Да-да! Лес в качестве детектора нейтрино. Тау-нейтрино, если быть точнее.
Идея состоит в регистрации радиоизлучения. Представьте, тау-нейтрино прилетает с направления слегка под горизонтом. В земной коре нейтрино порождает тау-лептон. Он вылетает в атмосферу. Распадается и порождает атмосферный ливень (частиц, а не дождя). И частицы ливня испускают радио, которое мы и хотим регистрировать.
Сама идея давняя. Строятся установки, основанные на этом принципе. Идея, конечно, ставить много антенн для низкочастотного радиосигнала. А что если .... антенны уже стоят?
Дерево - вполне себе антенна. Плохонькая, зато уже есть и экологически чистая. Вот автор и предлагает оснастить деревья электроникй - и вперед!
Как минимум, было бы неплохо насадить много деревьев хотя бы с такой нестандартной мотивацией.
Интересная статья по истории физики. В деталях разбираются первые попытки теоретически понять природу нейтрино. В первую очередь, речь идет о работах Энрико Ферми. Но не только его, конечно. Эти работы интересны тем, что они с одной стороны, спасли закон сохранения энергии, а с другой показали, что частицы могут исчезать и возникать, превращаться друг в друга.
По итогам 10 лет наблюдений коллаборация IceCube смогла, используя подходы, связанные с машинным обучением, на уровне 4.5 сигма выделить вклад Галактики в поток нейтрино высоких энергий.
В чем тут важность? Такие нейтрино возникают в окрестности мест ускорения космических лучей. Поэтому, изучая нейтрино высоких энергий, мы можем изучать места ускорения частиц (в данном случае - в нашей Галактике) и процессы, связанные с ускорениям (а здесь еще есть много вопросов).
Необходимость использования машинного обучения (deep learning) связана с тем, что сигнал от южного неба (а именно там центр Галактики и основная часть источников в плоскости) для IceCube сильно загрязнен атмосферным фоном (мюоны и мюонные нейтрино). Отобрать именно галактические события - сложно.
Однако в итоге все удалось. Значимость сигнала не супербольшая, но это Галактика.
Обзор по солнечным нейтрино. Рассмотрена текущая ситуация и стандартная модель, как детектируется, какую новую физику можно будет вытащит, и какие есть планы на будущее. Все понятно емко и исчерпывающе.
Небольшой, но хороший обзор по наблюдениям нейтрино из недр Земли. Обсуждается откуда эти нейтрино берутся (все начинается с распада урана и тория), как их регистрируют (сейчас это KamLAND и SNO+, раньше наблюдали и на Borexino, а скоро начнут на JUNO и еще нескольких установках), что получено, и почему это важно.
Важно это все, потому дает уникальную возможность количественно оценить содержание элементов (урана и тория, в первую очередь, но узнав их содержание можно уже надежно пересчитать содержание многих других элементов) в коре и мантии, что крайне важно для геохимии, поскольку альтернативных методов почти что и нет.
Есть и сложности. Нейтринный сигнал на детекторах сильно зависит от потока, генерируемого в коре вблизи установки. Поэтому точно рассчитать поток из глубин коры, мантии и т.д. - непросто. Запуск новых установок (а они все в разных точках Земли) поможет справиться с этим. Тогда наши знания о строении (и даже формировании) Земли будут намного точнее.
По объему - это небольшая книга. И все про наблюдения нейтрино высоких энергий, в первую очередь на iceCube. О самой установке тоже довольно подробно рассказывается. Но важно, что описываются и просто общие принципы регистрации нейтринного сигнала. Отдельно рассматриваются возможные источники нейтрино (и это не только активные ядра галактик). Так что обзор охватывает более-менее все по теме, что соответствует его немаленькому объему.
О других проектах см. другие статьи в том же сборнике: о IMB, Kamiokande и Super Kamiokande
Речь идет о нейтрино сверхвысоких энергий. Их источники пока не идентифицированы. Лучшими кандидатами являются блазары, поскольку в одном случае достаточно надежно установлено, что вспышка активного ядра этого типа привела к вспышке нейтрино сверхвысоких энергий. В обзоре кратко суммируется, что мы знаем по этому поводу, обсуждаются некоторые другие кандидаты и более подробно обсуждаются подклассы блазаров. Видимо, только один из них связан с мощными потоками нейтрино. Но это не точно.
Интересный и довольно неожиданный результат, еще нуждающийся в в детальном анализе (мало ли там что). Авторы обнаружили корреляцию между положениями источников FRB и направлениями прихода нейтрино, зарегистрированных IceCube (в заголовке стоит "низких энергий", но важно понимать, что это относительно того, что может измерять IceCube). Временную привязку не анализировали, только координаты. Выделены примерно 20 всплесков, чьи положения хорошо коррелируют с направлениями прихода нейтрино. Это все неповторные источники.
Ранее были теоретические работы, предсказывавшие нейтрино от FRB. Но пока, кажется, рано кричать "ура". Надо лучше понять: нет ли тут какого-то сложного подвоха.
В третий раз выявлен астрофизический кандидат для объяснения нейтрино сверхвысоких энергий (их регистрирует установка IceCube). И во второй раз это событие приливного разрушения.
Сам транзиент снова отрыли на ZTF. Затем источник отнаблюдали еще с помощтю ряда инструментов, покрывающих весь спектр. В частности, удалось увидеть сигнал в ИК с помощью WISE, и слабенький рентгеновский источник с помощью eROSITA.
В сопутствующей статье arxiv:2111.09391 дается объяснение тому, почему именно эти два события приливного разрыва звезд сверхмассивными черными дырами дали нейтрино. По мнению авторов это связано с высоким (сверхэддингтоновским) темпом аккреции.
Описано устройство, цели, состояние и планы нейтринной установки на Байкале. Сейчас объем детектора соответствует 0.4 куб км. Создание началось в 2016м. В год добавляли обычно по новому кластеру тросов с фотодетекторами. Сейчас и уже 8. За следующие три года добавят еще 6 кластеров. Это позволит установке оставаться крупнейшей в Северном полушарии (в южном есть IceCube).
Собственно, статья с заявкой на открытие появилась в Архиве еще в мае: arxiv:2005.05340. Наверное, авторы послали ее в Nature. Там долго думали. Потом посоветовали передать статью в Nature Astronomy. И вот она там только что вышла. Как нередко бывает со статьями в журналах группы Nature, их сопровождают короткие заметки,в которых уже кратко и популярно рассказывается, в чем суть. Так вот предлагаемая заметка ровно такая. Там совсем немного текста и большая понятная картинка.
Суть в том, что одно из нейтрино сверхвысоких энергий, зарегистрированных на IceCube, возможно (!) связано с приливным разрушением звезды сверхмассивной черной дырой. Тут много вопросов, начиная с того, что само нейтрино может быть вообще не астрофизическим, а атмосферным. Если же все-таки события связаны, то тогда все очень интересно, потому что совершенно неясно, как приливное разрушение может давать нейтрино такой высокой энергии.
В общем, данная короткая заметка хороший способ понять, о чем же там трудили в СМИ, без необходимости читать оригинальную статью.
Небольшой обзор по черенковским нетринным детекторам (установки другого типа не рассматриваются).
Описаны общие приницпы работы, действующие установки (IceCube, ANTARES, Baikal) и будущие проекты.
Совсем коротенькое описание нейтринного детектора Гипер-Камиоканде. Важно, что в этом году уже началось его строительство, а запустить планируют в 2027.
Статья очень интересная, но скорее потому, что понятно и подробно описывается несколько вызывающих всеобщий интерес вопросов.
В солнечной окрестности (расстояния до нескольких сотен парсек) есть некоторое количество звезд, которые в относительно близком будущем (менее нескольких миллионов лет, а иногда и менее миллиона) взорвутся как сверхновые. Это интересно детально изучить, а потому важно не пропустить самое начало вспышки (подчеркну, все это важно не "что не умереть", а чтобы получить научные данные). Значит, надо заранее знать, когда произойдет вспышка. Не за гоД, не за месяц, а хотя бы за пару дней. И для этого есть способ. За дни и часы до начала коллапса ядра резко возрастает поток нейтрино. И уже работающие современные детекторы с ррасстояний в сотни парсек могут их регистрировать. Вопрос в том, смогут ли эти детекторы (речь о жидких сцитилляторах, а не о установках типа IceCube или ГиперКамиоканде) определить направление. Вот этой теме и посвящена статья.
Ответ авторов - смогут. Не очень точно, однако и число звезд-кандидатов невелико. Так что можно быдет более-менее надежно выяснить, о какой звезде речь, и подготовиться к наблюдениям.
Повторюсь, в статье много интересных картинок и информации. Например, представлены данные по всем звездам (31 объект), которые взорвутся, в окрестности до 1 кпк.
Кратко описана новая китайская установка для исследования нейтрино. Установка многоцелевая: это и нейтрино от реакторов, и геонейтрино, и астрофизические нейтрино.
Строительство идет уже 4 года, проведено много всяких тестов оборудования. Ожидается, что научная работа начнется в 2021 году.
Начиная с 1980-х гг. нейтринный детектор на Баксане имеет уже более 33 лет чистого наблюдательного времени. За этот период не было ни одной вспышки в нашей Галактике (напомню, что из-за поглощения излучения пылью по оптическим данным мы можем пропустить вспышку, а по нейтринным - нет, т.к. поглощение отсутствует). Это дает ограничение на темп менее 0.07 вспышек в год (т.е., реже, чем раз в 14.5 лет) на 90-процентном уровне достоверности.
Представлены итоговые результаты эксперимента OPERA, чьей задачей было определение пааметров нейтринных осцилляций. Пучок нейтрино из ЦЕРНа был направлен в сторону детекторов лаборатории Гран Сассо в Италии. По пути (730 км!) нейтрино испытывали осцилляции. Измерение параметров частиц с помощью детектора в Гран Сассо позволяет узнать гораздо больше о физике осцилляций. Удается получить хорошие данные по углам смешивания и квадрату разности масс нейтрино. Результаты OPERA не согласуются с результатами эксперимента MiniBooNE.
Обычно, обсуждая звездный нуклеосинтез, говорят о s-процессе, r-процессе, а иногда еще и о p-процессе. А меж тем, кроме нейтронов и протонов важны и нейтрино. Во время вспышки сверхновой их образуется много, и плотный поток этих частиц также может приводить к синтезу элементов. Вот этому и посвящен совсем небольшой обзор.
Дается краткий обзор свежих результатов установки Борексино (Гран Сассо, Италия) по исследования солнечных нейтрино.
Обзор короткий и достаточно популярный.
