Новая версия основного каталога остатков сверхновых в нашей Галактике.
В обзоре перечислены ключевые свойства сверхновых типа Ia и модели их описания. Кратко разобраны механизмы взрыва и эволюционные каналы, приводящие к ним. Написано не на науч-поп уровне. Так что подойдет скорее студентам-аспирантам и интересующимся астрофизикам из близких областей.
В статье представлены данные наблюдений интересного внегалактического транзиента. Это быстрый рентгеновский транзиент (Fast X-ray Transient) без сопутствующего гамма-всплеска. Зато Событие удалось пронаблюдать и в оптике, и в радио.
Отождествлена материнская галактика. Это массивная дисковая галактика с довольно большим звездообразованием на z=0.4. Любопытно (и непонятно), что транзиент находится в 27 кпк от ее центра, т.е. довольно далеко. Но при этом похоже, что мы наблюдаем коллапс массивной звезды (сверхновая типа Ic).
Свойства транзиента позволяют связать его и с гамма-всплесками (просто мы смотрим не вдоль оси джета), и с мощными быстрыми оптическими транзиентами.
См. также arxiv:2409.19070, arxiv:2409.19055.
Дан обзор основных наблюдательных фактов по сверхновым с большой светимостью, а также кратко обсуждаются основные теоретические модели их описания.
Отмечу, что обзор очень краткий. Половина из 24 страниц - список литературы, а в основной части много рисунков.
Обзор посвящен неустойчивости рождения пар в ядрах массивных звезд. Это может приводить к особому типу сверхновых, а может и не приводить. Звезда может разрушаться полностью, а может образоваться черная дыра. В общем, много всего интересного.
Речь идет о случаях, когда на момент вспышки сверхновой вокруг звезды есть много вещества, которое она (или соседка по двойной) сбросили относительно недавно. В результате, часть кинетической энергии взрыва удается перевести в электро-магнитное излучение. Это приводит к особенностям в спектрах и кривых блеска.
Обзор сжатый,но очень четкий. Достойно энциклопедии.
На JWST получено интересное, пусть и косвенное, указание на присутсвие нейтронной звезды в остатке сверхновой 1987А. Обнаружены линии аргона и серы во внутренней части остатка. Возбудить эти линии должно было какое-то излучение. Довольно жесткое. Авторы рассматривают несколько моделей и приходят к выводу, что это или излучение горячей поверхности нейтронной звезды, или нетепловое излучение пульсарной туманности.
Название обзора обманчиво. Речь идет об усиление магнитных полей в процессе сверхновой, а также об их влиянии на динамику. Тема очень актуальная. И не только потому, что стало возможным детальнее учитывать, как магнитные поля влияют на развитие взрыва. Мне, например, все это крайне интереснов контексте магнитных полей нейтронных звезд. Во-первых, с какими магнитными полями нейтронные звезды рождаются - это все должно следовать как раз из моделей того типа, что рассматривается в обзоре. А во-вторых, правильное понимание структуры начального магнитного поля нейтронной звезды необходимо для моделирования его дальнейшей эволюции. И это мне (и многим другим) еще более интересно.
Открыт очень интересный тип транзиентной активности (неизвестно какого источника). История такова. В начале открыли более-менее обычный (но все равно не очень понятный) транзиент в оптике. Характерное время изменения блеска большое - десятки дней. Такие случаи известны (хотя и не поняты до конца). Нашли галактику, где произошел всплеск. Красное смещение 0.26, высокий темп звездообразования. Источник не в центре. Источник обнаружили также в радио и в рентгене. А вот дальше - интересное.
Продолжение оптического мониторинга позволило обнаружить вспышки минутной длительности (до десятков минут) со светимостью 10 в 44й эрг в секунду. Одна из вспышек совпала с рентгеновскими наблюдениями - там ничего необычного не видно.
Что мы наблюдаем - непонятно. Авторы связывают все это с релятивистскими истечениями от (возможно, свежеобразованного) компактного объекта. Но можно придумывать и другие варианты.
В статье приводятся данные оптических наблюдений выхода ударной волны при взрыве сверхновой из красного сверхгиганта. Сверхновая произошла в галактике М101 - т.е., совсем близко (7 Мпк). Поэтому наблюдения проводились небольшими (10-сантиметровыми) инструментами. Первые точки соответствуют времени порядка полутора часов после взрыва. Это еще ДО идентификации того, что произошла вспышка сверхновой. Т.е., повезло. Существенно, что получены данные в разных полосах оптического диапазона. Т.е., есть многоцветная фотометрия.
Полученные результаты могут кое-что рассказать и о взрыве, и о звезде. Ударная волна, по всей видимости, не была сферически симметричной. А вокруг звезды много пыли.
Исследуя сверхновую SN 2022jli, авторы обнаружили четкую 12.4-дневную периодичность в кривой блеска. Это объясняется орбитальным периодом двойной. Т.е., мы имеем первый явный пример того, что в наблюдавшейся сверхновой вспышка произошла в тесной двойной, и система выжила. Такую интерпретацию подтверждает и обнаружение гамма-источника, связанного с остатком сверхновой.
Статья может быть интересна по двум причнам. Во-первых, конечно, это анализ опасности килоновых. Это новый результат. А во-вторых, во введении кратко суммировано, на каких расстояниях опасны прочие транзиенты (сверхновые с нескольких десятков парсек, гамма-всплески с нескольких килопарсек, если в джет попасть, и т.д.).
Поскольку килоновые обладают направленным (или, лучше сказать, не изотропным) излучением и отличаются друг от друга по параметрам, дать какое-то одно число, характеризующее опасное расстояние, нельзя. Но по порядку величины у авторов получается несколько парсек. Учитывая, что килоновые очень редки, можно спать спокойной. Или, лучше сказать, не надо беспокоиться из-за килоновых. Других проблем хватает.
Описаны наблюдения необычной сверхновой. Это самая близкая (20 Мпк) сверхновая типа Ic с широкими линиями. Но главная ее особенность в другом. У нее необычная кривая блеска. После 75 дней после основного максимума наблюдается второй, примерно такой же величины (в некоторых полосах даже выше!).
Авторы полагают, что второй максимум связан с взаимодействием вещества, выброшенного при взрыве, с ранее сброшенным веществом. Получается, что предыдущий выброс имел место примерно за год до вспышки.
Бактриан - двугорбый верблюд.
На основе трехмерных расчетов авторы получают картину гравитационно-волнового излучения при коллапсе ядра. Рассмотрены как случаи образования нейтронных звезд, так и случаи, когда образуется черная дыра.
Потенциально, даже существующие детекторы могут услышать сигнал от галактического события. Но детекторы следующего поколения (как наземные, так и некоторые космические, чувствительные к сигналам не слишком низкой частоты) - уж точно будут хорошо регистрировать такие сигналы, см. последний рисунок на самой последней странице статьи. Надо только, чтобы сигнал был.
Отмечу, что рассмотрена все-таки упрощенная модель (невращающееся ядро). Так что конкретные параметры сигнала могут быть потом заметно уточнены. А вид всплеска (включая частотный спектр в зависимости от времени) крайне важен для выделения его на детекторе на фоне шумов. Хотя, в случае галактического события должна быть точная временная привязка, хотя бы по нейтринным данным. Так что сигнал выделить сумеют.
В последние годы появилась техническая возможность надежно выяснять, какая звезда вспыхнула как сверхновая. Суть сводится к сравнению старых и новых глубоких снимкой области вспышки и поиск "исчезнувших звезд". Поиски "исчезнувших звезд" требуют наблюдений на крупных телескопах, а лучше всего - на Хаббле. Было обнаружено уже 17 таких случаев. Авторы статьи добавляют шесть новых.
Представленные результаты - это часть программы, осуществляемой на Хаббле. По ее итогам, число известных прародителей может перевалить за полсотни. Все это крайне важно для понимания того, какие звезды как взрываются. Т.е., и для теории звездной эволюции, и для теории вспышек, и для моделей молодых остатков.
Авторы представляют результаты компьютерных симуляций. Моделируется коллапс ядра массивной звезды, обладающего значительным вращение. Последнее обстоятельство приводит к формированию диска вокруг черной дыры. А это, в свою очередь, приводит к мощному истечению с энергетикой до 10 в 52й эрг, включая выброс никеля-56 (более 0.1 массы Солнца. В результате, возникает сверхновая.
Заголовок хорошо отражает содержание. В обзоре рассмотрена звездная эволюция, приводящая к взрывам сверхновых, а также сама феноменология сверхновых разных типов (включая термоядерные). Отмечу только, что написано все очень понятно.
"Мальчик, который выжил".
Среди сверхновых есть один очень интересный (и, возможно, самый непонятный пока) класс - Iax. Это сверхновые типа Ia, который произошли "не до конца": взрыв менее мощный и белый карлик выжил.
Есть две основные идеи. В первой (single degenerate scenario) идет аккреция с нормальной звезды на белый карлик. Однако после достижения условий для начала термоядерных реакций не происходит детонации. Во второй сливаются два белых карлика (double degenerate), но взрыв происходит не внутри получающегося карлика,а в диске вокруг.
Такие сверхновые происходят редко. Поэтому в основном изучаются внегалактические объекты. Но есть два кандидата в остатки и в нашей Галактике. Один из них связан со сверхновой 1181 года. Именно его рассматривают в статье.
Собственно, авторы провели детальное наблюдение звездного остатка (и туманности) и попытались по-новой определить его параметры. С одной стороны, все похоже на результат слияния двух белых карликов. С другой, в таком случае следует ожидать большого магнитного поля, а его, согласно новым наблюдениям, нет.
Неплохой обзор, посвященный многим важным аспектам радиоактивного распада в астрофизике. После необходимого введения в тему автор в основном рассматривает гамма-линии от радиоактивных изотопов. Т.е., в первую очередь речь о недавних вспышках сверхновых. Много внимания уделено Al-26, не забыт и Ni-56, а также Ti-44. Про изотопы, вылавливаемые в метеоритах и тп. речь практически не идет (только кратко в вводной части), потому что это вне темы сборника, для которого написан обзор.
Объект Торна-Житков - это красный гигант с нейтронной звездой внутри. В некоторых моделях такие объекты не тихонько коллапсируют в черную дыру с рассеиванием оболочки, а взрываются.
Энергия взрыва связана с аккрецией вещества на центральную нейтронную звезду после того, как заканчиваются реакции, поддерживающие устойчивость звезды (т.е., начинается коллапс). Вокруг нейтронной звезды формируется диск. Если его энерговыделение превосходит энергию связи оболочки, то произойдет взрыв.
Небольшой обзор посвящен в основном феноменологии сверхновых с очень большой светимостью. Много иллюстраций (кривые блеска, спектры, статистика). Модели обсуждаются совсем мельком. Зато можно хорошо себе представить, что же собственно наблюдается, и в чем проблема.
Как лучше написать: "короткий, но длинный" или "длинный, но короткий"? Как бы то ни было. Гамма-всплеск GRB 200826A имеет длительность около полусекунды, т.е. формально относится к коротким. Но по всем другим параметрам он относится к длинным, включая то, что обнаружена связанная с ним сверхновая. Т.е., всплеск - последствие коллапса ядра массивной звезды, а не слияния нейтронных звезд. Необычно!
См. также arxiv:2105.05067.
Исторические сверхновые - это вспышки, зафиксированные в летописях и разнообразных записях средневековья, нового времени и т.д. Их известно совсем немного. И в основном мы знаем, где точно произошла вспышки и наблюдаем остатки (тумнность, компактный объект). Но со сверхновой 1181AD все сложно. В статье авторы предлагают новую интерпретацию.
Несколько лет назад была открыта туманность Pa30, а затем обнаружен центральный объект. Авторы высказывают гипотезу, что они-то и связаны со сверхновой. Причем, это была вспышка редкого типа Iax. Такие события связаны со слияниями белых карликов, сопровождающимися термоядерным взрывом, но без полного разлета компактного объекта. Наверное, в ближайшее время путем детальных исследований объекта и туманности удастся проверить гипотезу.
Как лучше написать: "короткий, но длинный" или "длинный, но короткий"? Как бы то ни было. Гамма-всплеск GRB 200826A имеет длительность около полусекунды, т.е. формально относится к коротким. Но по всем другим параметрам он относится к длинным, включая то, что обнаружена связанная с ним сверхновая. Т.е., всплеск - последствие коллапса ядра массивной звезды, а не слияния нейтронных звезд. Необычно!
См. также arxiv:2105.05067.
Исторические сверхновые - это вспышки, зафиксированные в летописях и разнообразных записях средневековья, нового времени и т.д. Их известно совсем немного. И в основном мы знаем, где точно произошла вспышки и наблюдаем остатки (тумнность, компактный объект). Но со сверхновой 1181AD все сложно. В статье авторы предлагают новую интерпретацию.
Несколько лет назад была открыта туманность Pa30, а затем обнаружен центральный объект. Авторы высказывают гипотезу, что они-то и связаны со сверхновой. Причем, это была вспышка редкого типа Iax. Такие события связаны со слияниями белых карликов, сопровождающимися термоядерным взрывом, но без полного разлета компактного объекта. Наверное, в ближайшее время путем детальных исследований объекта и туманности удастся проверить гипотезу.
Авторы рассматривают эволюцию звезд с массами от 10 до 30 солнечных вплоть до взрыва сверхновой и формирования остатка. Пока звезда эволюционирует - она теряет вещество. После взрыва сброшенная оболочка взаимодействует с веществом, ранее потеряным в виде ветра. Вот это и интересует авторов.
Авторы используют последовательно три кода, чтобы отследить эволюцию звезды, взрыв и эволюцию остатка. В итоге, в статье приводится много интересных графиков. КОнечная цель - параметры остатков сверхновых, но мне и промежуточные результаты, касающиеся параметров звезд перед взрывом, кажутся весьма интересными (и хорошо показанными).
Как известно, ядра массивных звезд коллапсируют примерно раз в 30 лет в Галактике, а белые карлики взрываются раз в 300 лет. Тем не менее, последний раз галактическую сверхновую наблюдали 400 лет назад. Конечно, тут и пуассон, и межзвездное поглощение .... Тем не менее, интересно посмотреть в рамках хорошей модели, как часто сверхновые должны наблюдаться невооруженным глазом. Это важно еще и для оценки того, сколько еще свидетельств о вспышках можно найти в исторических хрониках, преданиях и т.д. Вот авторы и строят такую модель.
У них получается, что лишь одна из 7-8 сверхновых с коллапсом ядра будет видна глазом, и лишь каждая третья сверхновая Ia. Так что все сходится. Но есть надежды, что еще не все выловили во всяких преданиях и артефактах (рисунки, скульптуры), особенно в южном полушарии.
Авторы приводят новую оценка темпа сверхновых в нашей Галактике. Вспышки, связанные с коллапсом ядер массивных звезд происходят раз в 47-85 лет.
Практически популярный (потому что для Nature) и довольно компактный (потому что для Nature) обзор по физике сверхновых. Простыми словами описано состояние дел в нашем понимании того, как устроены сверхновые с коллапсом ядра.
Любопытная статья. Часто спрашивают, что будет с белыми карликами в далеком будущем. Стандартный ответ состоит в том, что они остывают, кристаллизуются, и ... дальше остывают. И все. Оказывается, есть еще одна интересная возможность. Некоторые из них могут взрываться.
Идея состоит в том, что из-за пикнорядерных реакций в карликах постепенно растет количество железа. Уменьшается количество электроном, поэтому немного уменьшается и чандрасекаровский предел. В итоге, часть сильно остывших белых карликов (которые иногда называют черными - отсюда и заголовок) будет коллапсировать, что может давать вспышки сверхновых.
Правда, произойдет это не скоро. Автор дает оценку 101100 лет. Чтобы скоротать время, можете попробовать написать это число на листочке(ах). Это дольше времени испарения сверхмассивных черных дыр. Поэтому автор считает такие события последними взрывами во вселенной.
Есть еще один момент. Все это произойдет, только если протоны не распадаются. Если же распадаются, то карлики недоживут до наработки критического количества Fe-56.
А о том, что может происходить с белыми карликами по мере накопления в недрах темного вещества, можно прочесть в другой статье: arxiv:2008.03291.
Обсудить в ЖЖ-сообществе ru_astroph.
Большая работа, посвященная детальному моделированию обилия элементов. Результаты суммированы на рис. 39 (стр. 30), где традиционно в таблице Менделеева указан относительный вклад разных процессов. Но при этом отражен и абсолютный вклад, и вклад относительно солнечного содержания, и эволюция обилия каждого элемента со временем. Очень интересная таблица получается!
