотреть 50 звезд. Соединение двух интересных научных задач и новых технологий делает Theia довольно привлекательным проектом.
Обзор по методам дистанционного поиска жизни на экзопланетах. Речь идет об анализе спектров атмосфер и поиске биомаркеров. Написано понятно (почти популярно), но достаточно полно и строго. Так что всем можно смело рекомендовать.
Конечно, первый вопрос: "Если сигнал значимый, то почему не Nature/Science?" Ну а если не значимый .... Тем не менее.
Авторы обнаружили в данных Кеплера транзитные сигналы, которые можно интерпретировать как кометы (а можно, к слову, как астроинженерные сооружения - привет фантазерке Табби!).
Речь идет о нескольких транзитах. Несколько штук - у звезды KIC 3542116, и один у KIC 1108472. Действительно, все параметры (включая оценку массы пыли) хорошо соответствуют ожидаемому сигналу от крупных комет.
Огромный обзор по физике формирования планет.
Просто идеально для изучения соответствующих вопросов. Очень ясное изложение и широчайший охват.
Еще один большой обзор по экзопланетам, в некотором смысле дополняющий предыдущий.
Авторы начинают с того, как определяются параметры звезд и планет, а затем рассматривают ряд конкретных примеров. В конце кратко рассматриваются планы на будущее.
Те же, кого интересует сводка результатов, могут сразу перепрыгнуть на стр. 23, где они обнаружат большую таблицу с параметрами звезд (как тех, вокруг которых есть известные экзопланеты, так и тех, у которых планеты пока не найдены), для которых есть хорошие интерферометрические измерения размера.
Авторы используют большой объем данных по микролинзированию (2617 событий), чтобы исследовать параметры свободно летающих планет и планет на очень широких орбитах.
Показано, что число массивных планет с такими свойствами невелико: менее одной планеты на 4 звезды Главной последовательности. А вот с менее массивными планетами ситуация менее ясна. Среди событий микролинзирования есть неплохие кандидаты в события, связанные с такими объектами. Поэтому число свободно летающих планет земной и сверхземной массы может быть велико. Это находится в соответствии с современными моделями формирования планет.
В новостях очень шумят о возможном открытии первой экзолуны. На мой взгляд, раз статья не в Nature и не в Science, то рассосется. Тем не менее.
Авторы проанализировали большую (почти три сотни) выборку кеплеровских планет на предмет наличия спутников. Искать можно только большие спутники - как у Юпитера. Важно однако, что выбранные планеты, разумеется, не полные аналоги Юпитера. Это, как правило, менее массивные планеты с размером типа нептунианского и, что важно, сильно мигрировавшие к звезде (до расстояний 0.1-1 а.е.). Поставлены самые жесткие на сегодняшний день ограничения на наличие спутников (практически исключены объекты с размером около половины земного на орбитах с радиусом 20-100 радиусов планеты).
Кандидат в спутники обнаружен у планеты Kepler-1625b. Система пока изучена очень плохо, даже параметры звезды определены так себе. Поэтому необходимы дальнейшие наблюдения, которые будут проведены на Хаббле. Вот их результатов и будем ждать.
Впервые обнаружено линзирование двойной звезды звездой с экзопланетой. Событие получило обозначение MOA-2010-BLG-117. Планета имеет массу около половины юпитеринаской и обращается примерно в трех а.е. от звезды с массой около половины солнечной. До линзы 3.4 кпк, до источника - в два раза больше.
Детальные наблюдения на телескопе Кека и их анализ показали, что близкий объект, считавшийся бурым карликом спектрального класса L на самом деле является тесной парой двух планет с массой порядка юпитерианской. Расстояние между планетами 3-4 а.е. Массы тел составляют 3-5 масс Юпитера. Орбитальный период составляет несколько десятков лет. Возраст системы, согласно оценкам, составляет несколько миллионов лет. Авторы полагают, что таких случаев может быть много.
Описывая основные методы обнаружения и определения свойств экзопланет не всегда выделяют отдельным пунктом очень важный и распространенный способ. Он связан с планетными транзитами. Сам транзитный методо известен, понятен и хорошо и многократно описан. Однако важно, что измерения времен транзитов - это само по себе очень точная штука. И если в системе "болтается" что-то - еще, то это "что-то" будет влиять на параметры транзитов. В итоге, - появляется новый метод поиска экзопланет.
Как правило, если вокруг звезды крутится планета, то есть и другие. Но вовсе не обязательно орбиты всех планет дежат настолько в одной плоскости, что все онни будут транзитными. Тем не менее, влияя своей гравитацией на транзитные планеты, "невидимки" проявляют себя. Сбивается время следующего транзита. Транзит может длиться дольше или меньше. Все это можно измерить и определить свойства "возмущающего" тела.
На сегодняшний день более сотни планет открыто методом вариации времени транзита, и несколько штук методом вариации длительности транзита. С учетом того, что вскоре должны полететь новые спутники (TESS, CHEOPS), метод, наверняка получит второе дыхание (а потом и третье, когда полетит спутник следующего поколения PLATO). Вносят свой вклад и наземные наблюдения транзитов.
В обзоре описана и теория, и методы наблюдений, и результаты. При этом обзор небольшой и понятный. Так что - его стоит просмотреть.
Авторы моделируют потери атмосферы планетами системы TRAPPIST-1 и обсуждают, в связи с полученными результатми, возможность обитаемости этих тел и стратегии поисков жизни.
Ожидается, что планеты будут иметь довольно слабое поле. Поэтому сильный звездный ветер (из-за того, что планеты близки к звезде) приводит к довольно быстрой потере атмосферы. Лишь две внешние планеты могут удержать атмосферу на миллиард лет. Самая внешняя - вряд ли может быть обитаемой. Соответственно, на первое место выходит TRAPPIST-1g.
Авторы обращают внимание, что выбирая планеты вокруг красных карликов с наибольшей вероятностью их обитаемости, следует обращать внимание на темп звездного ветра. Планеты, подвергающиеся наименьшему влиянию ветра, с большей вероятностью могут быть обитаемыми.
Очень подробный обзор по биомаркерам. Причем речь идет не только о наличие каких-то конкретных соединений (вроде кислорода, метана или озона) в атмосфере, но и о всех мыслимых признаках, которые можно дистанционно зарегистрировать. Например, как внешние слои атмосферы или поверхность отражают свет, различные характеристики планеты, изменяющиеся во времени (скажем, сезонные изменения).
Последующие статьи этой серии: arxiv:1705.06381, arxiv:1705.07098, arxiv:1705.07560, arxiv:1705.08071..
Впервые с помощью ALMA удалось увидеть в миллиметровом диапазоне аккреционный диск вокруг одиночного объекта планетной массы. Источник OTS44 является молодой свободной планетой с массой около 12 юпитерианских. Масса диска составляет десятые доли массы Земли.