Нейтрино от CNO реакций пока не видны. Но есть надежды.
Baikal-GVD - детектор нейтрино с объемом порядка кубического километра, создаваемый сейчас на озере Байкал. В статье кратко описана работа прототипов, а также состояние дел и планы на будущее. Ожидается, что первая фаза детектора начнет работать через 3 года. На этом этапе объем детектора будет 0.4 кубических километра.
В Архиве появляется большое количество статей, связанных с первой идентификацией источника нейтрино высоких энергий с блазаром TXS 0506+056 на z=0.33 (о самом открытии можно почитать здесь , там же есть ссылки на оригинальные статьи).
В данной работе расказано о наблюдениях на установке MAGIC. Это наземный гамма-телескоп, который смог идентифицировать источник нейтрино в ТэВном диапазоне. Анализ данных показывает, что в джете должны ускоряться протоны до энергий 1018 эВ.
Обсуждение роли блазаров в общем нейтринном потоке на больших энергиях можно найти здесь.
Ну и, разумеется, есть много других работ, как связанных с наблюдениями TXS 0506+056, так и с теоретическим анализом.
Июль 2018 может войти в историю как месяц, когда впервые было заявлено об идентификации источника нейтрино сверхвысокой энергии. Сделано это в первую очередь трудами установки IceCube, плюс благодаря работе гамма-телескопов (и наземных, и космических).
Установка IceCube в Антарктиде регистрирует астрофизические нейтрино сверхвысоких энергий. За несколько лет работы их задетектировано несколько десятков. Чаще всего точная идентификация события требует времени, но иногда удается сделать это быстро, и тогда выдается алерт. Т.е., срочное сообщение для других наблюдателей. Точность определения координат по меркам оптической астрономии так себе. А вот с точки зрения гамма-наблюдений - вполне хорошая. И это на руку, т.к. вероятнее всего рождения таких частиц высоких энергий сопровождается и испусканием жесткого электро-магнитного излучения. Всего за 2-3 годы было выдано с десяток алертов. И один из них "сработал".
В направлении прихода нейтрино была отмечена вспышечная активность блазара - активного ядра галактики, чей джет направлен на нас. В начале это было сделано с помощью космического гамма-телескопа Ферми, а потом подключились и наземные установки (MAGIC в первую очередь). После на IceCube поискали не было ли у них ранее событий в этом направлении, которые изначально не были достаточно очевидными, и их забраковали. Таковые обнаружились. Поэтому было решено, что с достаточно высоко степенью надежности блазар TXS 0506+056 является источников нейтрино сверхвысоких энергий.
Однако не все разделяют оптимизм авторов открытия. Во-первых, (и тут, вроде нет сомнений) блазары не могут объяснить весь поток нейтрино сверхвысоких энергий. А во-вторых (и тут уже можно и нужно спорить), статистическая значимость результата не слишком высокая. Так что будем ждать результатов дальнейших наблюдений.
Вторая статья в серии arxiv:1807.08816 Разумеется, в Архиве также появилось много статей теоретиков, а также статей разных групп наблюдателей с данными о поведении блазара TXS 0506+056 в разных диапазонах спектра.
В этом большом обзоре речь идет о том, какие важные для фундаментальной физики явления и процессы в принципе можно надеяться изучить с помощью нейтринного телескопа IceCube в Антарктиде. Установка наблюдает (успешно) нейтрино сверхвысоких энергий. Что является источником этих частиц - неизвестно. Наблюдения нейтрино позволяют проверять предсказания расширений Стандартной модели. Также эти данные имеют прямое отношение к некоторым моделям темного вещества. Кроме этого, детекторы типа ICeCube могут напрямую регистрировать некоторые экзотические гипотетические частицы (например, монополи).
А в качестве введения в нейтринную астрономию можно прочесть вот этот небольшой обзор: arxiv:1806.06339.
Гипер-Камиоканде - быть!
Примерно такой лозунг, написанный красивыми японскими иерогливами сверху вниз, можно было бы вывешивать в людных местах. И те, кто заинтересуются, могут прочесть 300-страничный отчет о том, как идет разработка и создание этого гиперпроекта.
В отчете также обсуждаются научные задачи проекта.
Сделано это все будет не очень скоро, т.к. под установку надо еще вырыть необходимый объем.
Многие свойства нейтрино не удается напрямую измерить в эксперименте. Однако оказывается, что могут помочь космологические данные. Дело в том, что нейтрино, не являясь ключевым игроком в современной космологии, играли большую роль в молодой вселенной. Поэтому свойства нейтрино серьезно сказываются на некоторых космологических параметрах. Сегодня задачу можно обратить: у нас есть высокоточные космологические данные, и это позволяет определять некоторые параметры нейтрино (интересующиеся могут сразу прочесть раздел 3 - он небольшой, чуть больше трех страниц, но там суммированы основные идеи о том, как нейтрино завязано с космологическими параметрами). Конечно, тут тоже не все просто. Например, так и не ясно, есть ли еще один сорт нейтрино. Тем не менее, кое-что удается узнать. Детали - в большом обзоре.
Большой подробный обзор про нейтрино от сверхновых. В основном речь идет о физических процессах в сверхновых, приводящих к нейтринному излучению или модификации потока нейтрино. Соответственно, рассматриваются предсказания разных особенностей сигналов, позволяющих проверять наличие тех или иных эффектов. Кроме того, рассказано о методах регистрации и некоторых проектах, которые будут работать в обозримом будущем.
ANTARES - европейский подводный (морской) нейтринный телескоп. Впервые коллаборация официально представляет данные по поискам точечных источников. Ничего не обнаруженр, но лиха беда начало! Видит IceCube - увидят и на ANTARES.
Содержательный обзор по свойствам потока нейтрино от сверхновых сколлапсом ядра. Рассмотрены все ключевые моменты. Остается только дождаться галактической сверхновой.
Одновременно с этим обзором сразу стоит читать вторую статью того же авторы - arxiv:1702.08825. Там речь идет о роли нейтрино в динамике взрыва сверхновой.
Отличное изложение по физике нейтринных превращений от одного из лучших специалистов в этой области.
Проблему сам автор обозначает так: "In some cases (for historical or other reasons) terminology does not correspond to real physics." Действительно, зачастую мы называем "нейтринными осцилляциями" все типы превращений одного сорта в другие. На самом деле, есть тонкости. О них и речь.
Автор аккуратно (и очень доступно!) объясняет, почему нельзя говорить, что эксперимент SNO обнаружил нейтринные осцилляции, почему нельзя говорить, что "наличие осцилляций доказывает существование масс у нейтрино", а также еще пару тонкостей.
Всем советую прочесть.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Считается, что нейтрино высоких энергий могут пролить свет на некоторые важные защадки астрофизики и даже физики. Поэтому строятся разные установки для их регистрации. Все слышали про IceCube, а также проект большого детектора в средиземноморье и на Байкале. Но есть и совсем другой подход к регистрации. Радиодетектирование.
Принцип регистрации основан на эффекте Аскаряна, предсказанном в 1962 г. Электромагнитный каскад в диэлектрической среде приводит к появлению электромагнитного излучения. Эффект наблюдали в 2001 в эксперименте на ускорителе. Нейтрино, попадая, например, в лед, вызывают такой каскад. И все это можно обнаружить, улавливая возникающие радиоволны.
Сейчас работает несколько установок по радиопоиску нейтрино. Пока ничего не обнаружено. Но работы идут. Все это и является темой обзора.
Кратко описаны несколько прошедших, идущих и планируемых экспериментов по поиску следов стерильных нейтрино в процессах распадов частиц.
Большие аналитические доклады об актуальных задачах и планах исследований (white papers) - прекрасное чтение, для того, чтобы создать впечатление о ситуации в какой-то области исследований. Вданном случае речь идет о ядерной астрофизике.
Эта область охватывает и звезды, и космологию, и слияния нейтронных звезд, и сверхновые. И много разных методов наблюдений. В общем - почти все.
Этот проект известен как SNO. Они внесли ключевой вклад в современную нейтринную астрофизику. В небольшом обзоре суммированы результаты работы проекта, а также дано его описание.
Обзор немного суховат, но ясен и понятен.
Подробно описаны результаты проекта MINOS. Этот эксперимент предназначен для изучения нейтрино (осцилляций). Пучок из Фермилаба направляется в подземную лабораторию в Судане (Soudan, это в Миннесоте - не путать со страной в Африке). До основного детектора 735 км (есть еще один совсем близко от начала пучка). Все похоже на К2К в Японии и европейский эксперимент, где пучок шел из ЦЕРНа в Гран Сассо.
В 2012 году закончился MINOS. В 2013 начался MINOS+. Получены важные результаты по нейтринным осцилляциям. И ожидают новых.
Большой обзор по нейтрино от сверхновых. Одна из основных тем: как много мы всего узнаем, если сейчас вспыхнет в Галактике. Мне, как обычно, в таком большом полезном обзоре не хватает содержания.
На базе эксперимента SNO в Канаде будет реализован новый проект. Он в основном будет связан с поиском двойного безнейтринного бета-распада. Кроме того, в будущем к списку задач добавятся изучение осцилляций реакторных нейтрино, наблюдения геонейтрино, низкоэнергичных солнечных нейтрино, а также "ожидание" вспышки сверхновой.
JUNO - Jiangmen Underground Neutrino Observatory. Это большая новая подземная лаборатория в Китае, где будет установлен нейтринный детектор. Задача - изучение реакторных нейтрино (в 53 километрах находятся крупные станции) с целью решения задачи иерархии масс.
Установка начнет работу в 2020 г.
Большой обзор по физике солнечных нейтрино. Статья предназначена специалистам. Многое написано в контексте новой физики, которой можно ожидать в области исследования солнечных нейтрино. Но начинается все, разумеется, с нейтринных осцилляций. Что и как удалось узнать о них благодаря исследованию потока этих частиц от Солнца.
Это книга. Основная суть - описание нового проекта JUNO (Jiangmen Underground Neutrino Observatory). Установку уже начали сооружать. Работа начнется в 2020. Это будет многоцелевая нейтринная обсерватория.
Важно, что книга содержит не только описание детектора и его целей и задач, но это и хорошее введение в физику нейтрино.
Авторы рассматривают, с какого расстояния нейтринный детектор KamLAND может увидеть нейтрино, излучаемые массивными звездами на стадиях, предшествующих взрыву сверхновой. Получается, что в зависимости от массы звезды детектор может поймать нейтринный сигнал предсверхновой на расстоянии в несколько сот световых лет за несколько часов или даже суток до регистрации самого взрыва.