Большой обзор по моделированию взрывов сверхновых. Одной из центральных тем является следующее. В физике взрыва большую роль играет нарушение симметрии. Оно может быть связано с вращением и/или магнитным полем. Но есть и еще один источник - асимметрия в распределении коллапсирующего вещества звезды.
Соответственно, обзор посвящен численным методам для многомерного моделирования течений в коллапсирующих ядрах и их окрестностях, а также расчетам структуры предсверхновой.
Среди сверхновых типа Ia существуют пекулярные события. Есть гипотеза, что они связаны со взрывами белых карликов с массой заметно меньше чандрасекаровской, при этом полного разрушения компактного объекта не происходит. Уже были выделены кандидаты в такие белые карлики, пережившие катаклизм. Вот еще один кандидат.
Такие белые карлики выделяются по своему химическому составу, не соответствующему низкой массе, а также по относительно большому радиусу (о временем они, разумеется, сжимаются, но это занимает более 10 млн лет).
Статья очень интересная, но скорее потому, что понятно и подробно описывается несколько вызывающих всеобщий интерес вопросов.
В солнечной окрестности (расстояния до нескольких сотен парсек) есть некоторое количество звезд, которые в относительно близком будущем (менее нескольких миллионов лет, а иногда и менее миллиона) взорвутся как сверхновые. Это интересно детально изучить, а потому важно не пропустить самое начало вспышки (подчеркну, все это важно не "что не умереть", а чтобы получить научные данные). Значит, надо заранее знать, когда произойдет вспышка. Не за гоД, не за месяц, а хотя бы за пару дней. И для этого есть способ. За дни и часы до начала коллапса ядра резко возрастает поток нейтрино. И уже работающие современные детекторы с ррасстояний в сотни парсек могут их регистрировать. Вопрос в том, смогут ли эти детекторы (речь о жидких сцитилляторах, а не о установках типа IceCube или ГиперКамиоканде) определить направление. Вот этой теме и посвящена статья.
Ответ авторов - смогут. Не очень точно, однако и число звезд-кандидатов невелико. Так что можно быдет более-менее надежно выяснить, о какой звезде речь, и подготовиться к наблюдениям.
Повторюсь, в статье много интересных картинок и информации. Например, представлены данные по всем звездам (31 объект), которые взорвутся, в окрестности до 1 кпк.
При взрыве сверхновой основная энергия чаще всего уносится нейтрино, но наблюдаем-то мы электро-магнитное излучение. Соответственно, говоря о "самых мощных" сверхновых, авторы обычно подразумевают именно выделение видимой энергии, которая может быть значительно меньше полной энергии взрыва. Тем не менее.
Зарегистрирован рекордсмен. В пике светимость сверхновой составила 4.3 1044 эрг в сек, а полное энерговыделение (в видимой области за время наблюдений) составило 5 1051 - это рекорд. Чтобы высветить так много энергии нужно было взорвать очень массивную звезду в очень плотной среде. Здесь возможно несколько сценариев, но более предпочтительным выглядит такой. Массивная звезда дошла до стадии пульсационной неустойчивости, и перед взрывом успела испытать несколько эпизодов со сбросом большой массы. И наконец - сама сверхновая. Масса сброшенного вещества составила порядка 100 мас Солнца. Вот это вещество и помогло трансформировать в электромагнитное излучение значительную часть энергии взрыва.
Отмечу, что хотя в статье 30 страниц, но, как обычно в Nature, вся ключевая информация занимает лишь около 3 страниц в одну колонку.
И снова про сверхновые, а точнее - про образование в них компактных объектов.
Вот уже сколько лет прошло после наблюдения вспышки SN1987A, а мы до сих пор не знаем, что там образовалось. Или знаем? В статье обсуждается, как новые данные наблюдений свидетельствуют в пользу образования нейтронной звезды, переработанное тепловое излучение которой, возможно, удалось таки разглядеть.
Авторы полагают, что (с некоторыми натяжками) наблюдения можно объяснить в т.н. сценарии минимального охлаждения нейтронных звезд. В этом случае центральнный объект является аналогом т.н. центральных компактных объектов (ССО) типа Cas A.
На мой же взгляд, велика вероятность, что сформировался т.н. спрятанный магнитар (hidden magnetar). Учитывая, что прародитель СН1987А образовался в результате слияния, там сильно раскручивалось ядро, а это неплохие условия для последующего усиления поля динамо-механизмом. Ведь красный гигант не формировался, т.е. не раздувалась оболочка, которая могла бы в итоге сильно затормозить вращение ядра. Так что там можеть скорее аналог других ССО: RCW103 или Kes79.
Взрыв сверхновой начинается с коллапса ядра. В какой-то момент в центре начинает возникать плотный компактный объект. Коллапс резко останавливается - происходит отскок. Вот это - момент ноль. Ударная волна идет наружу, и наконец, вырывается на поверхность. Вспышка! В начале рентгеновская, поскольку температура очень велика.
Момент выхода ударной волны на поверхность удалось увидеть всего один раз. Авторы хотят увеличить это число и ищут новые кандидаты в данных ХММ. И находят. 12 штук. Правда, довольно трудно доказать, что это именно выход ударной волны. Тем не менее.
Вообще, интересно, что это может быть, если не выход ударной волны.
Снова пропала звезда. На этот раз - яркая голубая переменная (LBV), т.е. массивная звезда на поздней стадии эволюции. Почему пропала - непонятно. То ли это просто перерыв в активности, и лишь сильно упала светимость звезды, то ли ее ядро сколлапсировало в черную дыру. Конечно, второй вариант интереснее! Начальная масса звезды составляла 85-120 солнечных, так что тихий коллапс - вполне вероятный вариант. Или даже не тихий. Три года за звездой не следили - вполне могла и взорваться.
Авторы изучают вещества в окрестности остатка сверхновой Кассиопея А. Показано, что некоторые газовые структуры связаны с остатком (это удалось сделать по обнаруженному взаимодействию вещества остатка с ними). Авторы дают интересную интерпретацию: этот газ связан с потерями вещества на стадях красного сверхгиганта и желтого сверхгиганта. Такие открытия позволяют лучше понять, какие звезды взрывались, а значит приблизится к лучшему описанию сверхновых и лучшему пониманию взаимосвязей между параметрами звезды-прародителя и остатка.
Некоторое время назад в СМИ очень шумели по поводу одной работы корейских астрономов. В ней они настаивали на том, что результаты по сверхновым, касающиеся ускоренного расширения вселенной, ненадежны из-за якобы выявленной авторами эволюции светимости сверхновых Ia. Данные корейцев переобработали. Вывод состоит в том, что величина эффекта была ими сильно завышена, а значит - угрозы стандартной космологической модели нет.
Небольшой обзор по сверхновым, связанным с термоядерными взрывами белых карликов. Полезно прочесть тем, кто почему-то думает, что "астрономы считают, что все такие сверхновые одинаковые". На самом деле, есть множество ситуаций, приводящих к взрывному термоядерному горению белых карликов. Последние лет 20 исследования в этой области существенно интенсифицировались, как с наблюдательной, так и с теоретической точки зрения. Многое становится яснее, возникают новые вопросы. Более-менее все это упомянуто в понятном обзоре.
В Nature Astronomy один из номеров посвящен сверхновым, и в Архиве появилось множество небольших обзоров по разным вопросам, связанным с этой тематикой. Вот один из них.
Современные возможности по поиску транзиентов в оптическом диапазоне позволили обнаружить множество явлений, по своим проявлениям частично похожих на сверхновые, но при этом явно отличающихся от типичных SN Ia,b,c, II, IIn. Им и посвящена эта небольшая заметка.
Происхождение всех таких вспышек остается непонятым. Среди них есть действительно слабые сверхновые, вспышечные процессы в массивных проэволюционировавших звездах, возможно, слияния нейтронных звезд с белыми карликами и, наверняка, что-то еще.
В рамках Decadal Survey Astro2020 в Архиве появилось несколько небольших заметок (см., например, arxiv:1907.07832) одной и той же группы по поискам техномаркеров (т.е., наблюдетльных особенностей, говорящих об искуственном происхождении наблюдаемых объектов).
В общем-то, ничего нового в них нет. Народ хочет финансирования из госсредств (которое в США было прекращено). Я думаю, что никаких групных средств давать на это не надо, т.к. средства, по сути, будут отниматься у нормальных исследований, а мы пока недостаточно много знаем, чтобы с умом тратить деньги и время на SETI.
Начиная с 1980-х гг. нейтринный детектор на Баксане имеет уже более 33 лет чистого наблюдательного времени. За этот период не было ни одной вспышки в нашей Галактике (напомню, что из-за поглощения излучения пылью по оптическим данным мы можем пропустить вспышку, а по нейтринным - нет, т.к. поглощение отсутствует). Это дает ограничение на темп менее 0.07 вспышек в год (т.е., реже, чем раз в 14.5 лет) на 90-процентном уровне достоверности.
Представлена предварительная версия четвертого фермиевского каталога активных ядер галактик. В каталоге почти 3000 источников, что почти вдвое больше, чем в предыдущем каталоге (новый составлен по результатам восьми лет наблюдений, а трейтий каталог - по четырем годам). Почти все обнаруженные объекты относятся к блазарам.
Авторы представляют результы моделирования взрвов сверхновых для одиночных невращающихся звезд разных масс. В диапазоне масс 9-12 масс СОлнца взрывы происходят успешно. А вот модель с массой 13 солнечных не взрывается. Т.о., авторы полагают, что примерно в диапазоне 12-14 масс Солнца успешные сверхновые подавлены, что позволяет объяснить ряд наблюдательных данных.
Представлена сетка эволюционных моделей для массивных гелиевых звезд, родившихся в тесных двойных системах. Разумеется, свойства этих звезд, их дальнейшая эволюция, взрыв сверхновой и получающиеся компактные объекты отличаются от того, что получается в случае одиночных звезд. Учитывая, что черные дыры звездных масс мы наблюдаем в двойных системах, это все крайне важно.
Большой обзор, посвященный r-процессу.
Лишь относительно недавно удалось понять, что значительная доля тяжелых элементов формируется не в результате взрывов сверхновых с коллапсом ядра, а в результате слияния нейтронных звезд. Наблюдения т.н. килоновых подтверждают этот вывод.
Рассмотрена эволюция массивных звезд, у которых происходит сброс массы из-за пульсаций кислородного ядра. В дальнейшем такие звезды формируют коллапсирующее железное ядро. В основном итогом эволюции таких звезд являются черные дыры.
Речь идет о сверхновых с высокой пиковой светимостью. Какое там полное энерговыделение - мы не знаем. Но в оптике поток очень велик. Раз в сто больше, чем у их обычных собратьев - сверхновых с коллапсом ядра.
В первую очередь, в обзоре собраны данные наблюдений. Но не обошлось и без обсуждения теоретических идей для объяснения такой высокой светимости. Рассматриваются магнитары, аккреция на черную дыру, взаимодействие расширяющейся оболочки с околозвездной средой, радиоактивность.
Появилась пачка статей, в которых представлены космологические результаты на основе наблюдения сверхновых типа Ia в рамках Dark Energy Survey. Использовалось более 200 сверхновых из обзора, для которых определены красные смещения, а также более сотни сверхновых, наблюдавшихся в других проектах.
В общем, все согласуется с классической lambdaCDM. Вклад вещества в полную плотность составляет чуть-чуть меньше трети. Современная хаббловская постоянная 66-69 км/с/Мпк. Интересно, что в рамках lambdaCDM тут нет противоречия с данными Планка.
Как известно, ядра массивных звезд в конце их эволюции в основном коллапсируют. Если коллапс останавливается - вспыхивает сверхновая. А если нет? Традиционно считается, что в таком случае образуется черная дыра и мы не видим никакого яркого транзиента в оптике. Авторы показывают, что может быть и иначе.
Хотя, конечно, никакой сверхновой не будет, т.е. не будет огромного энерговыделения в нейтрино и большой закачки энергии в расширение оболочки, тем не менее, можно создать яркую оптическую вспышку. Это возможно благодаря появления аккреционного диска вокруг новорожденной черной дыры.
Для образования диска, надо, чтобы у падающего вещества был большой момент импульса (угловой момент). Если мы имеем дело с практически не вращающимся сверхгигантом (такие звезды быстро теряют момент импульса за счет звездного ветра), то, казалось бы, ничего не выйдет. Но нет! Авторы представляют и оценки, и результаты моделирования, демонстрирующие, что конвекция во внешних частях звезды обеспечивает достаточный момент для формирования диска. Авторы даже приводят небольшой список известных транзиентов, которые могут найти объяснение в рамках такой схемы.
Рассуждение применимо и к случаю, когда все-таки образуется протонейтронная звезда (затем коллапсирующая в черную дыру), т.е. есть энерговыделение в виде нейтрино, но не хватает энергии, переданной оболочке, чтобы создать нормальную сверхновую, а потмоу для появления ярркого оптического транзиента необходим дополнительный механизм - аккреционный диск вокруг черной дыры. Собственно, на такой ситуации авторы и концентрируют свое внимание.
Большая работа, в которой детально представлены разнообразные наблюдения транзиента AT2018cow в разных диапазона спектра, а также дается подробное обсуждение возможных интерпретаций.
Источник в максимуме достиг светимости 4 1044 эрг/с. Это очень много - больше чем у сверхмощщных сверхновых (SLSN). Кроме того, он обладает другими необычными характеристиками. Естественно, что для его объяснени предлагаются самые разные интерпретации: от необычных сверхнновых до приливного разрыва. Анализируя весь компекс данных, авторы приходят к выводу, что это все-таки скорее всего сверхновая с каким-то мощным дополнительным центральным источником. Им может быть быстро вращающийся магнитар, может быть активно аккрецирующая черная дыра, образовавшаяся в результате коллапса ядра звезды. Что конкретно - так и не ясно.
Интересный обзор. Посвящен он, в первую очередь и в основном все-таки именно сверхновым, а не нейтронным звездам. Описаны и данные наблюдений, и результаты моделирования, и нерешенные проблемы. Где можно, авторы коротенько пробрасывают связь собственно со свойствами нейтронных звезд, так что сверхновые даны в контексте, но мне контекста было маловато.
Речь идет о т.н. лабораторной астрофизике. Некоторые процессы, воспроизводимые в экспериментах, в той или иной степени соответствуют астрофизическим ситуациям. В данном случае речь идет об экспериментах со взрывами, где достигается высокое давление. В некоторой постановке возникает ситуация, похожая на условия при отскоке (bounce) в сверхновой. Конечно, сами параметры иные, но авторы полагают, что возможность детального анализа позволит прокалибровать компьютерные программы моделирования взрывов сверхновых на таких экспериментах.
Среди сверхновых встречаются очень необычные, чьи кривые блеска и спектры крайне трудно интерпретировать. Им и посвящен небольшой обзор с большим списком литературы.
В обзорах я не писал о важном интересном (и пока непонятном) результате, связанным с необычной кривой блеска рентгеновского послесвечения гамма-всплеска, связанного со слиянием нейтронных звезд (которое было первым таким слиянием, зарегистрированном и гравитационно-волновыми детекторами). История публикаций на эту тему началась осенью прошлого года (1710.05435), когда собственно появилась статья с регистрацией рентгена на 9й день после вспышки. Затем последовала череда публикаций, в которых авторы рапортовали о росте (!) рентгеновского потока (1711.11573, 1712.02809, 1801.06164, 1801.03531). И вот, наконец-то, поток начал спадать.
В статье авторы представляют новые данные и пытаются дать интерпретацию результата в рамках предложенных ранее моделей. Практически все суммировано на рис. 2 в статье. Видимо, характер кривой блеска можно объяснить деталями устройства джета.
Как известно, мы до сих пор не знаем, какой компактный объект возник в результате вспышки сверхновой 87 года в Магеллановом облаке (я так думаю, что там "спрятанный магнитар"). Во многом это связано с тем, что в рентгеновском диапазоне центральная часть остатка долго остается непрозрачной. Детальному рассмотрению этого вопроса и посвящена статья.
Авторы представляют наблюдения в разных диапазонах (миллиметры, ИК, оптика, УФ, рентген) и дают верхние пределы на излучение компактного объекта. Предел на болометрическую светимость примерно 100 светимостей Солнца. Как ни странно, но авторы показывают, что из инструментов ближайшего будущего скорее всего JWST и E-ELT смогут дать данные по центральному источнику (они должны увидеть переизлученное темпловое рентгеновское излучение поверхности).
См. также статью arxiv:1805.04528 той же группы на ту же тематику, но без жесткой привязки к SN1987A.
Небольшой обзор по моделированию сверхновых Ia, заслуживающий внимания благодаря его краткости и понятности. Нет формул, нет слодных графиков. С другой стороны, изложение строгое и внятное, без ненужной "популяризаторщины".