Как известно, первые надежные планеты были открыты вокруг радиопульсаров в 1992 г. Разумеется, вероятнее всего планеты сформировались уже после вспышки сверхновой. Разумеется, жизнь на планете, обращающейся вокруг нейтронной звезды, нелегка. Ну а вдруг? Авторы рассматривают гипотетическую ситуацию, когда вокруг нейтронной звезды располагается планета земного типа с атмосферой. Задача: посмотреть, как излучение нейтронной звезды будет на эту атмосферу влиять. В частности, можно ли надеяться на то, что планета будет обитаемой.
Авторы формулируют параметры зоны обитаемости для планеты вокруг нейтронной звезды. Также обсуждается вопрос сохранения атмосферы под деййствием излучения и потока частиц.
В общем, советский человек и вокруг нейтронной звезды выживет и коммунизм начнет строить (вплоть до полного исчезновения жизни).
Если звезда достаточно активна (что практически всегда верно в случае маломассивных объектов), а планета расположена достаточно близко от нее, то будут происходить разнообразные взаимодействия, обсуловленные присутствием сильных магнитных полей (в первую очередь - звездных). Все эти возможные случаи рассматриваются в обзоре. Кое-что уже и наблюдается. Интересно!
Обнаружена еще одна маломассивная транзитная планета в зоне обитаемости около близкого красного карлика (в семь раз легче Солнца). Расстояние до нее - 12 пк (как до Трапписта-1), что делает планету хорошим объектом для изучения атмосферы.
Радиус планеты около 1.4 земных, а масса - 6.6 земных. Важно, что возраст звезды, по всей видимости, превосходит 5 млрд лет. Так что это в самом деле интересный кандидат.
Небольшой и довольно технический обзор, посвященный методам построения карт экзопланет. В статье не затрагивается такая экзотика, как гравитационное линзирование на Солнце. Речь идет о доступных в настоящее время методам, основанных на анализе излучения в зависимости от фазы, от стадии затмения и тп. Кое-что можно сделать и такими методами. В финальной части статьи авторы приводят существующие примеры.
Авторы моделируют формирование планетной системы, концентрируясь на проблеме выбрасывания планетезималей и планет за счет взаимодействия друг с другом. Расчеты показывают, что на одну звезду приходится 2-3 выброшенные каменные планеты. Т.е., их общее число в Галактике порядка триллиона (тысяча миллиардов). Авторы полагают, что аппараты подобные WFIRST смогут обнаруживать такие тела за счет микролинзирования. Однако открытий будет немного (от силы - десятки), и в основном это будут тела с массой порядка марсианской (что соответствует самым массивным планетезималям).
Наконец-то авторы выложили статью по Трапписту-1 в Архив. За что им спасибо.
А вот про эту статью расскажем подробнее, т.к. вокруг нее ажиотажа не было. Заметим, что это почти что та же команда исследователей.
Наземные наблюдения (HARPS) вместе с космическими (Спитцер) позволили обнаружить интересные (и рекордные) планеты.
Звезда HD 219134 - слегка легче Солнца (0.8 масс Солнца и радиус 0.78 солнечного). Находится она всего лишь в 6.5 парсеках от нас (20 световых лет). Вокруг нее обнаружены две любопытные планеты. Для них измерены и массы и радиусу, посколько наблюдаются и транзиты, и вариации лучевой скорости звезды. Планеты формально попадают в разряд сверхземель: массы 4.5-4.9 и 4.1-4.5 масс Земли, а радиусы 1.6 и 1.5 земных, соответственно. Это позволяет оценить плотность. И она получается довольно большой: 1-1.3 и 1.1-1.4 земной плотности. Это говорит о том, что планеты каменные. Интересно, что несмотря на большую массу масса ядра у каждой из планет, в относительных величинах устапает земным параметрам (особенно для HD 219134b).
Это ближайшие от нас транзитные планеты. Если бы еще попали в зону обитаемости - все бы трубили. Но они близко от звезды. Там жарко.
В системе есть еще две планеты, но обе (пока?) не наблюдались как транзитные. Они находятся дальше от звезды. Обе тяжелые (скорее всего ближе к массе Нептуна) и находятся на расстояниях 0.15 и 0.24 а.е. Т.е., тоже жарко.
В общем, очень интересная система - и прямо у нас под носом.
Авторы продолжают моделировать, с какой эффективностью LSST (который должен заработать в 2020, и его основная программа рассчитана на 10 лет) будет открывать экзопланеты. Ответ: короткопериодические планеты будут открываться, как из пушки. Сверхземли (и более крупные планеты) с периодами менее недели будут обнаруживаться в огромном количестве.
В Солнечной системе существует красивое явление зодиакального света. Светится пыль в плоскости эклиптики. Подобные пылевые стурктуры есть и в других планетных системах. Им и посвящен обзор.
Кроме того, что существование околозвездной пыли интересно само по себе, это еще и мешает открывать и исследовать небольшие планеты. Например, это может стать заметной помехой при изучении в ближайшем будущем полных аналогов Земли.
В обзоре радует прекрасная инфографика. Всем надо брать пример!
По наблюдению микролинзирования на наземных установках и на космическом телескопе Спитцер авторы рапортуют об обнаружении планеты земной массы (чуть-чуть тяжелее) на орбите вокруг бурого карлика (0.06-0.08 масс Солнца). Размер орбиты чуть-чуть больше земного. Это самая легкая планета среди всех, обнаруженных методом микролинзирования. Система находится в 4 с небольшим кпк от нас.
Другая интересная линза с экзопланетой представлена в работе arxiv:1703.08639. По всей видимости, там также находится небольшая планета, лишь немногим превосходящая Землю по массе.
Наконец, еще одна планета около бурого карлика или очень легкой звезды представлена в статье arxiv:1703.10769.
Хороший обзор по протопланетным и остаточным ((debris) дискам. И обязательно посмотрите на "загогулину" на рис. 1. ALMA открывает нам просто потрясающие структуры в протопланетных дисках.
По данным доплеровской томографии авторам удалось получить хорошую оценку массу для транзитной планеты HAT-P-67b. В итоге - рекорд. Это планета с самой низкой плотностью.
Объяснение низкой плотности видимо состоит в том, что HAT-P-67b находится очень близко от своей звезды - F-субгиганта (орбитальный период менее 5 дней).
Пока все радуются обнаружению семи землеподобных планет в системе TRAPPIST-1, кое-кто посчитал, а можно ли там жить.
Жить там непросто. Звезда маломассивная (на пределе - 0.08 масс Солнца), а потому целиком конвективная и очень активная. О чем и речь.
У таких звезд есть довольно мощное УФ излучение, которое для жизни не полезно. Поэтому на поверхности будет сложно выживать. Никакой ясности статья, в общем-то, не вносит. И так было ясно, что надо пытаться на JWST искать на этих планетах озон. Если он есть - может кто и выживет. А если нет - то только под водой или под еще какой-то защитой.
Также вопросу активности звезды TRAPPIST-1 посвящена статья arxiv:1702.07004. В ней описаны наблюдения линии лайман-альфа. Оценки авторов показывают, что за несколько миллиардов лет внутренние планеты должны терять атмосферу.