В последние несколько лет очень популярной темой стала возможность т.н. возвратной аккреции после вспышки сверхновой. Часть вещества (порядка тысячной массы Солнца) может выпадать обратно на формирующийся компактный объект. Это позволяет объяснить несколько важных наблюдательных особенностей нейтронных звезд.
В этой статье авторы исследуют, как можно было бы увидеть эту стадию. Конечно, надо наблюдать нейтрино. Авторы показывают, что детектор типа ГиперКамиоканде сможет увидеть несколько тысяч нейтрино от таких событий (типа того, что породило Кассиопею А). Было бы очень интересно.
Саммари конференции по нейтрино. Рассмотрены самые основные нерешенные проблемы и перспективы поисков ответов в ближайшие годы.
Аппетит приходит во время еды! IceCube - детектор с объемом порядка кубического километра. Но нейтрино мало. Поэтому хочется большего. В десять раз. Вот об этом и статья.
Разумеется, развивать существующие методики не очень сложно и дорого. Так что, видимо, IceCube будет расти.
В последнее время по нейтрино было получено несколько важных результатов (например, регистрация pp-нейтрино от Солнца). В обзоре кратко все суммировано. Также есть интересные данные по нейтрино высоких энергий. По сверхновым пока только пределы. Но все равно интересно.
Описан эксперимент Борексино и его результаты, включая недавнее важнейшее измерение потока pp-нейтрино от Солнца.
В природе моедт идти такой одивительный процесс как превращение нейтрона в антинейтрон и обратно. Есть теоретические основания для обсуждения такого процесса. Соответственно, есть повод задуматься об обнаружении этого феномена в эксперименте. Все это и обсуждается в большом подробном обзоре.
Очередной обзор про установки, на которых "ищут, но там и не могут найти" важнейший из предсказанных в физике нейтрино процессов - двойной безнейтринный бета-распад.
Полгода назад авторы расказывали о двухлетних наблюдениях. Теперь обработали еще немножко данных. Все также, только статистика выросла. Видны нейтрино с энергиями до 2 peV.
Хороший понятный обзор по роли нейтрино в космологии роли космологических данных в выявении параметров нейтрино. По сравнению со многими другими обзорами на эту тему многие детали объяснены довольно понятно.
Неплохой обзор по различным экспериментам в области поиска частиц темного вещества и нейтрино. Это все или под водой, или во льду, или в подземных лабораториях. Автор быстренько пробегается по самым разным проектам. Обзору не хватает глубины и систематичности, зато легко читается, и формируется довольно ясная и адекватная картина.
Кратко но понятно описано, зачем проводят реакторные эксперименты с антинейтрино по изучению осцилляций. В некоторых деталях описан китайский эксперимент Baya Bay и его результаты, а также эксперименты самого-самого ближайшего будущего.
Только-только коллаборация IceCube заявила о регистрации внегалактических нейтрино высоких энергий, как уже появляются материалы конференций с обсуждением и интерпретациями этого важного результата.
Основная идея Эли Ваксмана - известного специалиста в области нейтринной астрофизики, - состоит в том, что источниками нейтрино являются космические лучи сверхвысоких энергий. В результате взаимодействия этих частиц (протонов и ядер, вплоть до железа) рождаются пионы, распад которых и приводит к рождению нейтрино. Этот сценарий находится в хорошем соответствии с данными IceCube. Соответственно, если понять, откуда летят нейтрино сверхвысоких энергий, то мы поймем, что является "ускорителем" для частиц космических лучей, поскольку рождение нейтрино должно происходить вблизи тех мест, где ускоряются частицы космических лучей. Посмотрим, что произойдет быстрее: то ли научатся определять источники космических лучей сверхвысоких энергий, то ли смогут определить, откуда летят нейтрино IceCube'а.
Авторы рапортуют о результатах двухлетних поисков нейтрино высоких энергий на IceCube, с мая 2010 по май 2012 г. На основе 28 событий авторы говорят об обнаружении нейтрино высоких энергий на уровне лучше 4 сигма. Что является источниками - неизвестно.
Авторы дают полный обзор по тематике геонейтрино. Это потенциально мощный метод исследования земных неедр путем регистрации и анализа потока нейтрино от радиоактивного распада (в основном тория и урана). Описывается: что, как, зачем, что сделано, и какие есть планы на будущее.
Описан проект нового эксперимента по поиску стерильных нейтрино.
Еще одна статья о нейтринных экспериментах в ЦЕРНЕ: arxiv:1304.7111.
Наблюдение осцилляций атмосферных нейтрино - не новость вообще. Но для IceCube (и вообще для инструментов этого типа) - это важный результат.
Большое полезный обзор. Речь там идет не только о массах нейтрино, но вообще о роли нейтрино в космологии и тех ограничениях на их свойства, которые космологические данные позволяют установить. Вся физика объяснена достаточно подробно и понятно.
К сожалению, только верхние пределы. Зато - самые-самые глубокие. Что и ожидалось в общем-то.
См. также arxiv:1210.3143, где речь идет о поиске точечных источников нейтрино высоких энергий на обсерватории им. Оже.
Большой хороший полупопулярный обзор по нейтринной астрофизике. Охвачены все области: от атмосферных нейтрино до сверхновых, от космологических до нуклеосинтеза в звездах.
См. также arxiv:1209.3425. Там перечислены новости о работе больших детекторов: IceCube и Antares.
Большой обзор по нейтрино с упором на солнечные исследования. Затронуто-описано все. Предназначено - для специалистов.
В обзоре рассматривается, что мы знаем о первичном нуклеосинтезе, и что нам это говорит о свойствах нейтрино. Дело в том, что сейчас, по сути, именно данные по первичному нуклеосинтезу сильнее всего ограничивают существование дополнительных сортов нейтрино. В ближайшим будущем эта ситуация изменится, в первую очередь благодаря данным спутника Планк. Эта тема также затронута в конце обзора.
Хороший обзор на любой вкус (сложные куски можно пропускать). Обозреваются все близлежащие аспекты: история наблюдений, солнечная модель, недавние эксперименты, будущие установки, ключевые нерешенные задачи.
В докладе представлены основные направления и тенденции в нейтринной физике, связанной с работой ускорителей. Планы связаны с созданием новых лабораторий, куда (как сейчас в Гран-Сассо) идет пучок нейтрино, сформированной благодаря работе ЦЕРНовских ускорителей, а также с участием в аналогичных (а также реакторных) экспериментах, проводимых и вне Европы.
В этом году отмечается столетие открытия космических лучей, поэтому появляется немало исторических обзоров в этой области (см. также раздел physics). Данный посвящен особой области - поискам нейтрино сверхвысоких энергий. Пока здесь, к сожалению, экспериментаторам похвастаться нечем кроме верхних пределов. Тем не менее. По-крайней мере можно рассказывать о нейтрино, наблюдениях в рамках земных экспериментов (реакторы, ускорители), о нейтринной астрономии, а также об установках и планах по исследованию собственно нейтрино высоких энергий. Сейчас основные надежды возлагают на IceCube, но уже сквозит некоторый пессимизм.
IceCube, как известно, является крупнейшей нейтринной обсерваторией. Однако дополнение его детекторами широких атмосферных ливней, расположенными на поверхности, делает возможным изучение химического состава космических лучей в диапазоне энергий порядка 1014-1018 эВ.
Дополнительные детекторы представляют собой черенковские емкости, только заполнены они не водой, а чистым льдом. Установка уже начала работу, пройдены тесты.
Произведено очередное измерение скорости нейтрино. На этот раз в пределах ошибок все хорошо согласуется с ожидаемым результатом.
Интересное рассуждение известного физика-теоретика о том, какой эффект имело сообщение о данных эксперимента OPERA по сверхсветовой скорости нейтрино. По сути, автор полагает, что эффект был вцелом положительный, т.к. все это дало повод явно проговорить и обсудить многие важные вещи, до которых иначе не доходили руки, т.к. не было мотивации.
Кроме этого автор обсуждает некоторые аспекты философии науки. Он вводит интересную идею о том, что экспериментаторами в философии науки являются физики-теоретики, как сам автор.
Большой серьезный обзор по нейтринной астрономии, затрагивающий все основные вопросы.
В основном обзор посвящен методам детектирования, чувствительности разных детекторов и тп. Весьма интересно, т.к. написано ясно, доходчиво, почти популярно. Перечислены существующие и будущие детекторы.
Существовало предсказание, что гамма-всплески являются эффективными ускорителями для космических лучей сверхвысоких энергий. Тогда в стандартной модели должны были в итоге появляться и нейтрино.
Новые данные коллаборации IceCube дают лишь верхний предел на поток таких нейтрино от гамма-всплесков. Это находится в умеренном противоречии с предсказаниями стандартной модели.
В Штатах одобрена перая фаза работ по созданию нейтринного эксперимента с длинной базой. Обсуждалось два возможных типа детектора: аргоновый и водный. В итоге в начале этого года выбрали аргоновый. Тем не менее, проигравшая команда представляет большой подробный отчет, поскольку они справедливо полагают, что такой общедоступный свод данных по современным черенковским детекторам может быть востребован сообществом.
Заканчивается создание установки SNO+ для поиска двойного безнейтринного бета-распада. С легкой водой все заработает уже в этом году. Со сцинтиллятором - в следующем. Проект имеет полное финансирование, так точ задержек не предвидится.
Установка стоит в Канаде в подземной лаборатории.
Большой обзор по роли нейтрино в звездной астрофизике. Поскольку текст основан на лекциях, прочитанных молодым физикам, то астрономическая часть достаточно достаточно популярно написана.
Большой подробный обзор по нейтрино высоких энергий. Много внимания уделено установкам: отработавшим, раюотающим, строящимся и проектируемым.
Во вселенной очень много нейтрино. Поэтому даже незначительная масса этих частиц оказывается космологически существенной. Можно повернуть задачу. В рамках данной космологической модели можно дать сильные ограничения на свойства нейтрино. В некоторых случаях они превосходят лабораторные. Другое дело, что лабораторные более непосредственные. менее модельно зависимые. Тем не менее. В статье автор подробно разбирает, какие ограничения на свойтсва нейтрино дают космологические данные. Обзор совсем не популярный.
В Солнце должна идти редкая (т.н. pep) реакция, когда два протона и электрон дают дейтерий, и испускается нейтрино с четко определенной энергие - 1.44 МэВ. Кроме этого, в Солнце, в дополнение к основной цепочке синтеза гелия, может добавляться вклад CNO-реакций, которые типичны для более масивных звезд. В этой CNO цепочке также испускаются нейтрино с энергией 1-2 МэВ.
В эксперименте Borexino зарегистрированы pep-нейтрино и даны самые жесткие пределы на нейтрино от CNO-цикла.