За последние годы достигнут большой прогресс в понимании эволюции остатков сверхновых. Детальное моделирование позволяет связывать наблюдаемые данные по остатку со свойствами взорвавшейся звезды. Этому и посвящен обзор.
Впервые удалось увидеть источник повторяющихся быстрых радиовсплесков на высоких частотах (выше 5.2 ГГц). При это зарегистрирована рекордная активность: 21 всплеск за час (из них 18 - за 30 минут). Спектр источника выглядит плоским в широком диапазоне от 1 до 8 ГГц. Вместе с другими данными (поляризация, большая и изменяющаяся мера вращения и т.д.) это косвенный аргумент в пользу молодого магнитара в экстремальном окружении. Кроме того, авторы полагают, что в будущем эффективный поиск FRB может вестись именно на высоких частотах.
Некоторые сверхновые выделяются мощностью электромагнитного излучения, в первую очередь - в оптике. Их не много: примерно одна на тысячу. Зато их видно с больших расстояний. Для их ообъяснения необходимо привлекать некоторые дополнительные механизмы. Уточню, что речь идет не о полной мощности, а именно о высвечиваемой энергии (осноновная энергия все равно уходит в виде нейтрино).
В обзоре рассматриваются различные модели, объясняющие физику сверхярких сверхновых. А также, разумеется, данные наблюдений.
Большой обзор по сверхновым, связанным с термоядерным взрывом сверхкритических белых карликов в двойных системах. Это могут юыть слияния двух белых карликов или же аккреция на белый карлик с нормальной звезды. Что происходит чаще доподлинно неизвестно, но похоже, что слияния белых карликов. Более того, сценарии сталкиваются с некоторыми сложностями, которые также подробно обсуждаются в обзоре.
Небольшой, но удивительно концетрированный обзор по свойствам массивных звезд незадолго до коллапса ядра.
СОбственно, дан обзор данных по ускорению частиц космических лучей в остатках сверхновых в результате работы механизма Ферми первого рода. Особый интерес с точки зрения получения по возможности высоких энергий представляют процессы, идущие в течение первых лет после взрыва.
В сентябре 2014 г. паломарский проект по поиску сверхновыхх обнаружил вспышку, которая впоследствии оказалась началом весьма и весьма любопытной серии.
Вспышка произошла в не такой уж далекой-далекой галактике на расстоянии всего лишь около полумиллиарда световых лет от нас. Событие классифицировали как сверхновую типа IIP. Ну и все хорошо. Казалось бы. Но не тут-то было!
Вспышки продолжились! Конечно, это не такие же мощные всплески, как сама сверхновая. Тем не менее. Это не очень типично. Кроме того, сверхновая демонстрировала очень нетипичную спектральную эволюцию на протяжении примерно двух лет наблюдений.
По всей видимости, на протяжении десятков лет до взрыва сверхновой звезда-прародитель испытывала глобальные потрясения, сопровождавшиеся выбросом большим масс (десятки солнечных). В принципе, такое поведение - не новость. Но детали наблюдений (водород в спектре) не укладываются в существующую модель. Так что новые данные надо объяснять новой моделью поведения предсверхновой в течение последних лет перед вспышкой.
Рисунок 1 в статье прекрасно иллюстриует основную необычность сверхновой.
Авторы обнаружили интересный транзиент в центре галактики на красном смещении z=0.2. Событие наблюдалось на протяжении почти трех лет. За это время полная энергетика (высвеченная энергия) составила примерно 2 1052 эрг. Событие в общем-то ни на что не похоже. Меньше всего оно похоже на активность ядра галактики. Поэтому такую возможность авторы отбрасывают. Остается или приливный разрыв звезды сверхмассивной черной дырой или сверхновая. В обоих случаях наблюдавшееся явление не очень похоже на известных предшественников. Этим работа и интересна. Загадка.
В обзоре подробно рассмотрено, как эффекты вращения звезд могут повлиять на параметры сверхновой. Рассмотрены и одиночные, и двойные звезды. И звезды солнечной металличности, и звезды первичного состава. Также обсуждаются гамма-всплески и некоторые другие связанные явления. Вот только магнитары не упоминаются, что странно: вращение прародителей может иметь здесть большое значение.
В обзоре много рисунков. Так что сам текст не такой уж и большой - стоит просмотреть.
Наконец-то обнародованы результаты наблюдений сливающихся нейтронных звезд. В Архиве появилось около сотни статей. Поток данных связан с тем, что удалось увидеть и гамма-всплеск (1710.05446, 1710.05449, 1710.05450), и рентгеновское излучение (1710.05433), и послесвечение в оптике (1710.05432), и радиоизлучение (1710.05435), и даже килоновую (1710.05437). Последнее позволяет лучше понять процессы синтеза элементов после слияния нейтронных звезд (1710.05443, 1710.05445). О сравнении килоновой от GW170817 с другими можно почитать в статье 1710.05442. Ничего не удалось увидеть нейтринным телескопам, а также наземным гамма-телескопам в ТэВном диапазоне. Данные наблюдений суммированы в статье 1710.05833. Также удалось провести проверку нескольких важных предсказание ОТО - см. 1710.05834. И даже измерить постоянную Хаббла (1710.05835), правда, пока с не очень хорошей точностью, но метод-то отличный!
Так много данных удалось получить во-первых, потому что повезло (гамма-всплеск мог быть не направлен в сторону Земли), во-вторых, потому что всплеск очень близкий (всего 40 мегапарсек).
По поводу открытия уже очень много написано и рассказано. Поэтому ограничусь одной ссылкой на сайт Элементы.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Иногда меня просто бесит, когда популяризаторы (и не только) пишут или говорят, что "Сверхновые типа Ia являются стандартными свечами, потмоу что у них одинаковая светимость в максимуме". Нет, нет и еще раз нет. Другое дело, что для основного числа сверхновых этого типа можно по кривой блеска с хорошей точностью рассчитать светимость в максимуме. Но светимости эти очень разные. Прочтите самое первое предложение абстракта этой статьи и замопните на всю жизнь.
А статья весьма интересная. Причины разной светимости могут быть разными, но одним из ключевых моментов является то, что большая часть SNIa - это взрывы в результате слияния двух белых карликов. И, разумеется, суммарная масса сливающихся объектов может быть разной (от предельной до примерно двух предельных). Соответственно, и взрывы будут разные. Разумеется, слияния карликов разных масс будет в среднем соответствовать разным возрастам звездного населения. Это и моделируют авторы, изучая т.о., как эволюционирует функция светимости сверхновых Ia.
Большой подробный обзор про нейтрино от сверхновых. В основном речь идет о физических процессах в сверхновых, приводящих к нейтринному излучению или модификации потока нейтрино. Соответственно, рассматриваются предсказания разных особенностей сигналов, позволяющих проверять наличие тех или иных эффектов. Кроме того, рассказано о методах регистрации и некоторых проектах, которые будут работать в обозримом будущем.
Эффект Росситера-Маклафлина позволяет измерить угол между вектором собственного вращения звезды и вектором орбитального вращения транзитной планеты. Методика эффективно применяется в экзопланетных исследованиях, чему и посвящена статья. Очень понятно и детально описан сам эффект, а также приведены ключевые результаты, полученные с его помощью.
Речь идет о самой яркой (т.е., имеющей самую большую оптическую светимость) сверхновой типа II. Ее наименование OGLE-2014-SN-073. Авторы проводят некоторое моделирование, и показывают, что стандартная парадигма, в которой взрыв (т.е., сброс вещества) обеспечивается потоком нейтрино, сталкивается в данном случае с большими проблемами. В частности, у авторов получается, что масса сброшенного вещества составила 50-100 солнечных масс. Также удивительно, что столь массивная звезда дожила до взрыва, не потеряв внешние оболочки на поздних стадиях эволюции.
В некоторых моделях получается, что слабые сверхновые Ia сохраняют белые карлики, т.е. те не взрываются целиком. При этом компактный объект приобретает большую пространственную скорость. Авторы рапортуют об открытии такого объекта.
Белый карлик LP 40-365 имеет малую массу (0.15 солнечных) и очень высокую пространственную скорость. Только радиальная скорость составляет почти 500 км в сек. Анализ собственного движения приводит к выводу, что полная скорость превосходит 500 км в сек. Это означает, что карлик сможет покинуть нашу Галактику.
Обзор посвящен подклассу сверхновых Ia, т.е. термоядерным взрывам белых карликов. Сверхновые типа Iax имеют пониженную светимость, пониженную массу и скорость сброшенного вещества. Известно около полусотни таких вспышек.
Что касается моделей таких вспышек, то здесь многое завязано на SN 2012Z. Она вспыхнула в близкой хорошо изученной галактике. Поэтому на архивных снимках удалось увидеть систему-прародитель. Это был, разумеется, белый карлик, но, что важно, в паре с яркой гелиевой звездой, которая и поставляла вещество (в обзоре есть соответствующие красивые картинки, см. стр. 11). Для объяснения механизма вспышки привлекаются модели с дефлаграцией (а не с детонацией) CO белого карлика. Но есть и другие модели. Возможно, что полного разрушения объекта не происходит.
Описаны два оптических транзиента, наблюдавшихся в сильно линзированной галактике на z=1. Наблюдения проводились в 2014 г. на Хаббле. Природа транзиентов неизвестна. Светимость порядка 1041эрг/с. Но основной интерес связан именно с тем, что без линзирования на z=1 это было бы не увидеть.
Большой обзор в основном посвящен эволюции массивных звезд непосредственно перед вспышкой сверхновой, а не физике взрыва. Рассмотрен ряд особенностей, делающих взрывы массивных звезд особенными.
С помощью наблюдения на VLA авторы обнаружили радиотранзиент вблизи центра радиогалактики Лебедь А. Источник за несколько лет набрал высокую светимость и сейчас является стабильным. Наблюдения на VLBA дают верхнее ограничение на размер источника 4 пк. Обсуждаются различные гипотезы. Например, необычная сверхновая (поскольку наблюдаемые параметры в радио соответствуют этому типу объектов, хотя собственно вспышки не наблюдалось). Но сами авторы считают, что речь идет о двойном ядре галактики. Т.е., это вторая черная дыра.
Достаточно подробно и понятно рассмотрена физика горения во взрывах сверхновых Ia (взрывы белых карликов).
В обзоре обсуждается, что можно узнать о сверхновой по ее остатку. Например, анализ некоторых остатков взрывов СН Ia приводит к выводу о том, что взрывался аккрецирующий белый карлик, а анализ других - что слились два белых карлика (при этом, во-первых, будут разные продукты синтеза, а во-вторых, взрыв происходит в среде с разными свойствами, т.к. в случае аккрецирующего карлика мог сущестовать звездный ветер второго компонента). В случае SNII также удается кое-что понять о прародителе и взрыве по наблюдениям остатков.
Авторы еще раз обращаются к теме близких сверхновых в контексте их воздействия на Землю. Детально описано "от чего все умерли". Довольно познавательно.
Снова непонятно что вспыхнуло.
На этот раз речь идет о рентгеновской вспышке. Рост потока за сотню секунд. Падение- за тысячу. Всплеск явно космологический, но тщательные наблюдения видят там пустое место. Авторы гадают: то ли такой вариант гамма-всплеска, то ли такой приливной разрыв с сильной коллимацией.
Содержательный обзор по свойствам потока нейтрино от сверхновых сколлапсом ядра. Рассмотрены все ключевые моменты. Остается только дождаться галактической сверхновой.
Одновременно с этим обзором сразу стоит читать вторую статью того же авторы - arxiv:1702.08825. Там речь идет о роли нейтрино в динамике взрыва сверхновой.
Авторы рассматривают, как по свойствам молодых остатков сверхновых можно что-то понять о самих сверхновых. Например, можно попытаться разобраться в формировании джетов, а также в перемешивании вещества в процессе взрыва. Правда, для этого надо использовать молодые остатки, которых в нашей Галактике совсем немного (около дюжины).
Рисунок 7 на стр. 14 дает наиболее полное представление о том, что люди пытаются сделать в таком подходе.
Продолжают появляться главы из интересной, по всей видимости, книги Handbook on Supernovae. На этот раз темой главы являются рентгеновские двойные.
Несмотря на очень широкий заголовок, авторы, конечно же, концентрируются лишь на тех аспектах, которые так или иначе связаны с физикой сверхновых. Правда, - после краткого введения, содержащего основные факты о рентгеновских двойных и входящих в них объектах.
Со свойствами сверхновых можно связать распределение компактных объектов по массам, характеристики распределения дополнительной скорости, получаемой компактными объектами после взрыва, а также содержание тяжелых элементов во внешних слоях звезды-соседки (обычно нормальные компаньоны рентгеновских двойных оказываются обогащены тяжелыми элементами, которые попали туда в результате взрыва сверхновой). Все это рассматривается в обзоре.
Авторы заявляют об открытии гамма-транзиента, связанного с быстрым радиовсплеском FRB 131104. Использовались архивные данные спутника Swift. Длительность гамма-всплеска составляет 200-400 секунд. Если события и правда связаны, то это ставит проблемы перед моделями. Дело в том, что тогда энерговыделение получается на уровне 1051- 1052. В принципе, это соответствует сверхновым, гамма-всплескам и тп. А ведь есть повторяющиеся всплески, всплески со сложной структурой, что исключает катастрофические явления. Видимо, есть два варианта. Первый - банальный. Популяция быстрых радиовсплесков сильно не однородна, а потому разные источники проявляют взаимоисключающие свойства. Второй - еще банальнее. Данные ошибочны. Все-таки значимость гамма-сигнала невелика.
Теоретическое обсуждение см. в arxiv:1611.03848.
Однако, новые наблюдательные данные, полученные в радиодиапазоне на системе телескопов ATCA, свидетельствуют, что с большой вероятностью гамма-всплеск не связан с FRB.
Большой подробный обзор по спектральной классификации сверхновых. Также автор приводит альтернативный вариант классификации, который учитывает количественные характеристики известного разнообразия сверхновых.
Быстрые радиовсплески все, кроме одного, были зарегистрированы на частоте 1.4 ГГц. Еще один - на 0.8 ГГц. А что с более низкими частотами? В некоторых моделях регистрация на длинных волнах просто почти невозможна. В некоторых - нет. Сейчас работают, или вот-вот войдут в строй несколько истановок, работающих в декаметровом диапазоне, которые очень хорошо подходят для поисков быстрых радиовсплесков. Авторы оценивают, что мы можем ожидать от этих телескопов в различных сценариях. Оптимистические предсказания выглядят действительно очень оптимистично: установка CHIME (Canadian Hydrogen Intensity Mapping Experiment), а также HIRAX (Hydrogen Intensity and Real-Time Analysis Experiment) могут обнаруживать по всплеску в час! Но посмотрим-поглядим. Если не будут - это тоже много скажет о природе источников быстрых радиовсплесков.
Некоторое время назад появилась статья, в которой авторы впервые смогли увидеть исчезновение массивного гиганта без сверхновой. Это предсказанное явление, связанное с формированием черной дыры. При этом не происходит отскок в результате коллапса ядра - нет и мощного энерговыделения. Для подтверждения результата были проведены наблюдения на Большом бинокулярном телескопе. Выводы первой работы подтверждаются. Так что, видимо, в самом деле впервые увидели, как образуется черная дыра.
Небольшой симпатичный обзор о том, как взрыв сверхновой может уничтожить (и, видимо, уничтожал) почти все живое на Земле.
Представлены детальные наблюдения мощного оптического транзиента. В начале думали, что это может быть необычная мощная сверхновая (светимость превосходила бы любую известную сверхновую в пару раз). Авторы показывают, что есть объяснение получше.
Это может быть приливной разрыв звезды с примерно солнечными параметрами сверхмассивной черной дырой с массой в сотни миллионов солнечных. Существенно, что дыра должна быстро вращаться. Это позволит разорвать звезду вблизи горизонта и сформировать видимый поток вещества.
Чтобы прийти к такому выводу понадобился почти год мониторинга с получением спектров. Наблюдений проводились в том числе на КОсмическом телескопе и рентгеновских спутниках.
Также аргументов против сверхновой является то, что событие произошло в массивной красной галактике с очень низким темпом звездообразования. Типичный возраст звезд в ней 3-6 миллиардов лет. Т.е., сверхновых с коллапсом ядра там должно быть очень-очень мало. При этом событие произошло точно в центре Галактики (погрешность менее 300 пк).
Небольшой, но емкий и понятный обзор про сверхновые Iа - откуда они берутся. РАссмотрены и данные наблюдений, и разные модели.