Авторы изучают звезды с избытком инфракрасного излучения. ЗВезды не молодые, а излучение, очевидно, вызвано большим количеством пыли. Проанализировав данные, авторы приходят к выводу, что источником пыли может быть столкновение планет примерно земной массы.
Авторы дают обзор того, что мы знаем об атмосферах экзопланет, а что сможем узнать после запуска JWST и начала работ ыназемных телескопов следующего поколения (E-ELT etc.).
Отдельно они разбирают то, что они называют иллюзорными утверждениями. Как правило, это какие-то заключения, касающиеся планет или их атмосфер, которые изначально имели статус шатких гипотез, не слишком вероятных возможностей и т.д., и которые, в итоге, не подтверждаются по результатам дальнейших исследований.
Также в статье рассматриваются метод изучения атмосфер экзопланет.
Дан детальный обзор физики планетных колец и других подобных образований (включая разные типы дисков: аккреционные, протопланетные, остаточные...). Кажется довольно странным, во-первых, все объединять в одном обзоре, а во-вторых, в назнвании так выделять кольца (они не доминируют в основном тексте). Тем не менее, обзор полезный, понятный. Статья модержит огромный список литературы (занимает треть объема).
Сейчас астрономия вплотную подошла к возможности выявлять потенциально обитаемые планеты. Пока у нас есть только массы и радиусы планет, плюс их орбитальные характеристики, позволяющие определить количества тепла, получаемого от звезды. Но в ближайшие 10-20 лет будет возможно гораздо большее. Поэтому активно появляются работы, в которых обсуждаются различные способы определить, является ли планета потенциально обитаемой (а может и точно обитаемой). Этому и посвящен небольшой обзор.
Автор обсуждает именно методики наблюдений, позволяющие определить важные параметры. Например, наличие жидкой воды на поверхности по поляризации отраженного света. Или определение температуры и давления на поверхности. Выглядит это все уже вполне реалистично, учитывая ожидаемые параметры будущих инструментов.
С помощью наблюдений на Космическом телескопе удалось увидеть атмосферу на транзитной "горячей земле", находящейся в 12 пк от нас. Планета обращается вокруг красного карлика (с массой 0.16-0.2 солнечных) и имеет массу около 1.6 земных (примерно от 1 до 2 в пределах ошибок). Радиус при этом равен 1.2-1.6 земных. Температура (т.н. "равновесная температура") составляет около 600 К.
Удалось увидеть присутствие воды и метана в атмосфере. Правда, этого пока недостаточно, чтобы сказать, является ли сама планета железно-каменной, как Земля, или это "водный мир".
Авторы рапортуют об открытии очередной интересной системы. Одна из планет является ультракороткопериодической (13.7 часа). Это, как пишут в статье, 12-я система, в которой ультракороткопериодическая планета не единственная в системе. В данном случае вторая планета имеет орбитальный период 13.3 дня. Обе планеты небольшие (1.5 и 2.5 радиусов Земли). Звезда, кстати, совсем не красный карлик. Ее масса составляет 0.93 солнечной, а радиус равен 550-600 тыс. км. Так что внутренняя планета расположена очень-очень близко от поверхности (радиус орбиты чуть превосходит миллион километров). Возможно, полагают авторы, за формирование таких систем отвечает какой-то особый механизм.
Миллиарды лет назад Земля не выглядела как "бледная голубая точка". Тогда атмосфера и климат были совсем другими. Кислорода в атмосфере практически не было. Однако, планета уже была обитаемой.
Авторы исследуют возможный климат на Земле во время архея (3.8-2.5 млрд лет назад). Для этого они подбирают нужный состав атмосферы и обсуждают возможные биомаркеры (метан и углекислый газ) для планет с такими свойствами. Атмосфера отдаленно напоминает имеющуюся на Титане. Такой "туман" мог помочь существованию теплого климата даже при тусклом Солнце (его светимость 3 млрд лет назад составляла примерно 3/4 сегодняшней).
Открытие планеты у Проксимы Центавра подстегнуло исследования в области обитаемости таких объектов. НАстало время обозреть сделанное. ИМенно этому и посвящена статья.
Авторы обсуждают и статистику земноподобных планет в зонах обитаемости красных карликов, и архитектуру планетных систем, в которые они входят, и вопросы климата, и активность здвед. В общем - все, что сделано к настоящему моменту. Учитывая, что телескопы следующего поколения в течение ближайшего десятка лет смогут рассказать нам много нового о таких объектах, скоро снова надо будет обозревать.
Авторы обсуждают основные нерешенные проблемы в теории формирования планет: структуру и эволюцию протопланетных дисков, рост первых планетезималей, миграцию, возникновение структуры Солнечной системы, сверхземли.
Планета K2-18b была открыта на спутнике Кеплер, когда его постоянная ориентация в одном направлении была уже невозможна (программа К2). Это сверхземля с радиусом 2.2 земных, обращающаяся с периодом 33 дня вокруг красного карлика с массой 0.4-0.45 масс Солнца в 30-40 пк от нас.
сложность была в том, что видели всего лишь пару прохождений планеты, а потому данные были не слишком точные и достоверные. Авторы статьи использовали космический телескоп имени Спитцера, чтобы пронаблюдать еще один транзит. Это позволило и подтвердить наличие планеты, и уточнить орбитальный период. Если бы последнее не удалось сделать вскоре после первого обнаружения, то планета могла бы быть "потеряна", т.к. первые данные были не слишком точные.
Почему столько шума? Потому что считается, что это лучшая цель для изучения атмосфер сверхземель в зоне обитаемости. Уже сейчас Хаббл, и уж точно в ближайшие годы JWST смогут дать много информации по параметрам атмосферы этой планеты. Транзитная планета около относительно близкого красного карлика - идеальная мишень. Вот поэтому и важно, что ее подтвердили, и уточнили параметры орбиты.
Забавный проект. Где-то между летом 2017 и летом 2018 ожидается транзит в системе бета Живописца. Это позволит лучше изучить объект. На самом деле, в транзите нельзя быть уверенным. Никто не даст крупный инструмент, чтобы непрерывно мониторить одну звезду. А звезда-то яркая! Важно лишь очень точно измерять блеск. Поэтому авторы разработали специальный проект.
Это наноспутник с 3.5-сантиметровым телескопом. Установлен он будет на аппарате с архитектурой Cubesat. Запуск намечен на начало 2017. В статье описаны некоторые возникающие технические проблемы, т.к. нужна очень высокая точность фотометрии. Будет интересно всем, кто близок к теме (или малых спутников, или наблюдений экзопланет, или фотометрии из космоса).
Не прошло и месяца, как статью таки выложили в Архив!
Сама новость всем хорошо известна, поэтому лишь сошлюсь на короткое видео и предложу таки прочесть статью, кто не читал прямо в Nature.
См. также arxiv:1609.03082, где авторы исследуют возможность прямых наблюдений Проксима b на телескопах VLT. Получается, что после реалистичного апгрейда инструментов SPHERE и ESPRESSO это можно будет сделать! Более того, авторы полагаюь, что можно будет получить спектры, чтобы поискать три биомаркера: кислород, воду и метан. И это еще без E-ELT! А уж с E-ELT!!!!