В эксперименте (и его финансировании) участвует и Россия.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Были новые, потом - сверхновые, а потом и гиперновые. Был эксперимент Камиоканде, потом - СуперКамиоканде, и вот проект ГиперКамиоканде.
Это будут две "цистерны" неподалеку от СуперКамиоканде. Разумеется, под землей. Детектор будет в 20 раз больше СуперКамиоканде. Это будет почти миллион метрических тонн, а просматривать все будут почти 100 000 детекторов!
При двойном безнейтринном бета-распаде ядро превращается в другое с числом протонов на 2 больше, и при этом излучается два электрона. Если такой процесс идет (а пока его не нашли), то это означает нарушение лептонного заряда. Поэтому не удивительно, что уже давно ведутся (безуспешные) поиски такого процесса. В обзоре рассматриваются стандартные и альтернативные описания процесса, а также описываются различные попытки обнаружить его в эксперименте.
Описан проект нейтринной обсерватории LENA (Low Energy Neutrino Astronomy), в которой рабочим телом будет 50-килотонная емкость с жидким сцинтиллятором, т.е. это развитие проектов Borexino и KamLAND. Размер емкости: сто метров высота и 30 метров - диаметр. Разместить ее могут или в туннеле под Альпами между Италией и Францией, или в финской шахте с труднопроизносимым названием. Проект конкурирует с двумя другими (основанными на иных подходах) в рамках 7й Европейской рамочной программы. Реализовать проект можно лет за 8-10. Довольно изящно было бы в 2020м году зарегистрировать "ленинские нейтрино".
Частицы темного вещества (WIMPs) могут захватываться Солнцем и аннигилировать. Это приводит к предсказуемому сигналу, в том числе нейтринному. Авторы используют данные Супер-Камиканде, чтобы исследовать этот канал. Итогом являются некоторые ограничения на наборы параметров. Авторы полагают, что в стандартных подходах с аннигиляцией в нейтрино или тау-лептоны результаты несовместимы с данными эксперимента DAMA.
Детально описан нейтринный телескоп ANTARES и его результаты. Установка работает с 2008 года. В Европе развивалось три проекта: ANTARES, NEMO, NESTOR. Все это развитие на пути к большому детектору, известному как KM3NeT. Среди них ANTARES-самый крупный. Забавно, что NEMO и NESTOR в статье даже не упоминаются. В ходе создания инструмента было разработано несколько новых технологий, которые критичны для разработки большого детектора. А вот астрофизических результатов установка в общем-то и не дала. Хотя от прототипа этого никто особенно и не ожидал.
Нейтрино легкие, но в космосе их много. Поэтому различные данные по космическим объектам дают возможность или определять параметры нейтрино, но и хотя бы накладывать существенные ограничения. В статье рассматриваются все серьезно обсуждаемые способы астрофизического измерения масс нейтрино. Вс раписано вполне доступно. На мой взгляд, не хватает только иллюстраций.
Дается краткий обзор европейских подземных лабораторий для изучения частиц. Самая известная, конечно, Гран Сассо. Но автор описывает не только западно-европейские установки, но и восточно-европейские, включая баксанскую.
Регистрация нейтрино на южном полюсе ведется комплексно, с помощью очень разных подходов. Ищут и оптический, и радио, и ... акустический сигналы. Акустический перспективен для поиска частиц очень высокой энергии - выше 1020 эВ. Здесь есть ряд проблем, которые пытаются решить, работая с проектом SPATS. Определяют уровень и вид фона, совершенствуют дизайн детекторов и т.д. При этом уже ставятся довольно интересные верхние пределы.
См. также arxiv:1010.3082, где дается обзор истории развития акустического детектирования нейтрино.
Существуют данные, говорящие о том, что от сверхновой 1987А было два нейтринных всплеска. Данные дебатируются много лет и служат стимулом для новых размышлений и расчетов.
Авторы рассматривают возможность деконфайнмента (образования кваркового ядра) в протонейтронной звезде. Соответственно, второй всплеск связан с этим. Они проводят расчеты и показывают, что современные детекторы в самом деле могли бы увидеть два всплеска от галактической сверхновой. А вот детекторы 1987 года от Магелланового облака увидеть всплеск из-за образования кваркового ядра не могли.
Большой обзор по солнечным нейтрино. Начинается все с исторического введения. Существенно, что, обсуждая солнечную модель, авторы детально обсуждают гелиосейсмологические данные. Показано, как они увязываются с данными по нейтрино, какие остаются вопросы.
IceCube - гигантский нейтринный телескоп в антарктическом льду. Это первый работающий детектор километрового класса (имеется ввиду рабочий объем порядка кубического километра). Создание ведется с 2005 года и сейчас практически завершено. При этом, все это время идет регистрация нейтрино. Где-то в течение года-двух можно ожидать серьезных результатов.
В статье дается подробный обзор установки и ее научных задач.
Пришлось придумать слово "всесигнальная", чтобы перевести "Multi-Messenger". Речь идет о том, чтобы наблюдать источники не только во всех диапазонах спектра, но и с помощью детекторов космических лучей, нейтринных телескопов и гравитационно-воновых антенн.
Автор описывает работу и данные нейтринного телескопа ANTARES, работающего с 2008 года у побережья Франции. Это самый крупный нейтринный телескоп в северном полушарии. Он предназначен, в первую очередь, для исследования нейтрино от астрофизических источников (сверхновые, блазары, гамма-всплески и тд.), т.е. речь идет не о солнечных нейтрино, а о нейтрино высокой энергии.
В обзоре кратко, без деталей, описано, как работает установка, чем определяется угловое разрешение и тп. Собственно результатов пока нет - есть только верхние пределы. Исследователи пытаются искать корреляции нейтринного сигнала с данными в других "диапазонах" (гамма-всплески, космические лучи, гравитационные волны). Будем надеяться, что когда-нибудь что-нибудь найдут.
Коротко и ясно о том, "что многое сделано, но многое еще предстоит".
С одной стороны, как все знают, с основной загадкой солнечных нейтрино разобрались. Но, с другой стороны, загадки загадками, а вопросов-то и идей много. Описано, как развивалось изучение нейтрино от Солнца, что есть сейчас (а есть - Борексино), и что будет в ближайшем будущем.
См. также результаты работы Борексино в arxiv:0910.3367.
Очередная статья по ANTARES. Напомню, что этот самый крупный нейтринный детектор в северном полушарии был закончен в мае 2008 г. Он составляет примерно 4 процента от вожделенного кубического километра, и по сути является одним из прототипов объединенного европейского морского детектора, который достигнет объема в кубический километр. Детектор собирает данные, но пока ничего особенного не обнаружено.
Пока нейтринная астрофизика имеет не "окно", распахнутое во Вселенную, а маленькую чуть приоткрытую форточку. Ясно, что для "прорубания" полноценного окна понадобятся детекторы с рабочим объемом порядка кубического километра. Значит, рабочим телом должно быть что-то природное (антарктический лед, морская вода и тп.), а не полуискусственный бассейн, как в Камиоканде, и не маленькие детекторы не с обычной водой, а с более дорогим наполнителем. Сейчас идут работы по созданию нескольких таких крупных детекторов.
В обзоре дается обзор технологий, используемых для поисков нейтрино. Описывается физическая мотивация для таких исследований. Наконец, авторы в некоторых деталях описывают европейский средиземноморский проект, в котором они работают.
Авторы детально разбирают расширение стандартной модели, в которой вводятся стерильные нейтрино с массами ниже электрослабого масштаба. По мнению авторов, такое минимальное расширение модели позволяет решить массу космологических проблем. Обзор написан достаточно доступно, во всем, при желании, можно разобраться. Авторы рассматривают много различных космологических и астрофизических аспектов, в рамках обсуждаемой модели (барионная асимметрия, формирование структуры и тп.). Кроме этого, разумеется, обсуждаются наблюдательные ограничения на модель, рассматриваются эксперименты и наблюдения, которые могли бы помочь подтвердить или опровергнуть модель. Очень переспективным выглядит поиск линии от распадов частиц в рентгеновском или гамма-диапазоне. Наблюдать надо, в первую очередь, близкие карликовые сферические галактики. Также многое можно ожидать от лабораторных экспериментов, включая LHC. По-прежнему актуальны поиски безнейтринного двойного бета-распада. Однако лабораторные эксперименты в основном способны закрыть модель, а не дать однозначное подтверждение. Так что без астрофизических данных не обойтись.
Подробный понятный обзор по возникновению нейтрино очень высоких энергий в космосе, их распространению, свойствам и способам регистрации.
Эти частицы могут быть связаны с интересными экзотическими сценариями (например, зеркальным веществом). Есть надежда, что их можно будет обнаружить с помощью планируемой космической обсерватории для наблюдения космических лучей сверхвысоких энергий (когда ищутся оптические вспышки в атмосфере, происходящие из-за входа в нее высокоэнергичной частицы) или с помощью ряда установок, чей способ регистрации основан на эффекте Аскаряна.
В статье дает обзор по истории и современному состоянию детекторов нейтрино высоких энергий. Имеются ввиду проекты типа Amanda, IseCube etc. (в противопоставлении детекторам низкоэнергичных нейтрино, подобных Borexino etc.). Автор также рассуждает о том, какие открытия нас ждут при вводе в строй детекторов нового поколения с объемом рабочего тела порядка кубического километра.
Подводный нейтринный детектор ANTARES работает у берегов Франции. Сейчас монтаж уже закончен. Детектор в итоге получился не очень большой. Напомню, что есть и другие европейские проекты (NESTOR, NEMO). В итоге совместными усилиями европейцы должны построить детектор с эффективным объемом порядка кубического километра. Но это в будущем. Пока же - что есть.
Заметка, на мой взгляд, полезна неплохим введением. См. также arxiv:0812.20954, где речь идет о первых результатах ANTARES.
Коротенький обзор по геонейтрино. Это электронные нейтрино, рождающиеся в бета-распаде. Они излучаются радиоактивными элементами в недрах Земли. В настоящее время два детектора (KamLAND в Японии и Borexino Италии) регистрируют нейтрино от распрада тория и урана. Планируются новые проекты. Все это очень важно для геофизических исследований.
Ввиду краткости и понятности - советую всем прочесть.
Нейтриные детекторы или строят в подземных лабораториях, или погружают регистрирующую аппаратуру в антарктический лед, или под воду. Уже 10 лет работает эксперимент на озере Байкал. Там зимой со льда под воду опускают фотодетекторы, и несколько месяцев можно вести наблюдения нейтрино.