Кратко, но понятно, описано, как развивалось исследование сверхновых, приведшее к тому, что они стали надежными источниками для определения космологических расстояний. В тоге, как известно, это привело к последнему на настоящее время очень большому открытию в космологии - обнаружению ускоренного расширения вселенной.
Некоторая проблема состоит в том, что стандартной ссылкой в этой области является Phillips (1993), что слегка принижает роль первопроходцев, работавших над этим вопросом в 70-е гг.: Псковского и Руста (Rust).
Обзор понятный и хороший. Наверное, во всем мире вызовут улыбку ссылки на русскоязычные популярные материалы, но для кого-то это даже и к лучшему.
Речь идет о выходе ударной волны сверхновой из звезды. В последние годы появились прямые наблюдения этого события. В связи с этим возникли надежды узнать много нового и о взрывающихся звездах, и о физике сверхновых. Этому и посвящен обзор.
Обзор написан для специалистов.
Для статьи про сверхновые - хороший номер: 1054.
Представлен каталог, включающий в себя данные по более чем 20000 сверхновым и кандидатам в них.
Большие аналитические доклады об актуальных задачах и планах исследований (white papers) - прекрасное чтение, для того, чтобы создать впечатление о ситуации в какой-то области исследований. Вданном случае речь идет о ядерной астрофизике.
Эта область охватывает и звезды, и космологию, и слияния нейтронных звезд, и сверхновые. И много разных методов наблюдений. В общем - почти все.
Представлены результаты детальных наблюдений первого случая сильного линзирования сверхновой, когда в итоге (с разной задержкой) появилось четыре изображения (т.е., крест Эйнштейна). Такие наблюдения позволяют уточнить космологические параметры. А кроме того, это очень красиво!
Авторы представляют открытие нескольких необычных сверхновых. Эти события отличаются очень быстрым ростом светимости, которая превосходит типичную светимость сверхновых, но не дотягивает до сверхмощных. Обсуждается несколько возможных объяснений этого явления, но никакие не подходят.
Проделана огромная работа по расчету параметров взрыва и остатков для сверхновых с коллапсом ядра. Разумеется, сделано это в рамках некоторых модельных предположений. Тем не менее, наличие такой большой сетки не может не радовать.
Рассчитаны кривые блеска, массы остатков, энергетика взрыва и синтез элементов.
См. также коротенькую заметку arxiv:1510.04365, где приводится сводка данных по сверхновым типа II.
Ультрадлинные гамма-всплески имеют длительность более 10 000 секунд. Ранее не удавалось обнаружить оптические транзиенты, связанные с ними. И вот увидели сверхновую.
Сверхновая необычная. Она очень яркая (хотя до т.н. супермощных и не дотягивает). Сейчас модно описывать такие сверхновые в рамках магнитарной модели. В ней источником дополнительной энергии является быстровращающаяся нейтронная звезда с большим полем.
Речь идет о всплеске GRB 111209A. Всплес был открыт на спутнике Swift. Его необычные свойства (большая длительность) обнаружили в эксперименте Конус (это проект ФТИ им. Иоффе) на борту спутника Wind. А затем наблюдения (уже в УФ диапазоне, с помощью прибора UVOT) снова подхватили на спутнике Swift и в наземных назблюдениях на VLT и с помощью прибора GROND, кроме того авторы использовали данные с Космического телескопа и с телескопа Джемини-S. Обнаружение послесвечения позволило определить красное смещение, на котором произошел всплеск: z=0.677.
Т.о., возможно, открыт очень важный объект, позволяющий связать вместе два феномена, каждый из которых, по большому счету, не имеет окончательного объяснения.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Большой обзор по нейтрино от сверхновых. Одна из основных тем: как много мы всего узнаем, если сейчас вспыхнет в Галактике. Мне, как обычно, в таком большом полезном обзоре не хватает содержания.
По новостным лентам сообщение уже прошло, но вот научная статья.
Сверхновая находится на красном смещении z=0.23. Оценки светимостидают 2.2 1045 эрг/с. Это раза в два больше, чем у предыдущих рекордсменов.
Есть, мягко говоря, вопросы к механизму таких взрывов. И светимость, и полное энерговыделение очень трудно объяснить. Такие события должны быть достаточно редкими. Разумеется, по одной вспышке темп определить трудно, тем не менее авторы дают грубую оценку: темп таких взрывов в десятки раз меньше, чем у "обычных" сверхмощных сверхновых.
Красивая статья. Странно, что не Nature или Science.
Довольно давно и активно обсуждается идея, что значительная часть звезд с массами более чем 20 с хвостиком солнечных коллапсируют без яркого взрыва сверхновой. Есть много аргументов в пользу такой модели, о некоторых я писал в Обзорах раньше. Но никто и никогда не проводил серьезного целенаправленного поиска таких событий. Авторы делают это впервые.
Они используют архивные данные Хаббловского телескопа для поиска изчезнувших (без взрыва) массивных звезд. Исследовано 15 галактик. Выделено несколько кандидатов. Детальный анализ показал, что одно событие действительно очень похоже на исчезновение желтого сверхгиганта (масса около 25-30 масс Солнца) без взрыва. Это примерно то, что и ожидалось, т.е., пусть и на очень низкой статистике, но подтверждает идею о "тихом коллапсе" заметной доли массивных звезд.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Авторы рассматривают, с какого расстояния нейтринный детектор KamLAND может увидеть нейтрино, излучаемые массивными звездами на стадиях, предшествующих взрыву сверхновой. Получается, что в зависимости от массы звезды детектор может поймать нейтринный сигнал предсверхновой на расстоянии в несколько сот световых лет за несколько часов или даже суток до регистрации самого взрыва.
В последние несколько лет очень популярной темой стала возможность т.н. возвратной аккреции после вспышки сверхновой. Часть вещества (порядка тысячной массы Солнца) может выпадать обратно на формирующийся компактный объект. Это позволяет объяснить несколько важных наблюдательных особенностей нейтронных звезд.
В этой статье авторы исследуют, как можно было бы увидеть эту стадию. Конечно, надо наблюдать нейтрино. Авторы показывают, что детектор типа ГиперКамиоканде сможет увидеть несколько тысяч нейтрино от таких событий (типа того, что породило Кассиопею А). Было бы очень интересно.
Сверхновые типа Ia - это взрывы белых карликов. Есть два сценария. Или белый карлик сливается с другим белым карликом, или на белый карлик идет аккреция с нормальной звезды. Сейчас первый сценарий считается более часто встречающимся, но работать должны оба.
Авторы рапортуют об обнаружении ультрафиолетового излучения от недавней сверхновой. Наблюдали на Swift'е. Параметры излучения совпадают с ожидающимися от взаимодействия выброса сверхновой с нормальной звездой. Т.е., есть довольно хорошие указания, что в данном случае не было слияния двух белых карликов.
В обзоре подробно обсуждается эволюция звезд-прародителей сверхновых типов Ib/c. Это могут быть и одиночные, и двойные звезды. Автор описывает все возможности. Доминируют, по всей видимости, двойные системы. Но и одиночная звезда при некоторых довольно экзотических условиях может дать сверхновую без водородных линий. Здесь еще много вопросов и загадок.
Авторы моделируют сверхновую iPTF 13bvn типа Ib. Такие взрывы, скорее всего, происходят, если звезда входила в двойную систему (см. обзор выше). Но доказать это трудно. Возможно, впервые это удастся сделать. Авторы представляют анализ, который говорит, что выброс при взрыве должен провзаимодействовать со звездой-соседкой, и это можно будет обнаружить впоследствии. Звезда-соседка (которая на момент взрыва скорее всего была ОВ-звездой) потом должна быть видна как "звезда, похожая на красного сверхгиганта".
В 45 случаях у нас есть данные о прародителях сверхновых с коллапсом ядра. В 18 случаях прямо видны прародители, в 27 есть хорошие верхние пределы. И тут возникает проблема: не хватает массивных прародителей, т.е. очень тяжелых звезд. Автор полагает, что возможно, звезды тяжелее 18 масс Солнца часто дают "неудавшиеся" сверхновые, сопровождающиеся коллапсом в черную дыру.
Гархингской группе удалось взорвать сверхновую. Обычно не зватает совсем чуть-чуть, чтобы все заработало, и какие-то добавки или усовершенствования помогают делу. На этот раз "маленькой добавкой" стал учет присутствия странного кварка в веществе. Это позволяет увеличить и светимость нейтрино, и их среднюю энергию. Из статьи мне не ясно, приводит ли это к тому, что образовавшийся компактный объект имеет в своем составе кварковое (странное) вещество (или хотя бы гипероны и т.п.), или нет. Но кажется, что должен. Тогда это особенно интересно.
Авторы исследуют гиперскоростную звезду US 708. Она имеет скорость 1200 км в сек и является компактной гелиевой звездой. Анализ траектории показывает, что крайне маловероятно, что звезда летит из центра Галактики (обычно гиперскоростные звезды становятся таковыми после пролета звездной пары вблизи сверхмассивной черной дыры в галактическом центре). Новые исследования показали, что звезда быстро вращается. Это делает весьма вероятным такой сценарий. Звезда входила в двойную систему (где и произошла раскрутка и обдирание водородной оболочки), а потом второй компонент взорвался. Вторым компонентом на момент взрыва должен был бы быть белый карлик. Т.е., это термоядерная сверхновая. Современная скорость звезды связана с ее высокой орбитальной скоростью в двойной в момент взрыва, т.е. это была ультракомпактная двойная.
Впервые поймали множественное изображение сверхновой, сформированное гравитационной линзой. Линзирующая галактика находится на z=0.5 в скоплении галактик MACS J1149.6+2223. Сама сверхновая, видимо, вспыхнула в галактике на z=1.5. Измерение временных задержек между разными изображениями даст очень интересную космологическую информацию.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Авторы обращаются к известным проблемам. Во-первых, среди прародителей сверхновых наблюдается недостаток красных сверхгигантов. Во-вторых, в моделях плохо получается (т.е., совсем не получается) взрывать такие звезды. Авторы предлагают простой ответ: ну так они и не взрываются!
Имеет место т.н. неудавшаяся (failed) сверхновая. В результате образуется черная дыра.
Это не первая статья, где обсуждает такая идея, но в данном случае она лучше подкреплена расчетами.
См. также работу arxiv:1409.0540, где представлены результаы одномерных расчетов, в которых также получается, что во многих случаях черные дыры образуются там, где в стандартных сценариях должны бы быть нейтронные звезды.
Авторы изучают большую (337) выборку сверхновых типа Ia. Используя некоторую теоретическую модель, они определяют по данным наблюдений, сколько вещества было выброшено. Можно было бы ожидать, что выброшенная масса соответствует чандрасекаровскому пределу или превосходит его. Получается же совсем другое.
Как минимум четверть случаев соответствует надежно суб-чандрасекаровским массам. А вообще, получается у авторов, таковых может быть и половина. Наоборот, масс, большим чандрасекаровских, крайне мало.
Авторы обсуждают, с чем это может быть связано. Есть, конечно, и вероятность того, что просто модель недостаточно точна. Но авторы полагают, что неопределенности модели не позволяют полностью убрать проблему суб-чандрасекаровских прародителей.
Рассматриваются поздние стадии эволюции (и взрывы) звезд с массами более 30 солнечных. Современные модели уже позволяют обсуждать всякие тонкие эффекты. Например, роль вращения. Кроме того, такие объекты, видимо, связаны с длинными гамма-всплесками, что также обсуждается в обзоре.
Завершается статья списком нерешенных проблем. Их много, и они важные.
SN2014J - близкая сверхновая типа Ia. Соответсвенно, это идеальный объект для изучения. Стандартная модель гласит, что сверхновые этого типа - это взрывы белых карликов, достигших чандрасекаровского предела. Расчеты примерно говорят, сколько и каких элементов должно обрзовываться при таких взрывах. Некоторые образующиеся изотопы радиоактивны, вдобавок, от некоторых можно ожидать мощных спектральных линий в жестком диапазоне спектра.
Авторы использовали спутник INTEGRAL для поиска гамма-линий кобальта-56. И они были обнаружены! Это позволяет оценить количество кобальта, а значит и проверить модели взрыва. Новые данные наблюдений находятся в хорошем согласии с предсказаниями стандартной модели взрыва белого карлика.
Авторы используют большую (76 штук) и очень однородную выборку сверновых типа IIP (взрыв красного гиганта), чтобы исследовать статистические свойства этих вспышек и, возможно, выйти на определение параметров звезд-прародителей.
Авторы приходят к нескольким интересным выводам, из которых упомянем только два.
Закрывается класс IIL (у этих сверхновых кривые блеска спадают довольно быстро, их отличали от IIP с явным плато в кривой блеска). Изучение свойств выборки показывает, что такой отдельный дополнительный класс не нужен.
Авторы обнаружили любопытную корреляцмю между темпом спадания блеска на стадии плато и максимальной светимостью. Они полагают, что это связано в основном с массой взорвавшейся звезды. Если это так, то это весьма важно и интересно.
Сверхновые Ia - очень актуальная тематика. Обзор касается сразу всего: и теории, и наблюдений. Причем наблюдений не столько самих вспышек, сколько попыток понять, в какой системе произошел взрыв. Автор концентрируется на достижениях последних 10 лет.
После анализа архивных данных телескопа Хаббла в месте вспышки сверхновой iPTF 13bvn обнаружили объект. Выглядел он как звезда Вольфа-Райе с массой около 11 олнечных. Но анализ вспышки исключает такой массивный объект. Получается масса ближе к 3-4 масса Солнца. Разумеется, это масса взрывающего объекта, практически ядра звезды, а ранее она должна была быть массивнее, но внешние слои уже были сброшены. Как же это сделать? Только в двойной! Потому что одиночная звезда не может оставить такую легкую предсверхновую. Соответственно, авторы считают, что это первый надежный случай, когда можно говорить о жвойном прародители сверхновой Ib. Однако они указывают, что для окончательного подтверждения надо будет открыть второй компонент двойной. Оценки показывают, что это должна быть массивая (а, значит, яркая) звезда. Т.е., в ближайшие годы это можно будет сделать.
Как все знают, 22 января (на снимках, сделанных 21 января) была открыта сверхновая в галактике М82. Сверхновая относится к классу Ia, т.е. это взрыв белого карлика. Расстояние до галактики М82 составляет 3.5 Мпк (чуть более 10 млн. световых лет). Это самая близкая сверхновая с 1987 года, и самая близкая сверхновая Ia за последние десятилетия (в пределах неопределенностей определения расстояний на этот титул также претендуют сверхновая SN 1972E в галактике NGC 5253 и SN 1986G в NGC 5128).
Все полагают, что раннее обнаружение столь близкого события позволит гораздо лучше понять сверхновые типа Ia. Существенно, что М82 была хорошо изучена ранее, что также помогает.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Довольно большой обзор по процессам в плазме в таких астрофизических источниках как магнитары, сверхновые и гамма-всплески. Только третий раздел обзора изобилует формулами. Остальные (т.е. примерно 3/4 статьи) представляют собой вполне доступное чтение.
Всем ясно, что сверхновые Ia - это взрыв белого карлика. Но как они набирают массу? То ли сливаются два белых карлика, то ли на карлик перетекает вещество с обычной звезды. Авторы детально разбирают этот вопрос. Окончательной ясности нет, но кажется, что слияния карликов являются более привлекательным механизмом.
Обычно я люблю спрашивать, знают ли слушатели о том, что Крабовидная туманность - это не совсем остаток сверхновой. В стандартной картине основная часть остатка должна мчаться далеко за видимыми волокнами. Именно там сидит основная масса и основная кинетическая энергия. Но все поиски этой оболочки пока ничего не дали. В статье же представлен альтернативный сценарий. В данном случае речь идет о слабом взрыве, и то, что мы видим, и является основной частью остатка.
Авторы анализируют несколько тюню сверхмощных (super-luminous) сверхновых. Для нескольких из них продемонстрировано наличий "хвостов" в кривых блеска, которые очень трудно объяснить. Авторы полагают, что наилучшим объяснением является образование магнитара, который и дает дополнительный впрыск энергии. Более стандартные варианты (радиоактивный распад кобальта-56 или столкновение с ранее сброшенным веществом) требуют нереалистичных параметров.
В молодой вселенной могли существовать очень массивные звезды. В данной работе моделируется взрыв экстремального монстра с массой 55 000 солнечных. Полное энерговыделение - 10 55 эрг. При этом формируется много тяжелых элементов, которые эффективно разбрасываются по окрестностям.
Скачать анимацию можно здесь.