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Впервые удалось открыть планету вопркг двойной звездной системы, используя данные по микролинзированию.
Линзирование часто не сразу позволяет понять, какая модель распределения масс верна. В данном случае понадобились наблюдения на Хаббловском телескопе. Они позволили увидеть звезду-источник и линзу по отдельности. Линза оказалась парой из двух красных карликов. Это позволило остановиться на одной модели. В ней присутствует панета с массой 70-90 земных, обращающаяся вокруг двойной на расстоянии раз в 40 препревышающем расстояние между звездами.
Авторы анализируют полную выборку, полученную в ходе основной части миссии Кеплер на предмет планет в зонах обитаемости. В итоге составлен каталог, в котором использовано достаточно консервативное определение зоны обитаемости. В каталог включены как надежно установленные планеты (Kepler-186f, например), так и кандидаты. В таблицах приведены соответствующие вероятности. В каталог попало 104 планеты. Среди них 20 имеют размеры менее двух земных. Отдельно напомню, что есть еще множество кандидатов, открытых не спутником Кеплер, а другими проектами. Т.е., не надо писать: "Сейчас известно чуть более 100 планет и кандидатов в планеты в зонах обитаемости". Надо уж тогда добавлять: "по данным спутника Кеплер".
Используя данные спутника Кеплер, авторы нашли гигантскую планету около звезд класса А. Но открыли ее не по транзитам!
Звезда пульсирует. Из-за присутствия массивной планеты наблюдаемый период пульсаций будет испытывать периодические вариации. Именно это и было обнаружено. Период велик - 840 дней. Авторы обсуждают, что у звезд класса А должно быть много массивных планет на широких орбитах.
После появления статьи об обнаружении планеты с массой чуть более земной в зоне обитаемости Проксимы Центавра в Архиве появилось много публикаций, посвященных вопросам обитаемости этой конкретной планеты, и планет такого типа вообще. Основная проблема здесь в свойствам звезды. Надо находиться близко от красного карлика, а эти объекты очень активны. Поэтому возникает много проблем с выживанием.
В работе arxiv:1608.06672 авторы приводят статистику вспышек на Проксиме по данным спутника MOST. Вспышек много, учитывая большой (83 дня) период вращения звезды. Несколько раз в год происходят супервспышки, более мощные, чем все наблюдавшиеся на Солнце.
Вопросы активности красных карликов в связи с обитаемостью планет вокруг них также рассматриваются в статье arxiv:1608.06772.
Очевидно, что в ближайшее время появится еще несколько работ на эту тему.
В двух больших статьях arxiv:1608.06813 и arxiv:1608.06827 детально рассматривается именно вопрос обитаемости Проксима Центавра b (кстати, интересно, какое имя получит эта планета). Тому же посвящена и статья arxiv:1608.06908. А также arxiv:1608.07263.
Наконец, в большой 62-страничной статье Barnes et al. подробно рассматривают различные эволюционные сценарии для жизни на Проксиме b. Ее продолжение - статья arxiv:1608.08620.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Это не первая планета в тройной. Но в данном случае интересна ее орбита. Планета крутится вокруг звезды, а на некотором отдалении вращается еще пара звезд. Так вот, орбита планеты слишком большая - не сильно меньше орбиты двойной. По всей видимости, чуда нет - орбита неустойчива, но система еще слишком молодая, а периоды обращения довольно большие (сотни лет). В ближайшие миллионы лет планету выкинет из системы. Именно молодость и позволила ее обнаружить. На прямых изображениях чаще видят именно молодые планеты, т.к. они продолжают сжатие, а потому ссветят больше, чем старые объекты такой же массы.
Как известно, на спутнике Кеплер некоторое время назад отказал еще один гироскоп, обеспечивающий ориентацию спутника. В итоге, аппарат не может постоянно смотреть в направлении созвездий Лебедя и Лиры, где была его основная площадка. Но вся аппаратура работает. Так что, хотя инструмент колбасит по всему небу, наблюдения продолжаются. Проект вцелом называется "К2". Там есть много разных задач, но среди них, разумеется, есть и поиск экзопланет.
В статье представлены результаты первого года по поиску планет. Обнаружено более сотни. Плюс - почти две сотни кандидатов. Среди новых экзопланет есть довольно интересные объекты. В том числе и мелкие планеты (С радиусом менее двух земных). Некоторые - в зонах обитаемости.
С помощью транзитов трудно открывать планеты с большими полуосями (большими орбитальными периодами), т.к. мало повторных проходов. В даных Кеплера их совсем немного. Однако авторы предлагают и используют новый алгоритм, чтобы определить долю таких планет. У авторов получилось, что в среднем звезда типа Солнца имеет пару планет меньше Юпитера с орбитальным периодом от 2 до 25 лет.
Авторы проводят многолетний поисковый обзор планет, используя крупнейшие телескопы (Кеки, Джемени) для получения прямых изображений гигантов у близких звезд. Исследовано почти три сотни молодых звезд (молодость важна, т.к. планеты в таком случае еще находятся в стадии сжатия, а потому имеют более высокую температуру и их легче увидеть). ИМенно в этом проекте были открыты планеты системы HR 8799.
Авторы оценили, что несколько процентов звезд имеют гигантские планеты (1-14 масс юпитера) в диапазоне полуосей 20-300 а.е. Интересно, что частота встречаемости планет не зависит от массы звезд. При этом для близких планет такая зависимость имеется.
Авторы рапортуют об открытии горячего юпитера, который настолько близок к своей звезде (орбитальный период 20 часов, а звезда имеет массу, равную солнечной), что между планетой и звездой существует мощное приливное взаимодействие. Оно приводит к тому, что планета раскручивает звезду. Данная система позволяет уточнить приливной отклик звезд на приливное воздействие, что крайне интересно.
Авторы обработали данные по 7056 KOI. Это кеплеровские потенциальные кандидаты в планеты. Результаты выявили почти 2000 объектов, для которых сигнал выглядит реальным с большой вероятностью. Статистический анализ показал, что 1284 из них имеют высокие шансы оказаться экзопланетами. Т.е., это действительно очень хорошие кандидаты.
С одной стороны, автор пишет хорошо понятные и известные вещи: мы знаем только, как искать жизнь земного типа, да и тут мы базируемся на всяких биомаркерах, которые дают, в принципе, косвенную ифонрмацию. С другой стороны, если не принимать буквально скепсис автора, то статья является хорошим популярным изложением ряда вопросов, связанных с поиском жизни во вселенной.
Исследовалась планета 55 Cancri e. Наблюдения проводились на телескопе Спитцер в 2013 г.
Планета имеет массу 0.02 юпитерианских и делает оборот вокруг своей звезды за 0.74 дня. Поэтому, разумеется, обращенная к звезде сторона планеты очень горячая - почти 2700К. На ночной стороне температура примерно вдвое меньше. На дневной стороне обнаружено горячее пятно (3100К), смещенное примерно на 40 градусов от направления на звезду.