Сейчас разные коллаборации стремятся построить детекторы с эффективным объемом порядка кубичесого километра. Есть такие планы и в рамках байкальского проекта. В статье рассказывается о современном статусе эксперимента и о планах по созданию километрового детектора (сейчас идет работа с прототипом, о нем см. также arxiv:0811.1110).
За последние несколько дней все создающиеся большие нейтринные детекторы отметились короткой заметкой о текущих достижениях. В данной рассказывается об ANTARES. Он создается вблизи Марселя. Первые несколько ниток детекторов уже работают, и в статье обсуждаются результаты, полученные на них. Пока все по плану.
IceCube, который строится в Антарктиде, тоже уже имеет рабочие нити. В статье arxiv:0810.3698 описывается измерение нейтринный осцилляций на этом детекторе.
Наконец NEMO строится у берегов Сицилии. О нем рассказывается в заметке arxiv:0810.3119. Пока это не часть будущего большого детектора, а технологический прототип, но все равно детекторы работают и какие-то данные идут.
Антакртический детектор AMANDA-II работал с 2000 годя, а 2007 вошел как составная часть в детектор IceCube, который сейчас построен примерно наполовину. Авторы подводят итоги работы детектора. Накоплено много данных по атмосферным нейтрино. А вот по астрофизическим - только верхние пределы. AMANDе не повезло. Никакие близкие сверхновые не вспыхивали, и пессиместически-реалистические оценки потоков от изветных источников оказались верными. Вот IceCube уже должен будт что-то увидеть .... Рекомендую долистать до последней страницы и посмотреть на рисунок 8, где представлена схема полного IceCube, и показано место AMANDA в нем.
Описываются преимущества проекта подземного водного черенковского детектора Deep-TITAND, предназначенного для поиска нейтрино достаточной высокой энергии (~15 MeV) от взрывов сверхновых. Для сравнения, Супер-Камиоканде имел всего 32 килотонны воды. Проект Гипер-Камиоканде предполагает 0.5 мегатонн воды. Первый мог видеть нейтрино от коллапса только в масштабе нашей Галактики (уже М31 дает всего порядка одного события), второй - сможет дотянуться всего лишь до 1-2 Мпк, а на таком расстоянии коллапсы происходят редко. Deep-TITAND сможет "видеть" до 3-5 Мпк. На таком расстоянии сидит сразу несколько галактик с достаточно большим темпом звездообразования.
Идея состоит в том, чтобы пожертвовать нейтрино низкой энергии ради разумной стоимости. Поэтому детектор предлагают ставить не очень глубоко под землей, и не очень плотно располагать фотоумножители. Зато можно будет видеть примерно коллапс в год.
Поток солнечный нейтрино переменен на временах порядка 11-14 лет. Вопрос - а почему? Автор описывает данные наблюдений, обсуждает разные возможности, и предлагает ограничение на магнитный момент нейтрино по этим данным.
Нейтринный детектор IceCube, сооружаемый в Антарктиде, готов уже наполовину. Соответственно, уже детектируются события. О современном статусе проекта и некоторых его предварительных результатах можно прочесть в статье.
О свежих результатах с СуперКамиоканде по осцилляциям солнечных и атмосферных нейтрино можно прочесть тут: arxiv:0810.0573.
Авторы описывают наблюдения солнечных нейтрино на установке Борексино в Гран Сассо. Важно то, что авторы впервые говорят об обнаружении интересного эффекта, связанного с осцилляциями нейтрино. Теория говорит нам, что пока нейтрино летят из центра Солнца к нам, работают два основных эффекта. В ядре Солнца осцилляции усилены присутсвием вещества при высокой плотности, это важно для энергий нейтрино выше 5 МэВ. А для низких энергий (менее 2 МэВ) важнее вакуумные осцилляции. Между двумя этими режимами должен быть плавный переход вот этот переход и обнаружен, причем важно, что сделано это на одном детекторе.
Хороший обзор по всем областям нейтринной астрофизики: солнечные нейтрино, атмосферные, от сверхновых, роль нейтрино в нуклеосинтезе, процессы в звездах, нейтрино высоких энергий. Разумеется, перечислены основные установки и планы в этой области. Все жостаточно полно и понятно. Рекомендую.
Как все помнят, недавно эксперимент DAMA снова объявил о сигнале, который может быть результатом детектирования частиц темной материи. Одной из возможных интерпретаций могут быть аксионоподобные частицы (псевдоскаляры) с массой около кэВа. В данной статье авторы показывают, что такая интерпретация во-первых, закрывается данными по солнечным нейтрино, во-вторых - данными по старым звездам (звездам в шаровых скоплениях и белым карликам).
Приводится достаточно подробное описание нейтринного детектора MiniBooNE. Это первая фаза эксперимента BooNE (Booster Neutrino Experiment). Его задача - детальное изучение нейтринных осцилляций, которые наблюдались в проекте LSND.
Эксперимент был разработан в Фермилабе для регистрации превращений (осцилляций) мюонных нейтрино в электронные. Центральной частью детектора является шар с диаметром 12.2 метров, заполненный минеральным маслом. Эксперимент начал работу несколько лет назад и наблюдения продолжаются.
Нейтринный детектор IceCube сооружается сейчас в Антарктиде. Пока детекторам этого типа не везло: не было близких сверхновых, а для регистрации сигналов от далеких взрывов у них не хватало чувствительности. IceCube может быть более удачливым, тем более что его размеры позволяют надеяться, что в недалеком будущем мы будем регистрировать нейтринные вспышки от сверхновых, взорвавшихся в соседних галактиках.
Авторы сделали кросс-пост в астрофизическую часть огромного обзора по нейтрино, который в оригинальном виде появился год назад. Многие разделы (особенно посвященные экспериментам) вполне доступны неспециалистам.
Astroparticle Physics (я буду использовать удачный перевод "космомикрофизика") завоевала статус самостоятельной дисциплины на стыке астрофизики, физики элементарных частиц (и ускорительной, и космических лучей) и космологии. Разумеется, часто невозможно (да и не нужно) точно определить является ли данная работа или проект "космомикрофизическим" или его лучше называть как-то иначе. Как бы то ни было ? Область характеризуется еще и тем, что в ней осуществляются очень дорогие проекты. Поэтому различные агентства строят долгосрочные планы. В статье дается очень интересный обзор того, что планирует в этой области Европа на ближайшие 10 лет.
Основные вопросы, которые ставят перед собой в данной программе ученые, таковы:
Первым стоит вопрос о природе темной материи. Здесь основными кандидатами являются нейтралино и аксионы. Что делается? Во-первых, идут лабораторные эксперименты по прямому детектированию частиц темной материи. В этой области европейцы, пожалуй, активнее других, и планируется продолжать поиски. Во-вторых, есть возможность увидеть частицы, являющиеся продуктами распада или аннигиляции частиц темной материи, например, гамма-кванты. У европейцев сейчас летает спутник PAMELA, от которого можно ожидать интересных результатов до запуска более мощного американского AMS. Однако, похоже, что у PAMELA есть какие-то трудности. В гамма-диапазоне у европейцев есть небольшой спутник AGILE. Планируемый в ближайшие месяцы к запуску американский GLAST будет намного эффективнее. Кроме того, можно искать продукты распада с помощью наземных гамма-телескопов, и тут с H.E.S.S. и MAGIC европейцы впереди планеты всей. Европейские планы по постройке большого морского нейтринного детектора потихоньку претворяются в жизнь, но очень потихоньку (об этом см. ниже). Наконец, в третьих, кое-что могут дать ускорительные эксперименты, и здесь, конечно, все надежды на LHC.
Что касается темной энергии, то тут Европа ограничивается стандартными астрономическими проектами в области наблюдательной космологии. Самым важным, наверное, в ближайшие 10 лет будет запуск спутника Planck (октябрь 2008 года). Кроме того, планируются обзоры в различных диапазонах спектра, но это чистая астрономия, которую космомикрофизика поддерживает морально.
Следующим пунктом стоит поиск распада протона. Для обнаружения надо строить подземные детекторы типа СуперКамиоканде, только на порядок больше. Пока идет проработка нескольких подходов (можно перечислить несколько названий проектов LENA, GLACIER, MEMPHYS, LAGUNA). Планируется, что к 2010 году будет выбран проект. Однако, все еще может сильно замедлиться. Стоимость установки будет порядка полумиллиарда евро. С такими проектами европейцы любят тянуть, поскольку нужно международная кооперация, а "у всех свои проблемы". Разумеется, такой детектор будет и прекрасным нейтринным детектором.
Теперь о "ловле нейтрино за бороду". Здесь интересны не только эксперименты типа морских детекторов с объемом порядка кубического километра. Во-первых, идут попытки померить массу нейтрино в лаборатории по измерению спектра электронов при бета-распаде (эксперимент KATRINA в Германии). Во-вторых, интересны исследования двойного безнейтринного бета-распада. Они должны дать ответ на вопрос о том, являются ли нейтрино майорановскими или дираковскими. Двойной безнейтринный бета-распад возможен только, если нейтрино майорановские.
Космические лучи. Европа активнейшим образом участвует в проекте Оже. Через несколько лет начнется монтаж северной части установки в США (южная полностью готова и работает). В северной части 45 процентов принадлежит Европе. Хотя чаще говорят о космических лучах сверхвысоких энергий, однако и на меньших энергиях есть еще немало нерешенных проблем. Для их разрешения строят отдельные детекторы. Один из детекторов стоит в Германии, и он будет продолжать свою работу.
Гамма-астрономия. Европейцы не собираются останавливаться на успехах, достигнутых группами H.E.S.S. и MAGIC. Разрабатывается проект гораздо более крупной сети наземных гамма-телескопов. По всей видимости будет две сети (северная и южная) с несколько разными параметрами, оптимизированными для изучения галактических источников (юг) и внегалактических (север).
Крайне заманчиво начать регистрировать нейтрино высоких энергий. Это возможно с помощью километровых детекторов в воде или льду. Пока в Антакртиде идет монтаж IceCube, европейцы тестируют в Средиземном море несколько прототипов водных детекторов. О едином европейском детекторе пока идут переговоры. Рано или поздно он наверняка будет построен, но какая-то конкретная информация о дизайне и тп. отсутствует. Кроме того, обсуждаются проекты косвенной регистрации нейтрино очень высоких энергий по радиоизлучению. В качестве рабочего тела тут может выступать, например, Луна.