Авторы в некоторых деталях обсуждают любопытную модель. Гиперскоростные звезды рождаются при разрушении пары звезд. Одна из звезд улетает, а другая- остается. Остающиеся накапливаются, и могут сталкиваться друг с другом. Вот этот-то механизм и рассматривается. Возможно, будущие наблюдения помогут увидеть такие редкие события в центрах галактик.
Pan-STARRS1 - это телескоп диаметром 1.8 метра, который имеет большое поле зрение (3.3 градуса) и страшно многопиксельный приемник. Это позволяет эффективно мониторить небо и открывать необяыне оптические транзиенты. например - сверхновые.
В данном случае речь идет об обнаружении необычной сверхмощной сверхновой, обедненной водородом. Авторы показывают, что теоретические модели не могут объяснить весь набор наблюдаемых свойств вспышки. Именно это и делает открытие столь важным и интересным.
Наблюдая массивную звезду, которая стала в итоге сверхновой SN 2010mc, за 40 дней до взрыва авторы увидели большой внезапный сброс вещества. Такие штуки предсказывались, но увидеть удалось впервые (хотя были и неплохие кандидаты). Было сброшено около 0.01 массы Солнца, а энерговыделение во вспышке составило более 10 в 47 эрг.
Это позволяет тестировать модели взрывов массивных звезд.
Не удивлюсь, если в январе этот результат войдет у меня в двадцатку лучших за 2013 год.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Авторы формулируют и вычисляют новый верхний предел массы для белых карликов. Идея состоит в учете сильного магнитного поля. При этом, предел от поля не зависит (важно, что оно сильное). Для СО белых карликов получается 2.58 массы Солнца. Авторы полагают, что так можно объяснять очень яркие сверхновые типа Ia. При этом они будут стандартными свечами.
Остаток сверхновой Кассиопея А хорошо известен. Теперь еще более известен компактный объект в нем, для которго удалось пронаблюдать падение температуры. В связи с этим очень остро стоит вопрос о точном возрасте остатка.
Все говорит о том, что сверхновая должна была наблюдаться в 17 веке. Это уже пост-галилеевское время. Цивилизация вполне развитая. Поэтому надежды на то, что вспышку наблюдали велики, но ...
Традиционно считается, что вспышку видел Флемстэид в 1680 г. Однако, анализ анализ полярных льдов говорит, что в 1680 и его окрестностях нет указаний на избыточное гамма-излучение. Поэтому рассматриваются и другие варианты.
Авторы во-первых рассматривают и отбрасывают гипотезу о том, что "звезда Карла", наблюдавшаяся в 1630 г., может быть связана с Кассиопеей А. Во-вторых, авторы выдвигают и отстаивают гипотезу, что вспышку видел в 1671 году Кассини.
Среди сверхнрвых Ia, которые в основном являются взрывами белых карликов, выделен подкласс, видимо имеющий заметные отличия. Эти сверхновые показывают более низкую светимость в максимуме и более низкие скорости движения вещества. Сейчас известно 25 сверхновых такого типа. Полагают, что взрываются все равно белые крлики, но важно, какая звезда является донором (поставщиком вещества на карлик). Однако окончательной ясности пока нет.
Отличный обзор по сверхновым! Дано и хорошее общее описание происходящего, и рассказано, как работают современные численные модели.
После распада радиоактивного кобальта именно титан-44 обсепечивает свечение остатка сверхновой. Используя данные многолетних наблюдений на спутнике INTEGRAL, авторы сумели измерить рентгеновское излучение в линиях (вблизи 70 кэВ) от распада титана-44. Это позволяет сделать оценку массы титана-44, выброшенного после вспышки сверхновой.
Svensmark является одним из главных пропонентов идеи о том, что космические лучи являются важным регулятором климата. В этой статье он исследует, как на протяжении последних полумиллиарда лет близкие сверхновые. как раз через изменение потока космических лучей, могли влиять не земной климат.
Отличный обзор. Многие важные вещи, определяющие физику сверхновых, ясно и понятно описаны без формул (но достаточно строго).
Авторы представляют новые расчеты взрывов сверхновых с коллапсом ядра. Движущей силой являются нейтрино. Детально исследована асимметрия выброса вещества. Это приводит и к кикам (дополнительной скорости нейтронной звезды), и к асимметрии распределения синтезированных элементов. Модель явно неполна. Однако есть надежда выяснить, что же отвечает за кики. Дело в том, что в данной модели (в отличие от модели с асимметричным излучением нейтрино) есть корреляция между направлением скорости и распределением выброшенных продуктов нуклеосинтеза.
Как известно, неизвестно, как же точно появляются сверхновые Ia. Т.е., конечно ясно, что взрываются белые карлики. Но вот, как они доходят до жизни такой? Есть два основных сценария: или сливаются два белых карлика, или идет аккреция на белый карлик с нормального компаньона. Видимо, работают оба механизма. Но вот в какой пропорции? А кроме того, есть необычные сверхновые Ia (их не мало - процентов двадцать). Какие-то слабее, какие-то ярче, а какие-то сильно слабее. С ними ясности еще меньше. Всему этому был посвящен симпозиум, прошедший в Падуе. В статье дается сводка новостей с этой встречи.
Последние годы большое внимание привлекают сверхновые с очень большой мощностью излучения в оптике. В статье предлагается классификация таких объектов, описываются показательные примеры, дается интерпретация различиям между разными типами.
В 1998 году было обнаружено первое событие, показавшее связь некоторых
гамма-вслесков со сверхновыми. С тех пор их открыли не так много: по штуке
раз в два года примерно. Тем не менее. Отчасти дело в том, что
гамма-всплески находятся далеко, и открывать столь далекие сверхновые
непросто. Однако есть и сложности. Есть близкие гамма-всплески, у которых
сверхновые не были обнаружены. Это говорит о том, что некторые
гамма-всплески могут быть связаны с т.н. "неудавшимися" сверхновыми (такое
должно быть, особенно при образовании черных дыр. которые. как полагают, и
сидят в "сердце" машины гамма-всплеска). Некоторые детали этой запутанной
картины можно найти в небольшой обзоре.
Дается обзор современного состояния дел в изучении механизмов взрывов сверхновых. В этой области много, мягко говоря, нерешенных вопросов. С другой стороны, кажется, что намечается существенный прогресс в численном моделировании сверхновых.
Авторы погоняли код, моделирующий взрыв сверхновой для разных звезд-прародителей. Механизм взрыва в данном моделировании связан с нейтрино. Т.е., это самая стандартная модель.
Интересно, что уже при массах выше 15 масс солнца начинается "черезполосица": итогов взрыва является то нейтронная звезда, то черная дыра. И так продолжается до больших масс (около 40 масс Солнца). Т.е., согласно этим расчетам, нулевое предположение об одном пределе, разделяющем прародителей нейтронных звезд и прародителей черных дыр, стоит отбросить.
Авторы исследовали большую выборку сверхновых. Они рассматривали пространственную корреляцию с областями звездообразования, различая области, где процесс формирования звезд идет прямо сейчас, и где он проходил недавно. Вцелом выводы коррелируют с тем, что было известно и раньше. Сверхновые Ib/c имеют в среднем большие массы, чем SN II. SNIc имеют большие массы, чем Ib. А SN IIL - большие, чем IIP. Важно, что это именно в среднем. Неожиданный результат состоит в том, что SN IIn оказались в среднем связанными с самыми маломасивными прародителями. Авторы полагают, что просто это может быть достаточно разнородный класс, где есть и не очень массивные прародители (и их большинство), и очень массивные (которых мало).
В основном обзор посвящен методам детектирования, чувствительности разных детекторов и тп. Весьма интересно, т.к. написано ясно, доходчиво, почти популярно. Перечислены существующие и будущие детекторы.
Хотя в итоге авторы описывают свои работы и их развитие, начинается все с хорошего описания структуры и проблем расчетов взрывов сверхновых. Хорошо описаны некоторые детали.
Авторы изучили 12 сверхновых типа Ia и утвуерждают, что будучи отнаблюденными в ближенем ИК диапазоне, это лучшие стандартные свечи во вселенной.
Авторы показывают, что магнитное поле нейтронных звезд может сильно увеличиваться за счет т.н. stationary accretion shock instability. Можно достичь магнитарных полей без работы динамо-механизма, завязанного на быстрое вращение. Это было бы здорово. Правда, физическая модель, которую используют авторы, не учитывает некоторые важные ингредиенты, поскольку все усилия приходилось бросить на высокое разрешение МГД расчетов. Кроме того, не ясно, смогут ли поля "выжить", чтобы быть большими не только на стадии сверхновой, но и когда "дым рассеется".
Авторы представляют расчеты взрывов сверхновых с коллапсом ядра с помощью нового кода. Это двумерный код, учитывающий реалистичную нейтринную физику и, что является ключевым, эффекты ОТО. Именно благодаря последним авторам удается взорвать стандартную звезду.
В той мере, в какой результаты нового кода можно было сравнить с данными известных более старых (и примитивных) кодов (т.е., "отключая" дополнительные эффекты) - все совпадает. Т.е. именно добавка эффектов ОТО дает эффект.
Авторы объединили три каталога сверхновых в единый унифицированный набор данных. В новый каталог вошло 5526 сверхновых, открытых до начала 2011 года.
С одной стороны, сверхновые типа Ia очень важны, и про них многое известно. С другой стороны, мы не знаем с выской степенью надежности, какие системы и в какой пропорции дают эти взрывы, каков их темп в разных галактиках, всегда ли взрываются карлики почти чандрасекаровской массы, и если "да", то почему есть такой разброс в светимостях, и тп. Все это обсуждается в обзоре.
Автор дает довольно популярный обзор по различным космическим взрывам. В основном упор делается на сверхновых типа Ia, но по чуть-чуть рассказано обо всем, даже Большой взрыв упомянут (чтобы сказать, что это совсем не похоже на взрыв). Интересно, что обзор в основном адресован специалистам по земным взрывам.
Как известно, в этом годы было две сверхновые в близких галактиках. Но 2011fe особенно важна, т.к. она относится в типу Ia. Это взрывы белых карликов. Именно их используют в космологии (и именно за их исследования была присуждена последняя нобелевская премия по физике). Вспышка рекордно близкой сверхновой (20 миллионов световых лет) - это отличная возможность изучить детали. Кроме того, вспышку удалось поймать довольно рано. Этому и посвящена статья.
Нобелевская премия по физике в 2011 году присуждена за открытие ускоренного расширения вселенной. Это было сделано двумя разными группами, но они использовали примерно одно и то же оборудование для изучения сверхновых. А открывали сверхновые просто в основном на одном инструменте - 4-метровом телескопе в Сьерро Тололо. И, разумеется, работы проводились не на пустом месте. Очень важный вклад внес совместный проект обсерваторий Сьеро Тололо и Сьерро Калан по изучению сверхновых Ia. О нем и рассказывается в короткой заметке.
Большой подробный и понятный обзор по всем аспектам ядерной астрофизики. Рассмотрен первичный синтез, синтез в звездах и сверхновых, а также всякие другие процессы, формирующие новые элементы.
Авторы используют несколько обзоров для определения темпа вспышек сверхновых разных типов в галактиках разных типов.
Обнаружен оптический транзиент в галактике на z=0.147. Полное энерговыделение в оптике оценивается в более чем 1052 эрг. Это очень много. Авторы обсуждаются различные интерпретации: сверхновая, приливной разрыв звезды, активность ядра галактики. Они склоняются к тому, что это аномальная сверхновая.
В 1998 году именно данные по сверхновым Ia сыграли ключевую роль в открытии ускоренного расширения вселенной. С тех пор данные по сверхновым перестали быть основным аргументом в пользу существования темной энергии и важным источником данных по космологическим параметрам. Тем не менее, во-первых, накоплено много данных, во-вторых, есть планы по новым наблюдениям, которые могут помочь вернуть сверхновым роль источника данных по космологии. Обо всем это в обзоре.
Авторы дают обзор по свехновым, по основам космологии. Затем описываются полученные результаты по сверхновым Ia и обуждаются неопределенности. После чего авторы переходят к совсем свежим продвижениям и планам на будущее.
Как считается, самые массивные звезды с массами 140-260 масс солнца, которые могут существовать при низкой металличности, могут взрываться за счет неустойчивости, связанной с рождением электрон-позитронных пар. Это очень мощные взрывы с большим выбросом радиоактивных элементов: светят ярко и долго. Авторы моделируют такие сверхновые, рассчитывают их кривые блеска и спектры. За счет большой светимости такие вспышки могут быть видны на очень больших красных смещениях. Но их непросто выделить, поскольку за счет большого выброса радиоактивных элементов, а также за счет эффекта космологического красного смещения, на масштабе порядка нескольких лет они выглядят не как вспышка, а как почти стационарный источник. Поэтому авторы предлагают идентифицировать их по резкому скачку светимости, связанному с выходом ударной волны. Это уже транзиент с характерным масштабом времени порядка часов. Светит источник при этом в основном в ультрафиолете (около 100 ангстрем в своей системе отсчета).
Авторы рассматривают, как растет магнитное поле коллапсирующего ядра массивной (15 масс Солнца) звезды. Это важно для понимания того, как возникают сильные поля нейтронных звезд. Существенно, что в модели пренебрегают вращением (в стандартной картине поля магнитаров связывают с быстрым вращением ядра, что запускает эффективный динамо-механизм). Несмотря на то, что вращения нет, турбулентные потоки существенно увеличивают поле в ядре. Авторы получают, что даже магнитарные поля возможны, если изначальное поле достаточно велико.
Короткий обзор, удачно суммирующий основные знания о молодых одиночных нейтронных звездах, а также нерешенный вопросы в этой области.
Обсерватория имени Ферми обнаружила от Крабовидной туманности две мощные вспышки. Первая была зарегистрирована в феврале 2009 года и длилась примерно 16 дней. Поток возрос в 3-4 раза в сравнении со средним. Вторая, боле короткая 94 дня) вспышка была зафиксирована в сентябре 2010 года. Тут поток возрос в 5-6 раз. У вспышек наблюдаются заметно разные спектры. У самого пульсара никакой активности в это время замечено не было.
Авторы полагают, что мы видим синхротронное излучение. Значит, электроны, его испустившие, были ускорены до энергий выше 1015 эВ, что не просто много, а очень много. Это ставит вопросы перед моделями ускорения частиц в пульсарах и пульсарных туманностях.
По результатам обработки рентгеновских, оптических и ИК-наблюдений удалось в деталях исследовать трехмерное распределение элементов в остатке сверхновой Кассиопея А. Вращающееся трехмерное распределение можно посмотреть тут. Еще есть видео годичной давности здесь.
Была звезда-и нет звезды.
В очень короткой заметке описано, что прародителем сверхновой был красный сверхгигант. Это четко видно, поскольку яркая звезда исчезла, когда "дым рассеялся".
Небольшой очень понятный обзор о том, как данные расчетов взрывов сверхновых соотносятся с данными наблюдений. Т.е., что мы знаем и понимаем в том, какие звезды дают сверхновые разных типов.
Большой доступный обзор по сверхновым типа Ia. Охватывает все основные сюжеты по теме.
Теперь в известном проекте Galaxy Zoo добровольцы ищут сверхновые и другие транзиенты. Причем авторы полагают, что они лишь обкатывают технологии для новых будущих больших проектов, которые будут идти, например, на LSST.
Трехмерные расчеты взрыва сверхновой подтвердили результаты двумерных расчетов той же группы. В чисто гидродинамическом сценарии удается получить кик порядка 500 км в сек (и до 1000 км в сек, в принципе). Корреляции с направлением оси вращения нет, правда, авторы рассматривали модели звезд без вращения.
См. также расчеты другой группы в arxiv:1010.0674.
Существуют данные, говорящие о том, что от сверхновой 1987А было два нейтринных всплеска. Данные дебатируются много лет и служат стимулом для новых размышлений и расчетов.
Авторы рассматривают возможность деконфайнмента (образования кваркового ядра) в протонейтронной звезде. Соответственно, второй всплеск связан с этим. Они проводят расчеты и показывают, что современные детекторы в самом деле могли бы увидеть два всплеска от галактической сверхновой. А вот детекторы 1987 года от Магелланового облака увидеть всплеск из-за образования кваркового ядра не могли.
За счет электронного захвата могут взрываться одиночные звезды массой 8-10 солнечных, а также некоторые звезды в двойных. Авторы рассматривают нуклеосинтез в таких сверхновых. Они делают вывод, что за всю историю Галактики около 4 процентов сверхновых принадлежали к этому типу. Причем, на ранних этапах эта доля могла быть выше, т.к. состав звезд гало несет на себе следы таких сверхновых.