Интересно, что авторы полагают, что планета может не иметь атмосферы. Тогда объяснить горячее пятно довольно нетривиально.
Авторы исследовали большую выборку кандидатов в кеплеровские транзитные планеты (более 380 объектов). На телескопе Кек-II проводились наблюдения с целью разрешить двойные системы. В ряде случаев это удалось сделать - т.е. планеты находятся в двойных. Однако количество обнаруженных двойных с полуосью менее 50 а.е. недостаточно велико. В итоге, авторы полагают, что в таких двойных планеты встречаются в 2-4 раза реже. Это означает, что порядка 20% звезд типа Солнца не имеют планет из-за присутствия компонента на близкой орбите.
Большой обзор по атмосферам экзопланет. Основные темы четко сформулированы в заголовке. Обзор хорошо проиллюстрирован. В него включены и данные наблюдений (включае кое-что и про методы), и теория. Но без зауми, так что статью можно всем рекомендовать.
Представлены итоговые результаты поиска транзитов в данных Кеплера за все время нормальной работы программы. Для 17230 звезд было заррегистрировано хотя бы по одному надежному транзиту. Ожидается, что по этим данным будет надежно выявлено довольно много мелких планет в зонах обитаемости.
Хороший обзор по формированию и ранней эволюции планетных систем. Приятное сочетание внятного изложения, хороших иллюстраций и основных формул.
Авторы рапортуют об открытии первой многопланетной системы в рассеянном скоплении. Почему это важно? Во-первых, в скоплениях хорошо известны возраста звезд и их состав. Но, кажется, важнее второе. В скоплениях звезды на ранних стадиях эволюции могут чатос проходить вблизи друг друга, что будет влиять на орбиты планет. Потом скопления рассеиваются. И, очевидно, многие планетные системы, которые мы видим, формировались в скоплениях и несут на себе отпечаток этого. Важно понять, насколько орбиты планет, образованных в скоплениях, испытали на себе влияние других звезд, и как это влияет на общую статистику. Иначе мы будем пытаться объяснить все данные образованием планет вокруг одиночных звезд, а это не вся картина.
В последние несколько лет появилось много прямых данных по дискам вокруг молодых звезд. Это имеет отношение и к звездообразованию, и к формированию планет (плюс - просто к физике дисков). Поэтому это все весьма интересно и актуально.
В обзоре обсуждаются и наблюдения, и модели. Без формул. Однако для неспециалиста, мне кажется, не хватает введения. Что не удивительно, т.к. этот обзор является частью спецвыпуска журнала, и было бы неразумно тратить время на повторы. Но читать из-за этого не всем будет комфортно.
Большой интересный обзор. Посвящен он тому, что происходит с планетами и планетными системами после того, как звезда покидает главную последовательность.
Описание начинается с азов. Так что можно разобраться во всех деталях. Заодно, обзор прекрасно иллюстрирован.
Эффект Козаи-Лидова, изначально рассчитанный для спутников планет-гигантов в СОлнечной системе, и астероидов, сейчас нашел широчайшее поле применения в экзопланетных системах. Есть много случаев, где динамика планетных орбит определяется именно им. НАпример, если речь идет о планетах на полярных или ретроградных орбитах.
В обзоре детальнейшим образом разбирается саам эффект и разнообразные случаи его реализации в природе (не только в случае экзопланет!).
Как известно, цельнометаллические самолеты внутри все-таки полые. А тут речь идет о цельнокаменной планете.
Авторы проанализировали и данные с Кеплера (что дает радиус), и данные с HARPS (что дает массу). Планета получилась с радиусом 2-2.5 земных и массой 10-20 земных. Поподгоняв разные составы, получили, что чисто каменный состав подходит. Это довольно удивительно, т.к. ранее считалось, что такие планеты должны включать в себя много льда. С другой стороны (см. рис. 8 в статье), все-таки есть немалая вероятность, что лед там есть и его немало. Т.е., если масса ближе к нижнему пределу, или радиус ближе к верхнему, то будет более-менее нормальный объект.
Т.е., это собственно первый аналог Нептуна (остальные планеты, похожие по массе и радиусу, располагаются гораздо ближе к своим звездам).
Искать далекие (от своих звезд) планеты трудно. Поэтому сделано это было не одним из двух основных способов поиска экзопланет (лучевые скорости и транзиты), а с помощью микролинзирования. Команда проекта OGLE смогла увидеть нептуноподобную планету (они среди самых распространенных в Галактике) на расстоянии около 3-9 а.е. от красного карлика. Поскольку звезда гораздо слабее Солнца, холодный аналог Нептуна располагается в несколько раз ближе к ней по сравнению с оригиналом в Солнечной системе.
Отмечу, что, как это обычно бывает при наблюдении микролинзирования, есть и другие варианты объяснения данных. Планета может быть легче Нептуна, но тогда она вращается вокруг бурого карлика. Однако, это кажется менее вероятным. Если это и в самом деле аналог Нептуна, то процесс формирования таких планет должен быть очень типичным, а сами планеты очень многочисленными.
Планета KOI-2939b побила сразу два рекорда. Даже два с половиной. У нее самый длинный орбитальный период - 1100 дней (при этом, разумеется, это и самый длинный период для планет в двойных). И у нее самый большой размер (чуть-чуть больше юпитерианского) среди всех планет, открытых вокруг двойных систем. Масса планеты составляет 1-2 массы Юпитера. Забавно, что планета попадает в зону обитаемости. На самом гиганте, конечно, жизнь вряд ли появится, но если у него есть очень крупные спутники (скажем, с Марс), то почему бы и нет?
В своем нормальном режиме спутник Кеплер работал 4 года. Впервые представлен каталог на основе всех 4 лет наблюдений. Выявлены как новые "объекты интереса" (KOI) (а какие-то - отброшены), так и новые кандидаты в экзопланеты. Среди них есть и новые кандидаты в двойники Земли (т.е. небольшие каменные планеты в зонах обитаемости).
Как известно, хотя спутник CoRoT изначально не был предназначен для поиска экзопланет (основной задачей было изучение звезд - гелиосейсмология и тп.), но разработчики вовремя поняли, какой потенциал заложен в проекте. Будучи запущенным на два с лишним года раньше Кеплера, CoRoT успел снять часть сливок, хотя по всем параметрам уступает Кеплеру в разы.
В небольшом обзоре рассказывается о проекте и его основных результатах. Как и Кеплер, CoRoT заметно переработал свой гарантийный срок (7 лет вместо 3). Результатов довольно много. Также, разумеется, кратко обозревается текущее состояние дел в изучении экзопланет, а также ближайшие планы.
Авторы представляют новую модель формирования массивных планет. Ключевым элементом является т.н. вязкое перемешивание. Подбор параметров позволяет затянуть образование образование ядер массивных планет так, что взаимодействие между десятками эмбрионов приводит к выбросу из зоны активной аккреции большинства из них. В результате формируется несколько массивных планет (как и надо), а не множество планет типа ЗЕмли (что не наблюдается).