Наконец, последняя тема связана с гравитационными волнами. В Европе работают VIRGO и GEO600. Апгрейд VIRGO позволит получить прибор, который действительно сможет иметь приемлемый темп регистрации слияний нейтронных звезд и черных дыр. Планируются более крупные установки (Einstein Telescope), но ясно, что даже при оптимистическом развитии событий их сооружение не попадает в ближайшие 10 лет. Что касается космических детекторов, то тут ESA сотрудничает с NASA в деле создания LISA. Пока обсуждается дата запуска 2018 год. Но, скорее всего, она будет несколько отодвинута. В 2010 году европейцы должны запустить прототип. Если с ним все пройдет удачно, то, наверное, появится реальных график реализации большого основного проекта.
Итого. Сейчас космомикрофизика находится на этапе, когда можно успеть снять сливки. Правда, требуется строить очень дорогие и технически сложные установки на земле, под землей, под водой и в космосе. В конце статьи автор приводит сводку проектов (и суммы), которые будут реализовываться в ближайшие 10 лет.
Похоже, что Европа не отстает от США, или отстает не сильно. Ну на ее второе место покушаться вроде бы и
некому.
Хороший обзор о роли нейтрино в космологии и о возможности использовать космологические данные для ограничения параметров нейтрино. Затронуты все возможные в данном случае аспекты: от роли нейтрино в формировании крупномасштабной структуры до космологических ограничений на число сортов нейтрино, от ограничений на массы нейтрино до перспектив обнаружения фона космологических нейтрино.
KamLAND - Kamioka Liquid scintillator Anti-neutrino Detector. Установка находится на месте бывшего эксперимента Kamiokande.
KamLAND - это 1000-тонный детектор, регистрирующий антинейтрино от атомных реакторов (большинство японских атомных станций находятся в пределах 150-200 км от установки). Кроме этого, детектор "видит" и солнечные нейтрино. Работать эксперимент начал 6 лет назад - в январе 2002 года.
В данной статье приводятся данные по реакторным антинейтрино в приложении к нейтринным осцилляциям.
На рисунке первом приведены данные для квадрата разницы масс между двумя легкими нейтрино, и для угла смешивания (показаны цветом). Также приведны данные, полученные из наблюдений солнечных нейтрино.
На втором рисунке приведено следущее. По горизонтальной оси отложено отношение эффективного расстояния до реакторов - источников антинейтрино (L0=180 км) к энергии частиц. По вертикальной оси приведено отношение двух других величин. Первая из них - это поток антинейтрино (за вычетом фона и гео-нейтрино). Вторая - ожидаемый поток, если бы не было осцилляций. Как видно, осцилляции есть. Точки - данные. Кривая - ожидаемый результат, построенный с использованием определенных в эксперименте параметров.
Квадрат разницы масс легких нейтрино равен примерно 7-8 10-5 eV. Квадрат тангенса угла смешивания легких нейтрино равен примерно 0.5. Более точные данные с описанием неопределенностей и прочими деталями - в статье.
Представлен отчет по разработке нейтринных детекторов для будущих нейтринных экспериментов на ускорителях. Представлены различные альтернативы как для удаленных детекторов, так и для инструментов, работающих на ускорителе.
Авторское замечание "suitable for a general audience" следует дополнить оговоркой, что речь идет о "физической" аудитории. Обзор в самом деле, на мой взгляд, хорош, но знаний физики и математики таки требует. Собраны все основные вопросы, обсуждающиеся в современной нейтринной физике. Во многих часто упоминаемых пунктах обзор поможет физику, не являющемуся специалистам в близких к физике нейтрино областях, разобраться чуть детальнее, яснее понять некоторые моменты.
Коллаборация ANTARES (будущий большой морской нейтринный детектор) собрала все свои статьи для материалов международной конференции по космическим лучам. Но сделано это не в виде "книжки", а в виде набора линков. Все лучше, чем ничего, т.е., чем искать все многочисленные статьи этой группы, раскиданные по архиву.
``Под одну обложку`` собраны все коротенькие статьи, написанные участниками коллаборации IceCube для материалов последней конференции из серии ICRC.
Следующий шаг в развитии нейтринной астрономии - это постройка телескопов с объемом порядка кубического километра. Рабочим телом может быть или лед (и тогда это проект IceCube), или вода. С водой много проблем, т.к. все основные проекты - морские, а там ``качает``, плавают всякие светящиеся существа и водоросли и тп. Тем не менее, морские проекты разрабатываются. Океанские, вроде бы, все закрыты, а вот европейцы в Средиземном море начали аж целых три проекта: NESTOR, NEMO и ANTARES. Но, видимо, до полномасштабного варианта доберется только один: три проекта объединяют под невнятной аббревиатурой KM3NeT.
Пока новый проект находится в стадии разработки, которая должна закончиться к 2009 году. При этом все три начатых проекта продолжают отрабатывать различные технологические решения. Какие из них войдут в итоговый километровый проект сейчас не ясно.
Еще несколько статей, посвященных проекту KM3NeT: Configuration studies for a cubic-kilometre deep-sea neutrino telescope - KM3NeT - with NESSY, a fast and flexible approach, Sensitivity studies for the cubic-kilometre deep-sea neutrino telescope KM3NeT .
Идея об использовании нейтрино для томографии Земли не нова и постоянно обсуждается. Важно только, чтобы был хороший источник нейтрино (естественный или искусственный) и хороший детектор. Авторы показывают, что можно надеяться на положительный результат с т.н. атмосферными нейтрино и детекторами типа IceCube.
Нейтрино самых высоких энергий возможно будут обнаружены установками типа обсерватории имени Оже или же километровыми детекторами нейтрино. Это было бы черезвычайно существенным открытием. Нейтрино не отклоняются магнитным полем, поэтому они прямо указывали бы на источники (в отличие от протонов и ядер в космических лучах). О том, как могут возникать нейтрино сверхвысоких энергий, как их "поймать за бороду", и что мы сможем узнать с их помощью можно прочесть в обзоре.
Серия коротких заметок в материалах конференции по космическим лучам, посвященных байкальскому нейтринному телескопу. О некоторых наиболее интересных результатах проекта можно прочесть в статье arxiv:0710.3064. Про прототип нового акустического детектора, создаваемого в рамках байкальского проекта, можно узнать здесь: arxiv:0710.3113.
Описано, как движется дело с работами по созданию нейтринного детектора NEMO.
Borexino - нейтринный эксперимент, установленный в лаборатории Гран Сассо. С его помощью впервые удалось зарегистрировать т.н. бериллиевые нейтрино от Солнца в режиме реального времени. Это первый случай такой регистрации нейтрино с энергией менее 1 МэВ.
Большой обзор, посвященный геонейтрино и исследованиям земных недр с их помощью.
Геонейтрино образуются в результате распада радиоактивных элементов (напомню, что для "томографии" Земли в принципе можно использовать и солнечные нейтрино, также, нейтрино от ускорителей могут давать в том числе и геофизическую информацию). Распадаются уран, торий, калий. Информация оказывается уникальной, т.к. вообще каналов получения данных об очень глубоких недрах немного.
Обзор содержит много интересных данных по строению Земли. Кроме того, рассматриваются интересные проекты экспериментов, возможные прорывы в нашем понимании строения планеты и многое другое.
Хороший понятный обзор по нейтринной астрономии (за вычетом солнечных нейтрино). В основном рассмотрены нейтрино от сверхновых, а также нейтринов высоких энергий.
Авторы представляют итог обработки данных эксперимента AMANDA-II по поиску нейтрино. Никакого избыточного сигнала не обнаружено. Т.е., на диффузный поток нейтрино можно только установить новый верхний предел.
Услышать нейтрино ...
Оказывается, нейтрино можно регистрировать акустическими детекторами. Если
энергия частицы очень велика, то она порождает каскад частиц. В воде это
приводит к генерации акустических волн, которые можно различить на фоне
высокочастотного (20 КГц) шума с расстояния в 1 км! Строящийся детектор
ANTARES будет включать в себя акустические установки. В статье кратко описан
сам проект, а также его планируемая акустическая часть. Уже в этом году
будут установлены первые "микрофоны для нейтрино".
Хорошая обзорная статья по нейтринной астрофизике. См. также astro-ph/0701170.
На мой взгляд, очень удачное сочетание подробного изложения с формулами и более доступного с аналогиями и понятными иллюстрациями. Т.о., каждый найдет для себя вариант объяснения того, что же такое нейтринные осцилляции.
Космические нейтрино можно детектировать разными способами. Сейчас, как известно, достраиваются очень крупные установки, которые будут искать нейтрино с помощью оптических методов в толще воды или антарктического льда. Однако для нейтрино очень высоких энергий такие методы поиска не подходят. Нужно что-то иное. О радиометодах я уже недавно писал, их будут использовать в антарктических экспериментах. В этой же статье речь идет об акустических методах, которые предполагается применять к морских экспериментах.
Поскольку есть надежда, что в ближайшие годы чувствительность детекторов будет достаточной для регистрации астрофизических нейтрино высоких энергий, актуально обсудить наиболее перспективные источники. В их число вошли гамма-всплески, близары, микроквазары и остатки сверхновых.
Рассмотрен механизм образования шаровых скоплений в стандартной картине иерархического скучивания. Для этого проведено численное моделирование: от самых ранних этапов формирования галактик до современного их состояния. Показано, что в самом деле, шаровые скопления могут образовываться из гигантских молекулярных облаков, которые успевают появиться на достаточно больших красных смещениях. Дальнейшая эволюция скоплений (и всей системы галактик) приводит к картине достаточно хорошо совпадающей с наблюдаемой. Далекие шаровые скопления (дальше 10 кпк от центра галактики) родились когда-то в более мелких галактиках-спутниках, которые к настоящему моменту уже разрушены.
IceCube - гигантский нейтринный детектор в Антарктиде. Ясно, что такие приборы не создаются за день. Постепенно в лед будут вмораживаться нити с детекторами. Первые уже "на месте" и работают. Анализу первых данных с уже работающей части детектора и посвящена статья. Результаты пока скорее технические чем научные. Вывод: все работает как надо.
Поскольку сейчас стандартная модель это "лямбда-СиДиЭм", т.е. холодная темная материя с космологической постоянной, то о нейтрино космологи как-то стали забывать. В обзоре описывается почему это все-таки не стоит делать.
Коротенькая заметка о состоянии дел на строящемся нейтринном телескопе ANTARES. Сам детектор будет в в полном масштабе запущен менее чем через два года (речь идет о конце 2007, но всегда "что-то происходит", и сроки начала работы крупных экспериментов обычно затягиваются). Пока работает тестовая "нить". Результаты обнадеживают.
Есть надежда, что новые установки (IceCube, Auger, ...) смогут регистрировать нейтрино сверхвысоких энергий. С реликтовыми нейтрино сложнее, но когда-нибудь и их научаться ловить. Обо всей этой науке (и об астрофизической части, и о технической, и о физике между ними) можно прочесть в обзоре.