Представлены два новых кода для расчета коллапса массивных звезд. В качестве первой демонстрации рассчитан коллапс звезды с массой 15 солнечных. В процессе коллапса возникает биполярное истечение вдоль оси вращения. При слабом начальном поле такие потоки не возникают. Взрыв асимметричен. Экспоненциальный рост магнитного поля в модели не проиходит, однако это может быть связано с малым временем расчета (40 миллисекунд).
См. также arxiv:1008.1422, где кратко описаны результаты другого моделирования взрыва звезды той же массы.
Большая глава из книги. Описываются нормальные термоядерные реакции в массивных звездах и взрывное горение. Рассматривается эволюция звезд до коллапса ядра. Затем рассматриваются сверхновые, синтез элементов в них, а также дальнейшая эволюция продуктов взрыва. Текст простой, но важный. Всем стоит читать.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Сотни тысяч добровольцев в почти 200 странах гоняют на своих компьютерах софт Einstein@Home. И вот - хоть что-то.
В ходе распределенных вычислений теперь анализируются и данные по радиопульсарам. В данных с Аресибо удалось обнаружить интересный миллисекундный пульсар PSR J2007+2722. Ожидается, что будут и еще открытия. Я думаю, что надо бы туда добавить данные с Ферми (на недавней конференции коллеги сетовали, что теперь для обработки данных с Ферми - слепой поиск новых гамма-пульсаров - не хватает вычислительных мощностей).
Обзор посвящен расчетам структуры массивных звезд перед взрывом сверхновой. Основные неопределенности тут связаны с турбулентностью. Кроме того, не хватает просто наблюдательных данных (точные одновременные определения массы и светимости, данные астросейсмологии и тп.).
По данным более чем 2 миллионов наблюдений почти 15000 галактик определены темпы вспышек сверхновых разных типов, а также раные распределения по параметрам для них (см. вторую статью в серии arxiv:1006.4612). Всего было зарегистрировано чуть более 1000 сверхновых. Для определения темпа всышек были использована качественная подвыборка из почти 800 вспышек.
Представлены детальные расчеты форм гравитационно-волнового сигнала от взрывов сверхновых. Если повезет, то advanced LIGO сможет увидеть сигнал. Тогда можно будет говорить об ограничениях на модели сверхновых по гравволновым измерениям. Например, сигнал может оказаться совсем не похожим на рассчитанные в статье. Значит, модель взрыва иная.
Красивая работа, которую сейчас активно описывают на российских новостных лентах, поскольку, увы, не часто наши астрофизики публикуются в Nature или Science.
Идея простая, потому и красивая. Мы пока не знаем, что приводит 9и в какой пропорции) к взрывам сверхновых Ia - взрывам белых карликов. То ли это слияние двух карликов (так что масса получившегося карлика превышает критическую), то ли карлик в паре с обычной звездой потихоньку аккрецирует, и в итоге его масса переваливает за критическую.
Предложена следующая методика. Коли при слиянии никакого заметного излучения задолго до взрыва нет, то, наблюдая целую галактику, можно отделить 9статистически) такие случаи от аккреции в двойной, когды много высвечивается в рентгене. Если взять темп SN Ia и представить, что все они связаны с аккрецией, то можно предсказать, сколько рентгена будет вырабатывать какая-то данная галактика. И сравнить с наблюдениями. Оказалось, что наблюдаемое изоучение в 30-50 раз меньше. Это значит, что вклад аккрецирующих карликов в темп SN Ia не превышает нескольких процентов. Вот такая красивая понятная работа с понятным результатом.
Замечу, что на конференции НЕА-2009 в ИКИ работа вызвала некоторую дискуссию. Может предел не порядка 5 процентов, а чуть выше и это согласуется с некоторыми другими данными (т.е., это не супер сюрприз). Тем не менее, очень красивая работа.
Короткий обзор, посвященный трудностям и достижениям в моделировании взрывов SN Ia. Никаких деталей в таком коротком материале, конечно, нет. Но есть важные констатации. Например, для номарльных сверхновых Ia нельзя обойтись одной турбулентной дефлаграцией - нужна еще и детонационная стадия.
Обнаружено релятивистское (0.6c) расширение в радиоисточнике, связанном со свежей сверхновой типа Ic. Такие сверхновые иногда совпадают с гамма-всплесками. Это первое прямое обнаружение релятивистского истечения в таком источнике. Причем, по оптическим данным скорости нормальные (низкие), т.е. речь идет именно об узком выбросе относительно небольшого количества вещества. Все эти данные подтверждают основные черты стандартной модели гамма-всплеска.
Авторы полагают, что ими обнаружен "давно разыскиваемый" тип сверхновых. Это взрыв кислородного ядра очень массивной звезды за счет неустойчивости рождения пар.
Сверхновая вспыхнула в небольшой галактике на z~0.13. Соответственно, авторы обращают внимание на возможность того, что относительно близкие карликовые галактики могут содержать очень массивные звезды (более 100 на главной последовательности). Вспышка медленно эволюционировала и была мощной. авторы оценивают, что было синтезировано более 3 солнечных масс радиоактивного никеля-56.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Сверхновую 1979C относят к классу IIL. Высказывались предположения, что с такими взрывами может быть связано рождение магнитаров. В статье авторы анализируют данные многолетних наблюдений сверхновой и остатка и приходят к выводу, что все хорошо описывается, если преположить, что родилась черная дыра, на которую сейчас идет мощная аккреция. Я бы не проявлял особого оптимизма, но авторы пишут о "первой сверхновой с явными указаниями на присутствие черной дыры".
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Сверхновая SN 2003ma была открыта в ходе наблюдений микролинзирования в Большом магеллановом Облаке. Сама вспышка произошла в далекой галактике (z=0.289), проецирующейся на Облако. В максимуме абсолютная звездная величина равнялась M_R = -21.5. За период чуть менее пяти лет сверхновая ослабла менее чем на 3 звездных величины. Это означает, что полная высвеченная энергия огромна - 4 1051 эрг. Это рекорд.
Авторы полагают, что бы имеем дело с экстремальным примером сверхновых типа IIn.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Подробно описано, как наблюдения сверхновых (в основном свехновых типа Ia) пытались и пытаются применять в космологии. Прослежана история разных методов примерно со времен Хаббла до наших дней. Можно разобраться во всех основных тонкостях используемых методик.
Сверхновые Ia связаны со взрывами белых карликов. Основные сценарии предполагают или слияние двух карликов в двойной системе, или аккрецию на карлик с нормальной звезды. Пока выбрать один из сценариев или определить вклад каждого в популяцию SN Ia не удается. Чаще всего наблюдатели обсуждают "задержку" между взрывами сверхновых этого типа и звездообразованием. Несколько групп утверждают, что анализ свойств галактик, в которых наблюдаются такие сверхновые. говорит о наличии популяции "немедленных" сверхновых Ia, темп которых отслеживает звездообразование. Это практически исключает слияние белых карликов.
Однако новые результаты, предсталяемые в статье, ставят вышеприведенный вывод под сомнение. В своем исследовании авторы рассматривали не материнские галактики целиком. а лишь их часть вблизи сверхновой. Анализ показывает, что "немедленные" сверхновые не такие уж немедленные. Они запаздывают относительно звездообразования на 200-500 миллионов лет. Это достаточно, чтобы слияния белых карликов вновь стали хорошими кандидатами.
Ключевая фаза в абстракте: "...возможно самая мощная сверхновая из открытых когда-либо." Речь идет не о светимости в максимуме блеска, а о полном энерговыделении. Это сверхновая типа IIn, которые имеют большую энергетику (вспомним 2006gy). Красное смещение сверхновой z=0.133. Материнская галактика не обнаружена, что не очень удивительно: мощные сверхновые часто происходят в слабых галактиках. Причина во вспышке звездообразования в небольшой галактике с малой металличностью. Последнее обстоятельство позволяет формировать очень массивные звезды.
Известно, что сверхновые, связанные с гамма-всплесками, показывают значительное радиоизлучение. Связано это с существованием релятивистского выброса. Обычно такие объекты (все это сверхновые Ibc) обнаруживаются по гамма-всплеску. После всплеска находят оптику и радио. Но вот первый пример, когда всплеск обнаружен не был.
Сверхновая 2009bb была обнаружена в оптике в ходе обзора. Ее пронаблюдали на VLA, и обнаружилось, что она является мощным источником в радио. Даже самым мощным среди сверхновых на соответствующей стадии. Поискали не было ли гамма-всплеска. Не нашли. Правда, могли и пропустить: точный момент вспышки не известен, и с вероятностью около 1/3 спутники могли всплеск не заметить.
Авторы полагают, что факт выявления релятивистской сверхновой без помощи гамма-наблюдений очень важен, т.к. в будущем оптические обзоры смогут стать основными поставщиками данных по таким событиям.
См. также дополнительные материалы в arxiv:0908.2818.
Большой обзор, посвященный вопросу о том какие звезды какие сверхновые порождают. Про кое-какие сверхновые есть прямые данные (на архивных снимках видны взорвавшиеся звезды. Относительно некоторых сложился консенсус благодаря косвенным наблюдательным данным и рзультатам расчетов.
В обзоре все весьма подробно расписано, включая наблюдательные программы.
В двух статьях (вторая - arxiv:0908.1773) рассматриваются данные и модель сверхновой 2003bg. Авторы полагают, что это первый представитель нового типа. Взорвалась массивная звезда с очень тонким слоем водорода , но плотной оболочкой вокруг. Прародителем могла быть яркая голубая переменная (LBV), у которых водорода больше, чем у WR, но меньше, чем у обычных ОВ звезд (и больше гелия, чем у последних), а кроме того они успевают надуть мощную околозвездную оболочку.
В основном лекции посвящены ядерным реакциям в ядрах звезд: от протон-протонной цепочки до синтеза элементов группы железа. Также рассмотрены реакции, начинающиеся после коллапса ядра, и данные по остаткам сверхновых.
Что-то зачастили открытия уникальных сверхновых. Вот и SN 2005cz показывает некоторые уникальные свойства. По всем данным это был взрыв массивной звезды, т.е. был коллапс ядра. Сверхновая классифицирована как Ib. Но вспыхнула она в эллиптической галактике. К тому же она очень слабая, там мало никеля-56. Кривая блеска говорит о малой массе выброшенного вещества. Слабая линия кислорода. Авторы полагают, что взорвалась малометалличная звезда в двойной с массой минимальной для порождения сверхновой.
Авторы обнаружили слабую сверхновую типа Ib с выбросом небольшого количества вещества и некоторыми аномалиями содержания элементов. При этом взрыв произошел во внешних частях довольно близкой галактики. Т.е., по всей видимости, звезда не могла быть массивной. Все это дает авторам основания утверждать, что обнаружен новый тип сверхновых.
Напомню, что в январе писали о другом крайне интересном взрыве arxiv:0901.2074
На основе обзора авторы определяют абсолютные и относительные темпы сверхновых типа Ia и сверхновых, связанных с коллапсом ядра звезды. Коллапсы на z=0.3 имеют темп 1.42 10-4 на кубический мегапарсек в год. Сверхновые типа Ia происходят в 4.5 раза реже.
Хорошая короткая сводка основных нерешенных проблем в астрофизике сверхновых. Никаких деталей нет, но есть ссылки и ясная постановка вопросов.
С помощью наблюдений на Космическом телескопе и на Джемени, авторы показывают, что прародителями сверхновых 1993J и 2003 gd были, соответственно, К- и М-сверхгиганты. В случае 1993J также показано, что К-сверхгигант входил в пару с В-гигантом, который виден и сейчас.
С одной стороны, это не первые наблюдательные данные о прародителях сверхновых. С другой, это самые надежные данные, кроме случая SN1987A, поскольку есть не только данные о том, что "на месте звезды вспыхнула сверхновая", но видно, что звезда-прародитель исчезла. Т.е., после того как сверхновая достаточно ослабела, было получено новое изображение места вспышки, и четко установлено, что одна из массивных звезд больше не видна.
Существует много типов сверхновых (даже, если мы говорим лишь о взрывах массивных звезд, отбросив SN Ia). Поэтому важно набирать статистику по прародителям сверхновых разных типов. Пока мы очень плохо понимаем, какие звезды дают тот или иной тип сверхновой.
Есть класс сверхновых с низкой светимостью, который обозначают по наиболее известному представителю "типа SN 2002cx". В статье описывается очередной представитель.
Абсолютная величина -14.2, скорость, определенная по линиям, - всего 2000 км в сек вблизи максимума яркости. По спектру сверхновую (как и весь класс) классифицируют как Ia. Возможно, что 2008ha - самая тусклая из известных сверхновых. Ее светимость в максимуме не дотягивает до 10 в 41 эрг в сек. Значит, там очень мало никеля-56, и вообще выброшено мало вещества.
Авторы рассматривают разные модели. Если взорвался одиночный объект, то это может быть электронный захват в Ne-Mg карлике или дефлаграция C-O карлика.
Бывыют сверхновые, которые на дают на два порядка больше фотонов, чем другие мощные взрывы. Пример - SN 2006gy. Автор описывает наблюдательную ситуацию с такими событиями и предлагает интерпретацию. Идея состоит в том, что выброс, порожденный при взрыве сверхновой, сталкивается с более ранним плотным выбросом, который произошел за несколько лет до сверхновой из-за более слабого взрыва. Наиболее легко все наблюдаемые факты в случае SN2006gy находят свое объяснение, если взрывалась массивная (начальная масса - 110 масс Солнца) звезд. Из-за неустойчивостей, связанных с рожением электрон-позитронных пар, такие объекты могут произвести серию взрывов, которые завершатся сверхновой.
При близких сближениям приливные силы могут быть очень высоки. Например, можно говорить о тесных сближениях звезд с массивными черными дырми в центрах галактик или шаровых скоплений. Характерный масштаб в таком случае составляет (Mbh/M*)1/3R* - это приливной радиус. Здесь Mbh - масса черной дыры, а M* и R* - масса и радиус звезды. Существует большая литература по приливному разрушению обычных звезд, и несколько кндидатов в такие явления уже обнаружено. Здесь же авторы исследуют сближения белых карликов с черными дырами.
Карлики могут просто разрушать черными дырами, как звезды, могут "проглатываться". Это также происходит и со звездами, но с карликами чаще, т.к. они компактнее. Для "проглатывания" важно, чтобы приливной радиус оказался меньше радиуса черной дыры. Но может происходить и еще одно явление. Приливные силы могут вызвать взрыв белого карлика. Что-то вроде сверхновой типа Ia, но уже под действием сторонних сил, поэтому для взрыва не обязательно, чтобы карлик был тяжелее предела Чандрасекара.
Авторы показывают, что для черных дыр с массами менее ~100 000 солнечных
(значение зависит от массы и радиуса карлика) взрывы вполне возможны.
События эти довольно редки - 0.001 от числа сверхновых Ia. Но будущие
наблюдательные программы, направленные на поиск таких сверхновых, будут
открывать до тысячи взрывов в год. Соответственно, есть неплохая надежда
увидеть и взрывы, индуцированные приливами. ВЫделить такие события будет
легко, т.к. сверхновая будет сопровождаться длительной (несколько месяцев)
рентгеновской вспышкой, связанной с тем, что вещество разрушенного карлика
будет постепенно поглощаться черной дырой.
p>
Авторы используют довольно остроумный подход. Они анализируют данные рентгеновских наблюдений молодых остатков сверхновых в других галактиках. Точнее даже так. Они анализируют, что увидели на месте взрыва сверхновой спустя несколько десятков лет после вспышки (чаще всего просто ничего не видят). Отсутствие регистрации энергичных молодых пульсаров в подавляющем большинстве случаев позволяет поставить серьезные пределы на распределение нейтронных звезд по начальным периодам (при известном распределении по полям). В частности, доля нейтронных звезд с начальным периодом менее 40 миллисекунд должна быть очень мала (в то время как сейчас очень часто в качестве начального распределения используют предположение об очень коротких периодах).
Авторы обсуждают неопределенности при расчете синтеза элементов во взрыве сверхновой. По мнению авторов, расчеты с "пистоном" (ведь сверхновые "не взрываются" в расчетах, а потому в моделях для расчета синтеза элементов часто просто "руками" задают разлет вещества, в частности, задается твердая поверхность, которая движется наружу и собственно "движет" взрыв и разлет) могут давать результаты на порядок отличающиеся (в бОльшую сторону) от правильных. Это происходит из-за того, что в таких моделях недооценивается эффект возратной аккреции (fall-back).
Также группа одновременно выложила ряд других коротких заметок (все они для материалов конференций) по различным аспектам, связанным с расчетами взрывов сверхновых разных типов (и слияния белых карликов, и коллапс ядер): arxiv:0811.4645, arxiv:0811.4646, arxiv:0811.4650, arxiv:0811.4651, arxiv:0811.4653, arxiv:0811.4654, arxiv:0811.4655, arxiv:0811.4658.