В другой работе - arxiv:1510.02095, - те же авторы прилагают свою модель к формированию легких планет. Удается объяснить основные свойства Солнечной системы.
Отметим также статью arxiv:1510.01778, в которой учет новых эффектов (прогрев окружающего формирующуюся планету вещества за счет тепла, выделяемого при аккреции) позволяет избежать быстрой миграции планет к звезде.
Время открывать планеты, и время закрывать планеты.
Авторы показывают, что нашумевшее несколько лет назад открытие легкой планеты вокруг одной из звезд альфа Центарва может быть связано с неправильным анализом данных.
Собственно, уже ранее высказывались сомнения в реальности обнаруженной планеты. Дело в том, что речь идет об обнаружении очень легкой планеты методом лучевых скоростей (т.е., это все на пределе, и даже за пределом современных технических возможностей). Плюс, там довольно сложная звезда (надо убрать эффекты, связанные с ее вращением и активностью). Но был сигнал, которому не было удоветворительного объяснения помимо планеты. Теперь оно есть.
Авторы показывают, что при открытии планеты был недостаточно аккуратно проведен анализ данных. В итоге, величина "окна" при поиске периодического сигнала сказалась на результате.
Так что, увы, пока планета у альфа Центавра В закрыта. В этой системе есть и другие планетные кандидаты, но там тоже пока нет ясности (об этом можно почитать в Википедии).
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
После того, как начали открывать экзопланеты, очень близкие от своих звезд (на расстояниях в доли а.е., где они просто не могли бы образоваться), стала активно изучаться т.н. миграция планет в диске. Было быстро получено два основных решения: миграция первого типа и миграция второго типа. Но потом оказалось, что теперь планеты мигрируют слишком быстро!
В данной статье авторы продолжают развивать свой подход, позволяющий объяснить замедление миграции первого типа. Идея основана на ветре от диска.
В самом деле, вещество должно истекать от диска, и это будет менять условия в нем. В частности, будет влиять на темп миграции. Вопрос количественный. Не вникая в детали происхождения ветром (и необходимых улсовий для сильного истечения), авторы рассчитывают модели, апраметризуя темп истечения. Получены решения, позволяющие хорошо описать данные по экзопланетам. Остается теперь объяснить, как и почему возникают именно такие ветра.
Атмосферы заметной доли белых карликов обогащены тяжелыми элементами. Поскольку из-за сильной гравитации они должны бы доволно быстро "выпадать в осадок", нужен какой-то канал подпитки. Поэтому давно считалось, что на поверхность белых карликов выпадают кометы, астероиды, планеты и т.д. (есть даже люди, полагающие, что первое неопровержимое доказательство существования экзопланет - это довольно древнее обнаружение первого белого карлика с тяжелыми элементами в атмосфере). Но пока не удавалось застать процесс. Всегда бывает первый раз.
Впервые удалось зарегистрировать, как перед белым карликом пролетаеет какой-то мусор. Т.е., зарегистрирован транзит. Происходит это периодически - каждые 4-5 часов. Больше всего похоже на астероид.
Сам белый карлик имеет обогащенную тяжелыми элементами атмосферу и обломочный (debris) диск вокруг. Так что все сходится.
Наблюдения проводились на Кеплере в рамках программы К2 (т.е., когда он уже поломался). Затем подключились и наземные инструменты.
Скорее всего, авторы смогли увидеть не одно тело вокруг белого карлика, а несколько (до 6). Все эти тела "газят" (выдают облака пыли), и именно поэтому возникает заметный транзитный эффект. Массы тел оценивают в сотые доли массы Луны (но это уже завязано на модели, поэтому тут можно сильно ошибиться).
Авторы подчеркивают, что в принципе возможна и другая интерпретация данных (кольца вокруг белого карлика, просто обака пыли без массивных центральных тел). Но поскольку объект яркий и транзиты заметные, то изучать систему можно с помощью относительно небольших наземных инструментов, так что, скорее всего, совсем скоро все выяснится.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Большой обзор по протопланетным дискам. Напомню, что автор некоторое время назад написал одну из самых известных книг по физике формирования экзопланет.
Большим достоинством обзора является то, что он начинается с самых азов, а потом дело доходит до современного понимания процессов в протопланетных дисках.
Дополнительные иллюстрации и фильмы с анимацией можно скачать здесь.
Описана программа grayStar3, доступная в сети. Это и интересная "игрушка", и хороший инструмент для преподавания астрономии.
Программа написана на JavaScript. Работает на любом броузере в любой системе. Позволяет моделировать некоторые свойства звезд и планетных систем. Сделана хорошая визуализация в HTML. Можно менятть параметры звезды и получать ее цвет (что я давно хотел!), спектр, параметры зоны обитаемости и т.д. Стоит зайти и поиграться!
По данным наземных наблюдений (измерение лучевых скоростей) показано, что в системе HD 219134 находится 6 планет с орбитальными периодами P=3.1, 6.8, 22.8, 46.7, 94.2 и 2247 дней.
Напомним, что системы с таким большим количеством планет пока еще можно пересчитать по пальцам одной руки: новая система всего лишь пятая (если не считать Солнечную). Исследование многопланетных систем очень важно для понимания динамики их формирования. И пока статистика невелика, каждая новая система будет вызывать большой интерес.
Авторы используют статистику, чтобы сравнить нашу Солнечную систему с другими, чтобы понять, насколько она специфична.
Выделяется (как и ожидалось) несколько особенностей. Самые главные состоят в том, что у нас нет планет с короткими орбитальными периодами, и нет сверхземель.
С другой стороны, Солнечная система не такой уж и урод. Что дает надежды относительно поиска настоящих двойников Земли, а может быть и относительно поиска "с кем бы поговорить".
На телескопе Gemini недавно был установлен новый прибор для наблюдения экзопланет. Это коронограф с хорошей адаптивной оптикой. Поэтому планеты можно действительно наблюдать. Имеются ввиду прямые изображения. Для этого надо, чтобы планета была не слишком близко от звезды. Еще хорошо, если вся система еще молодая (не более нескольких десятков миллионов лет), тогда планета еще находится в процессе "усушки и утряски", а потому светит ярче. Светят в ближнем ИК-диапазоне (примерно на микрометрах). В программу наблюдений включено 600 молодых звезд.
Кроме того, что с помощью такого прибора можно изучать уже известные планеты, на нем можно и открывать новые. Именно об этом и рапортуют в статье.
Звезда 51 Эридана - молодая. Ей всего около 20 миллионов лет. Она находится чуть менее чем в 100 световых годах от нас. Звезда немного тяжелее Солнца (1.7-1.8 масс Солнца). На расстоянии 13 а.е. от нее обнаружена планета. Она явно относится к классу гигантов. Масса оценивается в несколько юпитерианских.
Эти наблюдения проводятся не просто для того, чтобы открыть несколько планет. Поскольку речь идет о молодых объектах, то их изучение может пролить свет на механизмы образования. Теперь, чтобы продвинуться, надо независимо измерить массу планеты. Это еще предстоит сделать.