Год назад началась конструкция нейтринного детектора IceCube. Полная версия еще не собрана, но часть установки уже работает. О современном статусе и первых результатах крупнейшего нейтринного телескопа можно узнать из этой короткой заметки.
Как известно, при своем рождении во взрывах сверхновых нейтронные звезды получают "тычки" (удары, толчки, кики - kicks). Причин для этого может быть несколько, например - несимметричное излучение нейтрино. Авторы рассмотрели, как такие "нейтринные удары" могут повлиять на динамику взрыва. Показано, что вклад нейтрино помогает устроить настоящий взрыв с выбросом. Конечно, это еще не значит, что основные проблемы механизма взрыва сверхновых решены ...
Как известно, при своем рождении во взрывах сверхновых нейтронные звезды получают "тычки" (удары, толчки, кики - kicks). Причин для этого может быть несколько, например - несимметричное излучение нейтрино. Авторы рассмотрели, как такие "нейтринные удары" могут повлиять на динамику взрыва. Показано, что вклад нейтрино помогает устроить настоящий взрыв с выбросом. Конечно, это еще не значит, что основные проблемы механизма взрыва сверхновых решены ...
AMANDA - это нейтринный ледяной (т.е. находящийся в толще льда) детектор, установленный в Антарктиде. ICECUBE - это будущий детектор, качественно похожий на AMANDA, но превосходящий его по размерам. В коротком обзоре описываются оба проекта. Описывается что уже получила AMANDA, и что в будущем сможет получить ICECUBE.
Подробнее об ICECUBE можно прочесть в следующей статье, а эта послужит неплохим введением.
Собрано 18 коротких статей, посвященных различным аспектам нейтринного телескопа ICECUBE.
В связи с несколькими конференциями появилось сразу несколько препринтов. подготовленных разными докладчиками, по последним результатам Байкальского нейтринного эксперимента (astro-ph/0507698, astro-ph/0507712, astro-ph/0507713, astro-ph/0507715).
Дается обзор роли нейтрино в космологии в свете последних результатов по изучению крупномасштабной структуры, первичного нуклеосинтеза и анизотропии реликтового фона.
По словам авторов обзор включает в себя все последние данные по измерениям масс нейтрино, а также других параметров, характеризующих эти частицы.
Как читатель хорошо знает, полным ходом идет создание нескольких крупных нейтринных детекторов. Кроме того, проект Оже (Auger) сможет внести свой вклад в наблюдения нейтрино высоких энергий. Поэтому тема является достаточно горячей, ее включают в программы школ по астрофизике и физике, а иногда она прямо-таки доминирует.
В предлагаемых лекциях дан достаточно полный обзор области с упором на наблюдения нейтрино, а также на источники их порождающие.
GNO - Gallium Neutrion Observatory. Это нейтринная обсерватория в подземном комплексе в Гран Сассо в Италии. В статье представлены результаты пятилетней работы установки.
В основном обсуждаются процессы, в которых рождаются нейтрино сверхвысоких
энергий. Это актуальная тема, т.к. уже строящиеся установки (например,
Auger) смогут их регистрировать. Также рассмотрены и потоки космических
нейтрино более низких энергий.
Кратко обсуждаются современные пределы на массу нейтрино, полученные по
данным космологических исследований. Результат составялет 0.42 эВ. Это
уступает данным по атмосферным нейтрино. Однако автор обсуждает, как в
ближайшее время из космологии можно получить более точные данные.
В 1962 году Гурген Аскарян высказал гипотезу, что поток частиц в плотной среде будет давать когерентное черенковское радиоизлучение. Эффект уже наблюдался в лаборатории при обстреле гамма-лучами контейнеров с песком. Рассматриваются различные варианты наблюдения эффекта в "астрономических ситуациях", например, наблюдение эффекта при пролете частиц сквозь Луну. В этом случае наш спутник выступил бы в роли детекторам частиц космических лучей. Есть и другие идеи. С одной из них и связан антарктический проект ANITA.
Нейтрино высокой энергии пролетает сквозь Землю и порождает в антарктическом ледяном покрове поток частиц. Частицы дают радиоизлучение, которое и улавливается детектором.
Пока проведены тесты, о которых и рассказывается в статье.
Используя данные по микроволновому фону и крупномасштабной структуре, авторы получают ограничения на сумму масс нейтрино. Эти результаты обсуждаются в контексте различных наземных экспериментов (например, по нейтринным осцилляциям).
Декабрь-январь - пора подведения итогов. В этой небольшой заметке рассказывается о том, что происходило с установкой IceTop в прошлом году. Напомним, что IceTop - это "верхушка айсберга", называемого IceCube, т.е. это наземная часть гигантского нейтринного телескопа. Оба детектора только строятся, поэтому "многое сделано, но многое еще предстоит". В декабре началась установка некоторого оборудования.
См. также обзор The Pierre Auger Observatory -Status and Prospects, в котором описывается состояние дел в проекте Auger.
Предсказания теории первичного нуклеосинтеза можно проверять по данным
измерений обилия некоторых элементов. В свою очередь, теория завязана на
свойства реликтовых нейтрино. Значит, можно прокинуть мостик от наблюдений
обилия элементов к свойствам нейтрино.
В лекциях сведены воедино основные данные по нейтрино. Статья не астрономическая, т.е. астроприложения занимают достаточно мало места. Так что весь объем отводится под физику, в основном под феноменологию нейтрино.
Дается обзор современных представлений о модели солнца и расчетах потоков нейтрино от него.
См. также статью New solar opacities, abundances, helioseismology, and neutrino fluxes.
Две статьи, связанные общей тематикой: излучение нейтрино сильнозамагниченными нейтронными звездами.
Авторы первой статьи пытаются объяснить, почему магнитары должны быть горячими. Они полагают, что наличие у нейтрино небольшого магнитного момента приведет в длинным временам охлаждения сильнозамагниченных звезд. Во второй статье ситуация прямо противоположна: авторы показывают, что странные звезды с большим магнитным полем будут остывать быстро. Конечно, основные выводы двух статей друг другу не противоречат, но для объяснения природы наблюдаемых магнитаров (например, в источниках повторяющихся гамма-всплесков и в аномальных рентгеновских пульсарах) должно подходить только что-то одно (или ни одного).
Как известно, проблема солнечных нейтрино до конца не разрешена. Отвлекаясь от неопределенностей, связанных с самими трудноуловимыми частицами, авторы обсуждают другие типы неопределенностей, и показывают, что ключевым является неточное знание обилия различных химических элементов на Солнце.
Статья по солнечным нейтрино, написанная Джоном Бакалом для Энциклопедии по физике. Наверное, другие комментарии излишни.
В дополнение стоит прочесть другую статью The Neutrino Matrix
Откуда может взяться нейтринный фон? У него два достаточно мощных, но очень разных источника: ранняя и очень горячая Вселенная (этот фон подобен электромагнитному реликтовому излучению и имеет почти такую же температуру, только отделение нейтрино от вещества произошло гораздо раньше) и нейтрино испускаемые коллапсирующими ядрами космологических сверхновых. Регистрация нейтрино с температурой в несколько градусов кельвина на сегодня нереально. А вот нейтрино от сверхновых вполне доступны современным приборам и могут принести очень много полезной информации. Именно этим двум вопросам посвящен обзор.
Как получать непосредственные данные из земных глубин? Например, с помощью нейтрино, возникающих при распаде радиоактивных элементов (урана, тория, калия). В обзоре (не таком уж и коротком все-таки) рассматриваются основные идеи и подходы к этой проблеме. Обсуждаются как разные теории внутреннего строения ЗЕмли, которые можно было бы подтвердить или отвергнуть, а также планируемые специальные нейтринные детекторы.
ANTARES - черенковский подводный нейтринный телескоп, который строится в средиземном море на глубине 2500 м. К окончанию строительства в 2007 году должен состоять из 12 гирлянд, содержащих 900 фотоумножителей. Но уже сейчас он частично построен и его установленные части уже тестируются. Более подробное описание сегодняшнего состояния данного проекта вы найдете в статье.
Похоже, что проект ANTARES все-таки будет осуществлен! Прототипы уже работали. Были некоторые проблемы, из которых сделали правильные выводы. Окончательный вариант первой очереди должен вступить в строй в 2006 г., и, похоже, это вполне реалистичный срок.
О другом нейтринном детекторе - ICECUBE - расположенном в Антакртике, можно прочесть в статье Fazely IceCube: The Cubic Kilometer Neutrino Telescope at the South Pole. Установка обоурдования для этого эксперимента начнется в конце этого года и продлится около 6 лет.
Сам Джон Бакал рассказывает о нейтрино! Повествование описывает достижени последних трех лет.
Можно также отметить свежий обзор
Solar Neutrino Measurements, посвященный экспериментам по солнечным
нейтрино.
Большой обзор по приложениям современных теорий к космологии. Статья написана понятным языком со множеством иллюстраций, изложением основ и с описаниями возможных проверок предсказаний теории. Для последнего автора отводит довольно много места, перечисляя основные эксперименты (как уже завершенные, так и идущие и планирующиеся) в различных областях: нейтринные детекторы, поиск темной материи и т.д. Соответственно описаны результаты этих экспериментов. В общем: теория и практика в одном флаконе!
Авторы провели повторные расчеты потоков атмосферных нейтрино, на этот раз с рамках трехмерной геомагнитной модели. Согласно их утверждениям точность полученных потоков лучше чем 10% на энергиях ниже 10 ГэВ. Подробное описание проделанной работы привело к тому, что получился неплохой обзор по указанному вопросу.
Некоторые современные теории элементарных частиц утверждают, что кроме нашего мира, в котором все тела состоят из известных нам фотонов, протонов, электронов и т.д. в этой же самой Вселенной может существовать еще один, такой же по разнообразию свойств мир, построенный из других частиц, которые называют "зеркальными" (отсюда "зеркальное вещества" и "зеркальная вселенная"). Набор зеркальных частиц и их взаимодействия между собой могут быть такими же (строго или приближенно) как в нашем мире или же могут совершенно от них отличаться. Основной особенностью зеркальных частиц является то, что с нормальным веществом они взаимодействуют либо только гравитационно, но это очень жесткое ограничение, после введения которого остается совсем мало интересной физики. Поэтому в последнее время при рассмотрении зеркальных теорий дополнительно предполагают наличие (слабого) смешивания обычных и зеркальных частиц. Это означает, что при некоторых условиях зеркальные нейтрино или (как в этой статье) фотоны могут превращаться в соответствующие обычные частицы и наоборот. Никакое другое взаимодействие между обычным и зеркальным веществом невозможно (т.е. мы его не можем даже напрямую увидеть).