Также см. статью arxiv:0811.4479, посвященную сравнению современных наблюдательных данных с модельными расчетами для первичного нуклеосинтеза.
Сверхновые взрываются несимметрично. Хорошей модели взрыва так и нет. Потому было бы очень важно из наблюдений понять, насколько там все несимметрично, и как оно выглядит. В этом помогает спектрополяриметрия.
Оказывается, в большинстве случаев даже аксиальной симметрии оказывается недостаточно для объяснения данных. Т.е., наблюдения прямо указывают на реальную асимметрию в трехмерии.
Часто можно прочесть, что "звезды, более легкие чем примерно 8-10 масс Солнца, в конце своей эволюции превращаются в белые карлики". А нельзя ли поточнее, да еще по данным прямых наблюдений? Можно, конечно, только трудно.
Авторы полагают, что им удалось достаточно точно определить границу, ниже которой возникают белые карлики. Исследуя 14 карликов в рассеянном скоплении промежуточного возраста (150-200 миллионов лет), они дают значение 5.1-5.2 массы Солнца. Удивительно низкая величина! Правда, добавляя данные по другим скоплениям и учитывая всякие разные неопределенности, они повышают предел до 7.1 солнечной массы.
Данные по прародителям нормальных сверхновых дают предел 9.5 масс Солнца (т.е. выше этой величины звезда взрывается). В итоге, все равно остается неопределенность относительно того, что происходит в промежутке примерно 6 с хвостиком - 9 с хвостиком солнечных масс. Ясно, что предел может как-то варьироваться в зависимости от металличности и, возможно, других параметров.
На снимках, сделанных VLT, удалось рассмотреть звезду-прародителя сверхновой 2008bk. Сверхновая имела тип IIP. Изучение прародителя показало, что он имел начальную массу от 7.5 до 9.5 масс Солнца.
Другая интересная работа по прародителям сверхновых - arxiv:0809.0236. В ней авторы исследуют распределение сверхновых в галактиках, сравнивая его с положением областей звездообразования. Сверхновые типа II хуже всего отслеживают звездообразования. Типа Ic - лучше всего. Из этого авторы делают вывод, что последовательность II-Ib-Ic отражает рост массы звезд-прародителей.
Еще одна статья arxiv:0809.0403 посвящена наблюдательным ограничениям на прародителей SN IIP. Минимальная масса прародителей этих сверхновых 7-9.5 масс Солнца.
Недавно было обнаружено два события, которые по всей видимости являются сверхновыми, но их звездна величина была несколько меньше. Определены звезды-прародители этих взрывов. Авторы полагают, что во-первых, эти события формируют новый тип звездных взрывов, составляющий как минимум более 10 процентов от всех сверхновых, связанных с коллапсом ядра. Во-вторых, они делают еще более интересный вывод.
Дело в том, что вокруг звезд-прародителей этих взрывов очень много пыли. Мы знаем такие звезды, но их очень мало. Т.е., если просто взорвать известные столь запыленные звезды, то темп взрывов будет слишком низким. Отсюда авторы делают следующий вывод. За несколько тысяч лет до взрыва многое массивные звезды (многие, но не все, даже, видимо, меньшинство, но все равно речь идет как минимум о десяти процентах, а скорее несколько больше) образуют вокруг себя много-много пыли.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Большой обзор по ожидаемым гравитационно-волновым сигналам от сверхновых, связанных со взрывами массивных звезд.
В 1843 году от яркой звезды Эты Киля наблюдалась мощная вспышка. В статье автор рассказывает о том, что им обнаружено быстро двигающееся вещество (3500-6000 км в сек), связанное с этой вспышкой. До этого ранблюдались лишь существенно меньшие скорости. Новые данные говорят в пользу того, что выделение энергии произошло глубоко под поверхностью. А раньше считалось, что наблюдаемый разлет вещества связан лишь с резким усилением звездного ветра.
Авторы показывают, что звезды с нулевой металличностью (в данном случае z=0 означает нулевую металличность, а не красное смещение) могут давать нормальные взрывы сверхновых. Для этого необходимо, чтобы звезды достаточно быстро вращались. Обычно полагают, что массивные звезды без металлов порождают очень тяжелые углеродно-кислородные ядра и прямо коллапсируют в черные дыры. Вращение может изменить картину. Если звезды поколения III могут давать сверхновые, то это важно, т.к. влият на раннее обогащение вселенной тяжелыми элементами.
О вращение малометалличных звезд см. также arxiv:0807.5061
Обнаружена самая слабая и самая красная сверхновая типа Ia. Разумеется, авторы предупреждают о необходимости учета таких сверхновых при планировании всяческих обзоров с космологическими применениями. Кроме того, они обращают внимание, что именно такие предельные случаи могут помочь лучше разобраться в физике взрывов.
Небольшой обзор, посвященный наблюдениям "свежевспыхнувших" сверхновых с помощью радиоинтерферометров с сверхдлинной базой. Дюжину таких сверхновых удалось зарегистрировать. Ожидается, что проекты типа VSOP-2 (включающие телескоп на орбите) смогут дать больше.
Получена новая оценка темпа вспышек сверхновых типа Ia на небольших красных смещениях. Темп примерно 14 10-14 в год на одну светимость Солнца (если интересны ошибки и нормировки - смотрите оригинал статьи). Оценка примерно совпадает с более ранними.
Авторы полагают, что стоит еще рыться в данных SDSS-I, тк. там еще много сверхновых не выявлено.
Простыми понятными словами и картинками автор объясняет, что мы знаем о механизме вспышек сверхновых типа Ia (взрыв белого карлика), и обсуждает нерешенные проблемы. Первая (и единственная) формула появляется только на 15-й странице. Пожалуй, можно порекомендовать этот обзор для всеобщего прочтения. Кроме того, можно порекомендовать обзор arxiv:0804.2556.
Авторы изучают эволюцию и взрывы массивных (10-100 солнечных масс) звезд крайне малой металличности, точнее, совсем без тяжелых элементов. Моделируются кривые блеска и массы остатков. Все это крайне важно для понимания того, как жили и умирали самые первые звезды. Особенно существенно понять, как протекал нуклеосинтез, т.к. именно эти звезды первыми обогатили межзвездную среду тяжелыми элементами (популярное введение в нуклеосинтез см., например, в апрельском номере Вокруг Света за 2008 год).
Звезды без металлов или с крайне малым их содержанием чаще порождают в конце своей эволюции черные дыры, и в среднем компактные остатки таких звезд массивнее. Распределение обилия элементов, возникающее после цикла нуклеосинтеза, хотя вцелом и напоминает солнечное, но имеет ряд особенностей. Для элементов легче кремния подавлен синтез ядер с нечетным зарядом, а также изотопов, богатых нейтронами. Кроме того, мало элементов тяжелее германия. Эволюция звезд даже с крайне малым начальным содержанием тяжелых элементов отличается от той, что рассмотрена в данной статье. Текст статьи - только первые 11 страниц. Далее таблицы и рисунки.
Недавно я рассказывал о работе 0802.1712, в которой авторы пронаблюдали рентгеновскую вспышку с последующей вспышкой в УФ. Авторская интерпретация: выход ударной волны сверхновой из плотного ветра компактного прародителя. И вот новый результат.
Здесь авторы представляют результаты наблюдений того, что, по всей видимости является выходом ударной волны из красного сверхгиганта. Этот результат с большей достоверностью можно связать с выходом ударной волны, чем рентгеновский результат Soderberg et al. (2008). Видно поярчение сверхгиганта до выхода ударной волны. Собственно, наблюдается не сам выход волны, а прогрев поверхности прекурсором ударной волны, хотя этот эффект иногда называют "выходом" (авторы обсуждают этот терминологический вопрос в первом абзаце на второй странице).
Авторам помогла правильная методика наблюдений. В 2004 году одновременно с обзором по поиску сверхновых (SNLS) ту же область неба наблюдали на УФ космическом телескопе GALEX. Одно из событий (SNLS-04D2dc), классифицированное как сверхновая второго типа, показало в данных GALEX уярчение за две недели до оптической вспышки.
Галактика, в которой наблюдалась сверхновая - нормальная спираль с сильным звездообразованием на z=0.1854. Получены детальные спектры самой сверхновой, а также спектры галактики. Галактика также наблюдалась на Хаббле.
Авторы говорят о сверхгиганте на основе кривой блеска сверхновой. В ней наблюдается плато, которой связывают с тем, что взорвалась большая (протяженная) звезда.
Существенно, что данные по поярчению до вспышки можно сравнивать с теоретическими моделями взрыва. Анализ поярчения (оно продалжалось около 6 часов) подтверждает, что взорвался сверхгигант с радиусом 500-1000 солнечных.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Теоретики предсказывают, что есть тип коллапса, не сопровождающийся яркой вспышкой. Такие события называют "неудавшимися сверхновыми". Была звезда - и вдруг БАЦ! - пустое место (конечно, остается компактный объект, но его с большого расстояния мы не видим.
В статье предлагается красивейшая идея. Искать такие события, проводя мониторинг большого количества ярких сверхгигантов в близких галактиках. Оценки показывают, что раз в год можно надеяться (если быть оптимистом), что один из них "исчезнет".
Обсудить в ЖЖ-сообществе
ru_astroph
Обсудить на Астрофоруме в
Научной панораме.
28 января этого года с помощью спутника SWIFT удалось случайно пронаблюдать рентгеновскую вспышку в галактике NGC 2770, находящейся на расстоянии около 27 Мпк (т.е., это близкая галактика). Оказалось, что вспышка имеет отношение к нормальной сверхновой класса Ibc. Почему это все так важно? Это очень важно, потому что, видимо, это самое раннее наблюдение нормальной сверхновой. Обычно сверхновые открывают в оптике спустя несколько дней после взрыва. А тут удалось в ретгене поймать очень ранний момент в развитии сверхновой, причем даже не в самом максимуме, а на минуту раньше. Спустя примерно полтора часа появилось и ультрафиолетовое излучение (на борту SWIFT есть УФ телескоп), а вот гамма так и не было (напомню, что SWIFT это в первую очередь гамма-детектор для поиска гамма-всплесков). Видимо, всплеск в рентгене соответствует выходу ударной волны из плотного вещества звездного ветра звезды-прародителя.
Разумеется, в виду исключительности открытия объект затем наблюдали в мелких подробностях. На него смотрела обсерватория Чандра, его искали в радио и нашли. Так что данных много (см. статью). Возможно, что эта вспышка станет самой хорошо изученной сверхновой (исключая СН 1987А, для которой удалось поймать нейтринный сигнал). Однако не факт, что это позволит теоретикам так уж сильно продвинуться в изучении механизма вспышки.
Важная работа, на мой взгляд. Идея тут вот в чем.
Есть сверхновые типа Ia (это по ним измеряют ускорение расширения вселенной и тп.). Полагают, что это взрыв белого карлика. Масса карлика росла-росла за счет аккреции с соседа, пока не доросла.... Так вот. Если аккрецируемое вещество богато водородом, как это и предполагается во многих сценариях, то после взрыва этот водород можно увидеть по спектрам. Детальки там будут слабенькие, но вполне обнаружимые.
Суть в том, что для двух сверхновых такие детальки поискали, да не нашли. Т.е., поставили жесткий предел на массу водорода. Такой жесткий, что многие сценарии оказались закрытыми. Будем посмотреть, что придумают теоретики в ответ!
В нагрузку (и вне всякой связи с изложенным выше) о рентгеновских наблюдениях сверхновых Ia можно почитать тут arxiv:0710.3189, а о возможном гамма-излучении от них - здесь: arxiv:0710.3313.
Авторы представляют модель, в которой одновременно объясняются очень мощные (точнее, с большой оптической светимостью) сверхновые (результаты прекрасно описывают кривую блеска SN2006gy) и позволяют описать "серийные" взрывы, происходящие в массивных звездах на поздних стадиях эволюции. Высокая светимость некоторых сверхновых объясняется в модели тем, что выброс от новой вспышки сталкивается с предыдущим.
Некоторое время назад мы писали о необычном транзиенте в М85. Сами авторы открытия предположили, что наблюдается столкновение звезд. В данной же статье рассматривается идея о том, что мы имеем дело с необычной сверхновой. Если этот так, то это самая слабая из всех наблюдавшихся сверхновых.
Авторы исследовали темп различных типов сверхновых в галактиках различных типов, входящих в скопления. Результаты сравниваются с "галактиками поля" (т.е. с теми, которые в скопления не входят).
Наиболее интересный результат состоит в том, что темп сверхновых типа Ia в галактиках ранних типов в скоплениях в три раза выше, чем в поле.
Для сверхновых, связанных с коллапсом ядра массивной звезды, такого различия (в случае галактик поздних спектральных типов, ибо там они в подавляющем большинстве и встречаются) не обнаружено.
Как известно, сверхновые типа Ia используются в космологии как стандартные свечи. Именно по этим объектам почти 10 лет назад было обнаружено ускоренное расширение вселенной. Тем не менее, всегда звучит сомнение: а что если свехновые "там" не такие как "тут". Т.е., нет ли какой-то существенной эволюции сверхновых за последние несколько миллиардов лет. Может быть те, что находятся на больших красных смещениях не близнецы-братья "нашим" сверхновым?
Авторы сравнивают спектры далеких и близких сверхновых. Спектров много, использованы только высококачественные данные по хорошо изученным сверхновым. Основной вывод таков: никакой существенной эволюции не обнаружено.
Массивные звезды малой металличности в некотором диапазоне масс должны терять свою устойчивость из-за рождения пар в ядре, что приводит к специфическому взрыву сверхновой. Такие сверхновые должны оставлять характерные "отпечатки пальцев" из-за особенностей состава выбрасываемого вещества. "Улики" не обнаружены. Это может быть связано с тем, что все-таки такие взрывы не происходят. Авторы рассматривают некоторые варианты, для того, чтобы звезды могли избежать такой неустойчивости. Похоже, что вариант найден.
Описаны наблюдения самой мощной сверхновой, вспыхнувшей в 2005 году. Благодаря системе ROTSE-III ее удалось наблюдать и до максимума блеска.
Слоановский цифровой обзор неба естественно может служить инструментом для поиска различных оптических транзиентов, в том числе и вспышек сверхновых. Последних обнаружено уже не мало (сотни).
Авторы описывают алгоритм поиска сверхновых в SDSS.
О технических деталях см. также arxiv:0708.2749
Авторы рассматривают вопрос о том, не связаны ли некоторые известные галактические кандидаты в черные дыры с гамма-всплесками и гиперновыми. Т.е., не было ли в момент рождения соответствующих черных дыр гамма-всплесков. Вывод авторов в отношении нескольких объектов [Nova Sco (GRO J1655-40), Il Lupi (4U 1543-47), XTE J1550-564, GS 2023+338] утвердительный. А вот известный кандидат в черные дыры в системе Лебедь Х-1 с гамма-всплеском не связан, по мнению авторов. Связано это, опять же "как полагают авторы", с разными массами компонент в двойых системах.
Рассматривается роль альвеновских волн во взрывах сверхновых. Волны генерируются конвекцией в протонейтронной звезде. Для высокой эффективности необходимо мощное магнитное поле (порядка 10 в 15-й степени Гаусс и выше), но зато вовсе не обязательно наличие быстрого вращения.
Для сверхновой 1993J в галактике М81 удалось получить очень точные данные по линейным (т.е. в км/с) скоростям разлета по оптическим наблюдениям, и по угловым скоростям разлета по радиоданным. В итоге, можно геометрическим методом определить расстояние до этой галактики. Оно оказывается равным 3.96+/-0.29 Мпк, что суть выше, чем определенное ранее в рамках HST Key project (3.63+/-0.34 Мпк).
Авторы показывают, анализируя свойства галактик, в которых наблюдались сверхновые типа Ia, что есть субпопуляция взрывов этого типа, у которых прародители жили всего лишь около 70 миллионов лет (вместо нескольких миллиардов у основной массы прародителей).
Представлены результаты численного моделирования. В результате коллапса образуется сильно замагниченаая быстровращающаяся нейтронная звезда - магнитар. Формируются джеты. Параметры образовавшегося объекта позволяют по мнению авторов, говорить о появлении длинного гамма-всплеска.
См. также arXiv:0707.2219 о связи сверхновых и гамма-всплесков, а также о возможности того, что в сердце центральной машины всплеска сидит нейтронная звезда, а не черная дыра. И arXiv:0707.2187 о связи гамма-всплесков со звездами малой металличности.