Очень толковый обзор по возможностям и перспективам изучения атмосфер экзопланет, написанный наблюдателем. Последнее означает, что физика (которой там немало) написана понятным языком.
Большой хороший обзор по наблюдению пылевой составляющей протопланетных дисков. Уже лет 20 люди активно занимаются этой тематикой, а теперь - с вводом в строй ALMA, - видна просто неописыемая красота.
В прошлом году всех поразила картинка протопланетного диска системы HL Tau, полученная на системе телескопов ALMA.Ясно, что система щелей связана с образующимися в диске планетами. Но важно воспроизвести это в деталях. Это и пытаются сделать авторы статьи.
Сложность состоит в том, что на картинке не видно спиралей, которые предсказывает теория. Авторы показывают, что это связано с тем, что ALMA наблюдает карту распределения пыли. Если бы наблюдали газ, то увидели бы спирали. А в пыли они проявляются слабее.
Для объяснения картинки авторам понадобилось три планеты с массами примерно как у Сатурна.
Небольшой ролик по теме статьи доступен здесь.
Нашумевшая новость.
Планета была заявлена как лучший двойник Земли. На самом деле тут есть тонкости.
Планета, безусловно, относится к классу земноподобных и находится в зоне обитаемости. Но тут она лишь одна из лучших. Есть даже один более хороший объект. (и вообще, Кеплер-452b лежит за пределами консервативной зоны обитаемости) Но отличие и новизна состоит в том, что звезда, вокруг которой она вращается, очень похожа на Солнце.
Звезда немного старше Солнца - 6 млрд. лет. Планета всегда должна была находиться внутри т.н. оптимистичной зоны обитаемости (есть еще консервативная).
Так что это, безусловно, шаг вперед. Но не ура-ура!
Поскольку новость попала на все ленты, напишем про нее и мы.
Формально - это очередной рекорд. Это самая близкая легкая каменная планета. Важно, что это не самая близкая планета, и это не планета, типа Земли (т.е., где могла бы быть жизнь земного типа). Тем не менее.
Европейская группа открывает планеты по движению звезды вокруг центра масс. Это позволяет измерить массу планет. В данном же случае наблюдения на космическом телескопе имени Спитцера позволили увидеть и транзит. Это дало определение размеров. Все вместе это дает определение плотности. Получилось 5-7 грамм в кубическом сантиметре. Т.е., планета каменная. Ее масса 4-5 масс Земли. Размер, разумеется, чуть больше земного. Орбитальный период три дня. Т.е. она очень близка к звезде. Там жарко.
В системе еще три планеты. Все они дальше от звезды.
Отметим еще забавную работу arxiv:1507.08530. Ее авторы рассуждают, как мы сможем обнаружить, что какая-то цивилизация замучила свою планету и погибла. Эпиграфом могло бы быть: "Весь этот горький катаклизм, который я тут наблюдаю...." Работа заинтересует писателей-фантастов.
Благодаря наблюдениям на Хаббле (а также на Кеке, см. arxiv:1507.08914) впервые удалось подтвердить наличие экзопланеты по наблюдениям после события линзирования.
Звезда OGLE-2005-BLG-169L находится в балдже Галактики. В 2005 г. она проявила себя в роли гравитационной линзы, усилив блеск далекой звезды. Но детальный анализ показал, что у OGLE-2005-BLG-169L есть планета. Теперь, благодаря новым наблюдениям, удалось не только лучше изучить самы звезду-линзу, но и определить параметры ее планеты.
Масса звезды составляет около 0.7 солнечных, а планета в 13-15 раз тяжелее Земли. Она обращается на расстоянии 3-6 а.е. от звезды.
Впервые удалось измерить и массу, и радиус для планеты с размером меньше земного. Сделано это по данным Кеплера. Изначально был определн радиус. Но потом, наблюдая точные времена транзитов всех трех планет в системе Кеплет-138, удалось определить и массы. Внутренняя планета имеет размер примерно как у Марса. Ее масса оценивается в 0.03-0.12 масс Земли. Пока точность оценки массы невелика. Поэтому оценка плотности дает большой разброс: от 1 до 5 грамм в кубике. Но, скорее всего, это все-таки каменная планета.
Две другие планеты слегка больше Земли (по размеру). Для одной из них получено не очень большое значение плотности. Т.е., там должны быть и льды. А вот для второй получено довольно высокое значение, что говорит о каменно-железном составе.
Анализ новых наблюдений на Хаббле показал, что от теплого нептуна GJ 436b истекает гигантское облако водорода. Форма его напоминает комету. В будущем от планеты останется только твердое ядро. Таким способом могли появиться некоторые маленькие земноподобные планеты вблизи звезд.
Недавно было заявлено, что звезда Каптейна имеет пару планет, одна из
которых находится в зоне обитаемости. Авторы провели свой анализ данных, и
высказывают гипотезу, что это не планета, а звездная активность. АВторы
определяют период вращения звезды в 143 дня, что кратно периоды заявленной
планеты (48 дней, т.е. 1/3).
Будем ждать продолжения.
Сейчас есть один интересный способ исследования состава недр экзопланет. Точнее, можно узнать, из чего они состояли.
Идея вот в чем. Иногда планеты падают на белые карлики. И тогда, изучая спектр карлика, можно узнать состав планеты. Для пары случаев это сделано (некоторые даже считают, что первые четкие указания на существование экзопланет были найдены довольно давно по спектрам белых карликов. Но это все-таки указания на то, что планеты там были). Чтобы охватить такой методикой достаточно большое количество объектов, нужен новый крупный орбитальный ультрафиолетовый телескоп. Этому, собственно, и посвящена коротенькая заметка.
А с Альдебараном - наоборот. Достаточно надежно никто не может сказать, что там есть экзопланета, но аргументу в пользу этого продолжают накапливаться.
Проанализировав 20 лет наблюдений альфа Тельца, авторы выявили два периода. Один - 629 дней, - они связывают с массивной (6-7 масс Юпитера) планетой, а другой - 520 дней, - с вращением звезды.
С помощью нового оборудования на телескопе Джемини (Gemini) авторы открыли структуру около молодой (15 миллионов лет) солнцеподобной (масса 1.4-1.5 солнечных) звезды. Структура напоминает пояс Койпера в Солнечной системе. Важность состоит, в первую очередь, в демонстрации возможностей нового инструмента. Внесолнечный остаточный диск удается рассмотреть и изучить в деталях.
Авторы дают обзор всех основных способов открытия и изучения экзопланет (кроме тайминга): прямые изображения, транзиты, доплеровские данные, микролинзирование, астрометрия.
Обзор очень хорош. С одной стороны, авторы не залезают в детали и мелочи, с другой - все написано достаточно строго.
Популярный обзор, посвященный будущим исследованиям экзопланет. В основном речь идет о спутниках CHEOPS, TESS, PLATO. В начале дается обзор текущего состояния дел. А после обсуждения программ трех спутников обсуждаются другие планы и идеи.