Если зеркальное вещество во своим (внутренним) свойствам похоже на наше, то из него будут образовываться галактики (зеркальные), в них звезды, а массивные зеркальные звезды будут заканчивать свою эволюцию взрывами сверхновых (в зеркальном мире). Причем обычные и зеркальные галактики будут скорее всего совпадать (оба сорта вещества будут расположены в общей гравитационной потенциальной яме), а отдельные звезды - располагаются независимым образом.
При взрыве зеркальной сверхновой выделяется поток энергии, в основном в нейтрино и фотонах. Часть этих зеркальных фотонов может превратиться в обычные. А возникающая "на пустом месте" сверхмощная вспышка излучения может объяснить некоторые наблюдаемые в космосе интересные феномены.
Авторы статьи приводят три таких явления:
А вообще статья очень простая и прозрачная.
В обзоре рассмотрено современное состояние нейтринной космологии: от момента отсоединения нейтрино от вещества и существования стерильных нейтрино, до эффектов, проявляющихся в крупномасштабной структуре и реликтовом излучении. Особое внимание автор уделяет "измерению масс" нейтрино по космологическим данным.
Обзор современного состояния дел в изучении солнечных нейтрино.
Дано подробное описание очень высококачественного жидкого сцинциллятора,
используемого в нейтринном эксперименте KamLAND.
Авторы полагают, что одной из важнейших составляющих успеха этого проекта по
изучению нейтринных осцилляций была высокая чистота (в смысле фоновой
радиоактивности) сцинциллятора.
Очень короткая заметка, про продолжающийся и развивающийся эксперимент на подводном черенковском нейтринном телескопе на озере Байкал. Каких-либо феерических открытий там не сделано, но есть результаты, работа идет, есть и планы на будущее.
Обсуждаются нейтринные процессы в полупрозрачном (для нейтрино) веществе сверхновых и почти непрозрачных протонейтронных звездах. Рассматриваются вопросы регистрации нейтринного сигнала на Земле на существующих установках и возможность на этой основе различить те или иные модели нейтронных звезд.
Дан обзор современного состояния эксперимента с солнечными, реакторыми и ускорительными нейтрино. А также описано применение результатов этих экспериментов в нейтринной и солнечной физике, теории ядерных двухчастичных взаимодействий и нуклеосинезе r-процессов.
Согласно современным теоретическим представлениям фотоны с энергиями выше 4x1019 эрг не могут преодолевать космологические расстояния из-за взаимодействия с мягкими фотонами реликтового излучения, и в спектре космических лучей выше этой энергии должен наблюдаться завал (который носит имена Грейсена-Зацепина-Кузьмина). Похоже, однако, что этот завал не наблюдается (в данных разных обсерваторий есть некоторые противоречия).
Авторы данной статьи предлагают новое объяснение - более сильное взаимодействие нейтрино с нуклонами (протонами и нейтронами) на этих энергия.
После обзора некоторых подходов к квантовой гравитации автор обсуждает возможную феноменологию.
Об астрономии нейтрино высоких энергий см. также недавний обзор High-Energy Neutrino Astronomy.
В некотором смысле современная физика элементарных частиц находится в состоянии кризиса (застоя), вызванного невозможностью экстенсивного развития: строить новые ускорители, которые на порядки превосходили бы предыдущие по энергии, очень дорого. Поэтому физики все чаще смотрят в небо не только с мольбой о помощи, но и в поисках высокоэнергичных частиц. Помните:"Вселенная - это ускоритель для бедных".
В даннойм обзоре автор рассматривает вопрос о том, что могут дать наблюдения космических нейтрино высоких энергий для исследований расширений Стандартной модели (о стандартной модели см. обозрение Игоря Иванова).
Чтобы избавиться от фона космических лучей на черенковских детекторах частиц сверхвысоких энергий (водяных или ледяных) обычно регистрируют частицы, которые идут снизу, т.е. перед этим исходная частица пересекает всю Землю, а регистрируемая заряженная частица рождается где-то непосредственно под детектором. Однако для получения точных результатов требуется знать как исходные частицы (нейтрино) распространяются в толще Земли. Этому вопросу и посвящена данная небольшая, но интересная статья.
Исторически одни из самых жестких пределов на массу нейтрино устанавливались по астрономическим (космологическим) данным. Конечно, хочется четких лабораторных пределов, но очень уж неуловимы эти частицы.
В этой работе авторы используют данные новых экспериментов по исследованию крупномасштабной структуры и реликтового излучения. Результаты говорят о том, что суммарная масса нейтрино (имеется ввиду сумма масс электронного, мюонного и тау нейтрино) меньше чем примерно 0.7 эВ.
В статье обсуждаются и другие эксперименты (включая лабораторные), результаты которых сравниваются с полученным авторами пределом. Все неплохо согласуется друг с другом.
Большой понятный обзор по нейтринным телескопам (с картинками!). Рассказано о всех типах детекторов (солнечные нейтрино, атмосферные нейтрино, нейтрино высоких энергий). Кратко дается астрофизическая мотивация для разных исследований. Описаны как первые эксперименты, так и те, что только планируются.
Очень советуем всем, кто хочет узнать больше о нейтринных наблюдениях.
Откуда, в основном, приходят нейтрино, родившиеся в термоядерных реакциях? C z~2.
Кроме того в обзоре рассмотрены следующие вопросы:
Короткий обзор о современных ледяных черенковских детекторах: о действующем сегодня детекторе AMANDA и о гораздо более крупном (~1 км) планируемом IceCube. (Конечно, оба расположены в Антарктиде.) Какие эксперименты на них можно будет провести и что эти эксперименты позволят проверить - вот основная тема заметки.
Оба детектора регистрируют черенковское излучение релятивистских электронов, выбитых из молекул воды нейтрино высоких энергий. Скорость движения таких электронов превышает скорость света во льду. Выбитый из атома электрон движется почти в том же направлении, что и столкнувшееся с ним нейтрино, т.о. мы можем узнать из какой точки на небе оно пришло. Чтобы уменьшить фон от заряженных частиц космических лучей будут регистрироваться только электроны, порожденные нейтрино, которые предварительно прошедших сквозь Землю, т.е. движущихся снизу вверх. Таким образом детекторы, расположенные на южном полюсе, будут наблюдать за источниками северного неба.
Слева - схема детектора IceCube, справа - смоделированная карта источников нейтрино высоких энергий, которые могут быть зарегистрированы на установке IceCube. |
Нейтрино от Солнца наблюдаются уже в течение 40 лет. И почти все это время с переменным успехом шла "борьба" между теоретическими моделями Солнца и данными полученными в экспериментах. Основное противоречие сводилось к тому, что на Землю приходит примерно на 1/3 меньший поток нейтрино, чем надо. Сначала это несоответствие считалось недостатком моделей Солнца, затем - экспериментов по регистрации нейтрино, а после того, как эксперименты стали достаточно точными - теории нейтринных процессов. Битва завершилась год назад - после экспериментального доказательства существования осцилляций нейтрино.
Гораздо более подробный - в лицах и деталях - рассказ бы найдете в обзоре классика современной астрофизики Джона Баккала.
Космологические наблюдения последних нескольких лет (в первую очередь продолжающийся эксперимент WMAP) дают серьезные ограничения на параметры нейтрино: в первую очередь на число легких нейтрино и на их массы (в зависимости от числа).
Радиоволны с частотами порядка 100 МГц-1 ГГц могут на несколько метров проникать вглубь поверхности Луны или, наоборот, выходить наружу, преодолевая несколько метров лунного реголита. На этом свойстве лунного грунта основан метод регистрации нейтрино сверхвысоких энергий (~1018-1020 эВ). Небольшая доля пучка сверхэнергичных нейтрино рассеивается на электронах лунного грунта, электроны начинают двигаться с релятивистскими скоростями, которые превышают скорость света в реголите и испускают Черенковское излучение. Гигагерцовые радиоволны, для которых лунный грунт достаточно прозрачен, выходят наружу и могут быть зарегистрированы наземными радиотелескопами. В данной статье приведены расчеты временных и угловых профилей излучения, порождаемого на поверхности Луны импульсом нейтрино сверхвысоких энергий.
Коллапсирующее ядро массивной предсверхновой - один из самых мощных источников нейтрино во Вселенной. Какое воздействие этот поток может оказать на ядра атомов в коллапсирующем ядре? Как на этих реакциях может сказаться эффект смешивания нейтрино (переход нейтрино одного сорта в другие)? Вот две основные темы этого короткого обзора.
Огромный (110 страниц!) фундаментальнейший обзор охватывает как саму физику массивных нейтрино (эксперимент и теорию), так и ее физические (реакторы, процессы в атмосфере и т.д.) и астрономические (первичный нуклеосинтез, лептогенез, реликтовое излучение, сверхновые) приложения. Много места уделено феноменологии осцилляций нейтрино и нарушению симметрий. Рассмотрены также возможные пути дальнейшего развития данного направления в науке.
Как зарегистрировать и определить свойства космологических нейтрино экспериментально сегодня не знает никто. Их энергия слишком мала для того, чтобы они вступили в какую-либо реакцию. По этой же причине невозможно обнаружить их механическое воздействие. Однако можно попытаться определить их свойства косвенным путем. Например, как в данном кратком обзоре, по космологическим наблюдениям спутника WMAP.
Атмосферные нейтрино - нейтрино, которые регистрируют по их взаимодействиям с ядрами атомов земной атмосферы и по возникающих при этом атмосферных ливнях. Эта область очень интересна и важна. Например, именно данные по атмосферным нейтрино долгое время (до того как это было подтверждено другими данными) служими основным аргументом в пользу гипотезы об осцилляции нейтрино. Эксперимент AMS, проведенный на борту Шаттла, которому посвящена часть данной статьи, также интересен.
Однако, прочитать или хотя бы просмотреть данную работу хочется не по этому. Она принадлежит к редкому классу публикуемых работ, который можно назвать "научным комиксом" - 34 страницы этого 43 страничного обзора занимают рисунки, графики, иллюстрации.
На глубине 1.1 км несколько месяцев в году работает Байкальский нейтринный эксперимент. В очень короткой заметке суммированы результаты наблюдений за 1999 г.. даны новые верхние пределы на количество нейтрино сверхвысоких энергий, нейтрино от WIMPs (weakli interacting massive particles - частицы темной материи), а также дано краткое описание расширенной версии телескопа - NT200+ - результаты работы которой сейчас обрабатываются.