Как известно, длинные гамма-всплески многие связывают со сверхновыми. Причем не со всякими, а только с типом Ibc (см. также arxiv:0706.3209). Причем, не все сверхновые этого типа, а лишь часть. Вот про последнее и идет речь в статье.
Автор показывает, что если гамма-всплески и рентгеновские вспышки закачивают в энергию релятивистского потока вещества более 1048 эрг, то сверхновые Ibc обычно закачивают меньше. В итоге, менее 3 проецнтов от близких сверхновых этого типа дают основание заподозрить их связь с гамма-всплесками.
Разумеется, "многое сделано, но многое еще предстоит". Автор надеется, что планируемые оптические обзоры, предназначенные для поиска сверхновых, смогут пролить свет на физику сверхновых Ibc, и на иъ связь с гамма-всплесками и рентгеновскими вспышками.
Классификация сверхновых все более размывается за счет открытия объектов, не влезающих в прокрустово ложе малого числа четко определенных типов. В коротком обзоре представлены основные последние результаты в этой области. Рисунок 2 на седьмой странице статьи дает представление об основных типах, выделяемых сейчас, и о возможных связях между ними.
См. также свежий препринт arxiv:0706.1299, в котором дается краткий обзор эволюции темпов вспышек сверхновых со временем.
Изучение сверхновых вышло на новый уровень, когда стало возможным искать звезды-прародители на архивных снимках. Правда, примеры, когда прародитель был идентифицирован, можно пересчитать по пальцам. В обсуждаемой статье прародитель не найден, но поставлены очень важные верхние пределы, кроме того, речь идет о сверхновых типа Ic.
Верхний предел говорит о том, что прародителем могла быть только звезда
Вольфа-Райе. Причем, если это была одиночная звезда, то она должна была бы
иметь очень большой темп потери массы, больше стандартного. Значит,
вероятнее всего, звезда-прародитель входила в двойную систему.
Соответственно, можно посмотреть не виден ли сейчас второй компонент. Не
виден. Значит, можно дать ограничение на его массу, если это нормальная
звезда (разумеется, компаньон может быть компактным объектом).
В общем, на мой взгляд, наблюдения начинают давать очень важные для моделей
сверхновых данные.
Открытие в прошлом году очень мощной сверхновой 2006gy вызвало у некоторых людей опасения: а что если где-то у нас под боком рванет? Некоторые авторы полагают, что известная очень массивная звезда Эта Киля может в будущем привести к такому мощному взрыву. Потенциальные последствия такого события рассмотрены в статье.
Как и ожидалось, все могут спать спокойно. даже если в каком-то далеком (сотни тысяч лет) будущем Эта Киля и рванет как 2006gy, то жизни на Земле это не угрожает.
Описаны данные по необычной сверхновой типа Ib. Авторы предлагают интерпретацию, согласно которой имеет место дополнительная закачка энергии благодаря работе молодого магнитара - быстро вращающейся нейтронной звезды с сильным магнитным полем.
Представлены результаты расчетов сверхновой для магнито-ротационного механизма. Как я уже не раз подчеркивал, наконец-то этот механизм стал активно исследоваться разными группами. Все это ясный пример того, как развитие вычислительной техники (имеется ввиду не только "железо", но и "софт") приводит к детализации моделей и рассмотрению более широкого спектра механизмов.
Как известно, ускоренное расширение вселенной было открыто в 1998 году именно по результатам наблюдений сверхновых типа Ia на больших красных смещениях. С другой стороны известно, что с самого начала возникла дискуссия о том, можно ли считать сверхновые на больших z (под большими имеются ввиду значения типа 0.2-0.3 и выше) такими же, как сверхновые "вокруг нас" (т.е. на z<0.1). В данной статье авторы проводят количественное исследование этого вопроса.
Была использована выборка из 12 сверхновых на больших красных смещениях (примерно от 0.2 до 0.9). Их спектры сравнивали со спектрами близких сверхновых. Лишь одна из 12 оказалась "иной". Все остальные далекие сверхновые вполне похоже на своих близких к нам родственников. Т.о., космологическим результатам, полученным по сверхновым типа Ia, можно верить.
Отмечу, что уже несколько лет назад результаты по динамике расширения вселенной были независимо получены (в полном согласии с результатами по сверхновым) с помощью совершенно независимых методик. Тем не менее, важно напрямую показывать, что сверхновые типа Ia могут быть использованы как инструмент для изучения вселенной.
См. также свежую работу astro-ph/0703656, посвященную новым данным по спектрам сверхновых.
Авторы показывают с помощью трехмерного моделирования, что система тройных колец вокруг СН1987А могла появиться из-за того, что прародителем была звезда, образовавшаяся в результате слияния компонент двойной системы.
Анимации доступны здесь и здесь.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Радионаблюдения существенно обогащают наше понимание взрывов сверхновых и ранней эволюции остатка. На сегодняшний день удалось отнаблюдать более 2 десятков радиосверхновых. Что конкретно дают эти наблюдения описывается в небольшом обзоре.
Из-за того, что пыль и газ мешают наблюдениям в оптическом диапазоне, достаточно большое количество сверхновых оказывается скрытими от нас. Даже в нашей Галактике мы можем не заметить такой мощный взрыв! Что уж говорить о далеких....
Авторы показывают, что в близких галактиках мы можем пропускать примерно 5-10 процентов сверхновых, связанных с коллапсом ядер массивных звезд. С ростом красного смещения эта доля увеличивается, доходя до двух третей на z>2.
Идея механизма взрыва сверхновой, предложенного примерно в 1970 г. Г.С. Бисноватым-Коганом, постепенно овладевает массами. Суть состоит в том, что быстрое вращение и возникающее магнитное поле играют ключевую роль во взрыве. Авторы представляют результаты своего двумерного моделирования, которое показывает, что при достаточно быстром вращении звезды-прародителя возникает мощный джет, и энергетики хватает даже для гипероновой. Т.о., так можно объяснять гамма-всплески.
Обсуждается механизм взрыва сверхновых, связанных с последними стадиями эволюции массивных звезд - с коллапсом ядра. Авторы полагают, что вопрос о взрыве звезд с массами 8-10 солнечных можно считать качественно решенным. Решение потребовало учета трехмерных эффектов (и, соответственно, очень сложного моделирования). Ключевую роль в механизме взрыва играет нейтринный прогрев.
Взрывы более массивных звезд пока остаются загадочными. Вероятно, пишут авторы, требуется учет новых эффектов, например, связанным с магнитным полем и вращением, или же важны какие-то плохо понятные процессы при высокой плотности вещества.
Большой обзор, посвященный в основном, образованию двойных нейтронных звезд. Однако, кроме них, рассматриваются и системы с черными дырами и белыми карликами. Авторы честно пишут, что дают сводку в основном своих результатов, так что о работах других групп пишут довольно-таки мимоходом.
Напомню, что вся эта деятельность по поводу двойных компактных объектов важна, в первую очередь, в связи с работой детекторов гравитационных волн. Также, двойные компактыне объекты интересны как возможные источники коротких гамма-всплесков. Ну и просто, двойные радиопульсары - лучшая лаборатория по проверке многих интересных эффектов, включая ОТО. Кроме того, не надо забывать, что обнаружение системы пульсар плюс черная дыра не за горами, и обнаружение такого "зверя" готовит нам много открытий чудных.
Сверхновая 2006gy была открыта 18 сентября этого года установкой ROTSE-IIIb, предназначенной для поиска оптических проявлений гамма-всплесков. Изначально даже не было уверенности в том, что наблюдается именно сверхновая: был заподозрен всплеск, связанный с активность галактического ядра. Потом, однако, стало ясно, что все-таки это именно сверхновая, причем достаточно редкого типа IIn/Ia. От центра галактики вспышку отделяет около 300-400 парсек.
Возможно, это самая мощная (в оптическом диапазоне) из всех наблюдавшихся сверхновых. Ее абсолютная величина в максимуме составила -22.2 (светимость в максимуме была почти 10 в 45 степени эрг в секунду, это почти миллион миллионов солнечных). За первые два месяца было излучено более 10 в 51 степени эрг (речь идет именно об электромагнитном излучении, а не о механической энергии или нейтрино). Объяснить это непросто, особенно учитывая, что сверхновая появилась в линзовидной галактике (тип S0), где темп звездообразования должен быть невысок (все ранее наблюдавшиеся сверхновые этого типа, были связаны с областями звездообразования). Хотя, детальные наблюдения показали наличие полосы пыли в том районе, где вспыхнула сверхновая. Т.о., недавнее звездообразование могло иметь место и там.
Обсудить в ЖЖ-сообществе
ru_astroph.
Обсудить на Астрофоруме в
Научной панораме.
Снова большой обзор из сборника, посвященного Бете, и снова про сверхновые. Под многомерностью понимаются двух- и трехмерные численные модели взрыва. В основном, авторы обсуждают свои результаты.
Дается обзор наблюдений сверхновых в радиодиапазоне. Некоторые наиболее интересные или лучше всего исследованные события разбираются более детально.
Описаны результаты численного моделирования взрыва сверхновой и его последствий, которые, возможно, позволяют пролить свет на то, как раскручиваются новорожденные нейтронные звезды.
См. также astro-ph/0611698.
Представлены предварительные результаты многоцветных наблюдений большого количества сверхновых, связанных с коллапсов ядер массивных звезд. Благодаря однородности выборки, можно детально исследовать различные подтипы сверхновых, сравнивая их частоту появления и т.п.
См. также astro-ph/0611920, где речь идет о сверхновых типа Ia.
Поразительно все-таки сложная штука - взрыв сверхновой!
Вот очередной расчет. В нем авторы пытаются учесть роль магнитных полей. Результаты сравниваются с другими моделями и подходами.
Небольшой обзор посвящен как теории, так и наблюдениям сверхновых типа Ia. Основной темой являются численные расчеты взрывов и их сравнение с наблюдениями.
Статья написано очень ясно и последовательно. Несмотря на описание теории формул практически нет. Учитывая важность сверхновых типа Ia для современной астрофизики и космологии, всем советую хотя бы просмотреть обзор.
Собственно, статья привлекла мое внимание потому, что обсуждаемая система считается одним из лучших (на сегодняшний день) кандидатов в будущие сверхновые типа Ia. Однако такой вывод нуждается в детальном наблюдательном подтверждении. Для этого надо показать, что, во-первых, система состоит из "нужных" звезд, а во-вторых, что их суммарная масса превосходит чандрасекаровский предел.
Авторы показали, что природа компаньонов удовлетворяет требованиям, предъявляемым к прародителям сверхновых Ia. С суммарной массой все сложнее. Дело в том, что она оказалась очень близка к критической. Но вот с какой стороны? Авторы полагают более вероятным, что масса все-таки превосходит чандрасекаровскую. И, т.о., KPD 1930+2752 в самом деле является едва ли не лучшим кандидатом в будущие сверхновые.
В современной науке о гамма-всплесках достаточно стандартной является гипотеза о связи гамма-всплесков со сверхновыми. Гипотеза эта имеет некоторую наблюдательную поддержку, однако есть у нее и трудности. Во-первых, ясно, что не все гамма-всплески (и даже не все длинные) связаны со сверхновыми. Во-вторых, непонятно, верно ли мы отождествляем наблюдаемые в оптике феномены как "сверхновые". Подробнее обо всем это можно прочесть в обзоре.
Давление в недрах очень массивных звезд обеспечивается давлением излучения. Чем выше масса звезды, тем выше температура в центре. В ядрах светил с массой около 200 солнечных могут возникнуть условия, когда фотоны начнут рождать электрон-пизотронные пары. Это приведет к уменьшению давления. Начнется коллапс. Именно так и устроены сверхновые с рождением пар.
Столь массивные звезды не образуются в наше время, когда металличность межзвездного газа высока. Они могли появляться только в достаточно молодой Вселенной. Крайне интересно понять, происходили ли тогда взрывы за счет рождения пар.
Авторы дают обзор по сверхновых с рождением пар, и рассматривают вопрос об их детектируемости на планируемом JWST (т.е. на Вэббовском космическом телескопе).
Arp 220 - одна из т.н. "фабрик сверхновых". Это галактика с мощнейшим звездообразованием. Авторы приводят данные радионаблюдений почти 5 десятков радиосверхновых. Полученные результаты свидетельствуют о темпе вспышек в ядре (!) Arp 220 равном 4 сверхновые в год.
Как известно, кроме коротких и длинных гамма-всплесков есть еще и т.н. рентгеновские вспышка (X-ray flashes - XRF). Активно обсуждается возможная связь всех этих взрывов со сверхновыми и друг с другом. Замечу, что и сверхновые бывают разные (особенно, если речь идет просто о событиях, классифицированных как сверхновые).
В это статье авторы представляют анализ данных наблюдений одной из ближайших вспышек - XRF 060218 (она также совпадает со сверхновой 2006aj). Наличие, кроме рентгеновских, радионаблюдений позволяет определить полную энергию вспышки.
Анализ позволяет авторам утверждать, что будучи в 100 раз менее энергичиными, в сравнении с типичными длинными гамма-всплесками, такие вспышки происходят в 10 раз чаще. От сверхновых типа Ibc такие вспышки отличаются наличием не очень мощного (опять же, в сравнении с гамма-всплесками) релятивистского выброса.
В итоге аворы полагают, что
1. Гамма-всплески и рентгеновские вспышки отличаются от сверхновых
наличием релятивистского выброса.
2. Рентгеновские вспышки отличаются от гамма-всплесков "центральной
машиной", запускающей выброс.
Как известно, сейчас достаточно популярна идея связи гамма-всплесков со сверхновыми. Здесь, однако, есть много нерешенных вопросов. Гамма-всплески ассоциируются с очень разными оптическими транзиентами. С другой стороны, детальные исследования в радиодиапазоне 74 сверхновых типа Ib/c (с которыми в основном и связывают гамма-всплески) не показали наличия излучения, которое должно было бы возникать, если эти сверхновые сопровождаются феноменом гамма-всплеска (сам всплеск мог быть невидим для нас, если релятивистская струя не направлена в нашу сторону). Так что вопросов много, но много и наблюдательных данных.
Вся эта яркая и не очень понятная картина суммирована в обзоре. На мой взгляд, статья создает чуть более оптимистичную картину связи двух явлений, чем следовало бы. Все-таки пока вопросы доминируют...
Еще один важный обзор на эту же тему astro-ph/0604131.
Подводится итог 15-тилетней программы по уточнению постоянной Хаббла. Основа работы - уточнение светимости сверхновых типа Ia на основе данных по цефеидам. Т.е., по цефеидам оценивается расстояние до галактики, в которой видна сверхновая. Это позволяет определить светимость сверхновой. Затем расстояния до далеких галактик с известным красным смещением (в которых цефеиды уже не видны из-за большого расстояния) определяется по наблюдаемым в них сверхновым типа Ia.
Собственно, телеском им. Хаббла был нужен как раз для изучения цефеид в относительно близких галактиках, в которых были зарегистрированы вспышки сверхновых этого типа. Напомню, что такие сверхновые используют в качестве т.н. "стандартной свечи". Именно по ним впервые были получены результаты, позволяющие говорить об ускорении расширения вселенной.
Итог работы таков: постоянная Хаббла равна 62.3 км/с/Мпк +/- 5 км/с/Мпк (систематическая ошибка) +/- 1.3 км/с/Мпк ("случайная" ошибка, связанная с конечной статистикой). Некоторые изменения возможны, если будут аккуратно учтены эффекты, связанные с межгалактической пылью. Однако, они не могут превосходить примерно 20 процентов.
Важно, что результаты, полученные разными группами (зачастую "не дружащими" друг с другом) качественно сходятся. Напомню, что недавний результат группы WMAP составляет 73+/- 3 км/с/Мпк. С учетом разных подходов результаты согласуются друг с другом. Т.е. значение порядка 68-70 км/с/Мпк устраивает всех.
С чем можно перепутать взрыв сверхновой? Авторы полагают, что необычная сверхновая, наблюдавшаяся в 2002 году, есть ни что иное, как вспышка яркой голубой переменной ( Luminous Blue Variable, некоторые картинки, связанные с этими массивными звездами, можно посмотреть здесь). Такие события уже наблюдались. Например, известны мощнейшие вспышки Эта Киля.
Авторы полагают, что бурная жизнь массивных предсверхновых сопровождается большим количеством таких вспышек, и что многие события, ранее классифицированные как сверхновые, на самом деле являются результатом не смерти, а агонии массивных звезд.
Еще одна статья, посвященная той же тематике, появилась днем позже: astro-ph/0603056.
По данным обзора галактической плоскости на VLA открыто 35 новых остатков сверхновых. Все они лежат на галактической долготе от 4.5 до 22 градусов, а по широте в поясе +/-1.25 градусов.