Наконец-то появилась статья, связанная с самой красивой картинкой прошлого года.
На картинке появился масштаб и т.д. Есть много сопровождающих данных. Теперь за это возьмутся теоретики, моделирующие образование планет.
Автор исследует, что из имеющегося в Солнечной системе можно будет обнаружить на космических инструментах следующего поколения, изучающих экзопланеты. Скажем сразу - подходит только PLATO. С его помощью у достаточно ярких (9-я звездная величина) аналогов Солнца можно обнаружить и Землю, и Венеру, и спутники Юпитера, и кольца Сатурна. А вот МАрс и Меркурий - будет тяжеловато. Фишк, конечно, не только в качестве инструмента, но и во времени (продолжительности) наблюдений. Именно из-за недостаточной длительности программы отпадает TESS. Надеемся, PLATO нас порадует.
Авторы рассматривают образование планет вокруг звезд двойной системы. Получается, что сделать это совсем не трудно - есть много способов. В частности, нетрудно воспроизвести параметры известных систем. Данные по известным системам позволяют даже слегка ограничить выбор механизмов формирования.
EChO - спутник для исследования экзопланет следующего поколения. Предполагаемая дата запуска - 2024 г. задача спутника не открыть много планет, а помочь детально изучить уже известные. Земноподобные планеты в зонах обитаемости будут ему не под силу, но вот горячие сверхземли и более крупные планеты можно будет изучать уже в деталях. Основными целями будут все-таки "юпитеры" вокруг звезд классов F6-G8, но кроме этого будут и более мелкие звезды и планеты (до М3 у звезд, и до сверхземель у планет).
В большой статье подробно описываются именно научные задачи проекта. Показано, что мы уже знаем, и что надеемся узнать за 10 лет до запуска спутника, как спутник будет использовать новые данные от других проектов (и наземых, и космических; отдельно обсуждается совместная работа с JWST и E-ELT). Поскольку одной из важнейших задач спутника является получение спектров, т.е. изучение атмосфер, то большой раздел посвящен нашим современным заниям о газовых оболочках экзопланет (особенно горячих).
Авторы изучили дюжину кеплеровских планетных кандидатов. Все это должны быть небольшие планетки в зонах обитаемости. Проверка показала, что 11 из 12 - очень хорошие кандидаты. Все, действительно, попадают в зоны обитаемости (некоторые, правда, вращаются вокруг красных карликов). Девять достаточно малы, чтобы быть каменными. Авторы замечают, что с точки зрения размера и потока звездного излучения KOI-3284.01 и KOI-4742.01 - это самые похожие на Землю планеты (но повторим: все-таки надо их тщательнее изучить; к сожалению, допплеровский сигнал от них должен быть слишком мал для столь слабых звезд, так что в ближайшее время оценить массу по радиальной скорости звезды не получится).
Представлен полный анализ 17 кварталов данных Кеплера (от начала научной работы, то поломки второго гироскопа). Выявлено более 20 тысяч кандидатов в планеты около более чем 12000 звезд. Разумеется, какие-то не подтвердятся. Тем не менее, - это самая большая более-менее однородная выборка на сегодняшний день. Есть новые мелкие планеты в зонах обитаемости (см. стр. 18 в статье).
100 страниц могут не пугать. Собственно текст статьи - это менее 18 страниц. Далее - рисунки и таблицы.
Анализируя кривую блеска звезды 1SWASP J140747.93-394542.6, авторы обнаружили серию затмений. Моделирование показало, что все можно объяснить, если у звезды есть темный спутник (планета?) с системой гигантских колец. Их 37 и простираются они вплоть до 0.6 а.е. В кольцах есть большие щели, которые. как полагают авторы, создаются спутниками планеты. Масса колец порядка массы Земли. Спутник тоже должен быть тяжелым - лишь немнго легче Земли. Звезда молодая (16 миллионов лет), и авторы полагают, что система еще эволюционирует. Т.е. спутники выстраивают систему колец в околопланетном диске.
В последнее время возрос интерес к возможности существования сверхземли в солнечной системе на расстоянии порядка 200-300 а.е. Кроме того, даже если такого нет у нас, интересно, а нет ли такого в других системах. Ранее рассматривалась задача, в которой сверхземля, сформировавшась близко от звезды (несколько а.е.) затем выбрасывается на 200 а.е., и рассматривался процесс ее миграции. Здесь же авторы анализируют, как можно образовать такую планету прямо на месте. Ответ: можно, если постараться, но это будет долго (миллиарды лет).
После необходимого введения (как открывают, что и когда открыли и тп.) авторы переходят к основной теме - что мы можем сказать о внутреннем строении экзопланет, о свойствах их атмосфер и т.д. Завершается все, разумеется, открытыми вопросами и обсуждением того, на какие из них (когда и с помощью каких наблюдательных проектов) мы сможем получить ответы. Много полезных иллюстраций. Обязательно включу в свои лекции.
Кеплер-444 - очень интересная система. Во-первых, это рекордно близкая кеплеровская многопланетная система (35 пк, т.е. чуть больше 100 св. лет). Во-вторых, там аж пять планет. В-третьих, все они меньше Земли. В четвертых, это древняя система (но не из гало) с возрастом 10-12 миллиардов лет. Круть!
И это еще не все. Звезда входит в иерархическую тройную систему. На некотором удалении от нее с орбитальным периодом 430 лет крутится пара из двух крохотных красных карликов. Все три звезды могли попасть в нашу Галактику в результате поглощения карликовой галактики, т.к. система входит в т.н. поток Арктура (хотя, скорее всего этот поток не состоит из звезд поглощенного спутника, а возник в результате динамических процессов, возможно связанных со взаимодействием со спутником).
Плохо, что все пять планет находятся очень близко от своей звезды: самая далекая на расстоянии менее 0.1 а.е. А зона обитаемости там заканчивается на 0.47 а.е. даже в самом оптимистичном случае. Соответственно, планеты делают оборот вокруг звезды менее чем за 10 дней. Но кто знает, что там в этой системе болтается подальше от звезды! Ведь не все планеты обязаны быть транзитными.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Данные Кеплера обрабатывают постепенно. После окончательной обработки первых двух лет было представлено 2842 планеты. Теперь по данным трех лет их 3697. Т.е., традиционно добавилось чуть меньше тысячи. Среди них много мелких планет, и много планет в зонах обитаемости.
Если это верно, то это весьма удивительно. Авторы утверждают, что обнаруженный ими объект - это протопланета. Но ее расстояние от звезды - 50 астрономических единиц. Это очень много. Планета может туда попасть в результате взаимодействия с другими тяжелыми объектами в диске, но образовываться на таких больших расстояниях планете было бы трудно. Будем ждать дальнейшего развития событий. Если результат устоит, то слово будет за теоретиками. Может быть, это открытие - аргумент в пользу образования планет за счет гравитационной неустойчивости (а не постепенного увеличения массы). Как раз за 50 а.е. этот процесс идет очень активно.